bliss-rs/src/chroma.rs

648 lines
21 KiB
Rust
Raw Normal View History

2021-05-14 15:35:08 +01:00
//! Chroma feature extraction module.
//!
//! Contains functions to compute the chromagram of a song, and
//! then from this chromagram extract the song's tone and mode
//! (minor / major).
extern crate noisy_float;
use crate::utils::stft;
use crate::utils::{hz_to_octs_inplace, Normalize};
2021-06-13 13:07:17 +01:00
use crate::{BlissError, BlissResult};
2021-05-14 15:35:08 +01:00
use ndarray::{arr1, arr2, concatenate, s, Array, Array1, Array2, Axis, Zip};
use ndarray_stats::interpolate::Midpoint;
use ndarray_stats::QuantileExt;
use noisy_float::prelude::*;
/**
* General object holding the chroma descriptor.
*
* Current chroma descriptors are interval features (see
* https://speech.di.uoa.gr/ICMC-SMC-2014/images/VOL_2/1461.pdf).
*
* Contrary to the other descriptors that can be used with streaming
* without consequences, this one performs better if the full song is used at
* once.
*/
pub(crate) struct ChromaDesc {
sample_rate: u32,
n_chroma: u32,
values_chroma: Array2<f64>,
}
impl Normalize for ChromaDesc {
const MAX_VALUE: f32 = 0.12;
const MIN_VALUE: f32 = 0.;
}
impl ChromaDesc {
pub const WINDOW_SIZE: usize = 8192;
pub fn new(sample_rate: u32, n_chroma: u32) -> ChromaDesc {
ChromaDesc {
sample_rate,
n_chroma,
values_chroma: Array2::zeros((n_chroma as usize, 0)),
}
}
/**
* Compute and store the chroma of a signal.
*
* Passing a full song here once instead of streaming smaller parts of the
* song will greatly improve accuracy.
*/
2021-06-13 13:07:17 +01:00
pub fn do_(&mut self, signal: &[f32]) -> BlissResult<()> {
2021-05-14 15:35:08 +01:00
let mut stft = stft(signal, ChromaDesc::WINDOW_SIZE, 2205);
let tuning = estimate_tuning(
self.sample_rate as u32,
&stft,
ChromaDesc::WINDOW_SIZE,
0.01,
12,
)?;
let chroma = chroma_stft(
self.sample_rate,
&mut stft,
ChromaDesc::WINDOW_SIZE,
self.n_chroma,
tuning,
)?;
self.values_chroma = concatenate![Axis(1), self.values_chroma, chroma];
Ok(())
}
/**
* Get the song's interval features.
*
* Return the 6 pitch class set categories, as well as the major, minor,
* diminished and augmented triads.
*
* See this paper https://speech.di.uoa.gr/ICMC-SMC-2014/images/VOL_2/1461.pdf
* for more information ("Timbre-invariant Audio Features for Style Analysis of Classical
* Music").
*/
pub fn get_values(&mut self) -> Vec<f32> {
chroma_interval_features(&self.values_chroma)
.mapv(|x| self.normalize(x as f32))
.to_vec()
}
}
// Functions below are Rust versions of python notebooks by AudioLabs Erlang
// (https://www.audiolabs-erlangen.de/resources/MIR/FMP/C0/C0.html)
fn chroma_interval_features(chroma: &Array2<f64>) -> Array1<f64> {
let chroma = normalize_feature_sequence(&chroma.mapv(|x| (x * 15.).exp()));
let templates = arr2(&[
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 1, 1, 0],
[0, 0, 0, 1, 0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]);
let interval_feature_matrix = extract_interval_features(&chroma, &templates);
interval_feature_matrix.mean_axis(Axis(1)).unwrap()
}
fn extract_interval_features(chroma: &Array2<f64>, templates: &Array2<i32>) -> Array2<f64> {
let mut f_intervals: Array2<f64> = Array::zeros((chroma.shape()[1], templates.shape()[1]));
for (template, mut f_interval) in templates
.axis_iter(Axis(1))
.zip(f_intervals.axis_iter_mut(Axis(1)))
{
for shift in 0..12 {
let mut vec: Vec<i32> = template.to_vec();
vec.rotate_right(shift);
let rolled = arr1(&vec);
let power = Zip::from(chroma.t())
.and_broadcast(&rolled)
.map_collect(|&f, &s| f.powi(s))
.map_axis_mut(Axis(1), |x| x.product());
f_interval += &power;
}
}
f_intervals.t().to_owned()
}
fn normalize_feature_sequence(feature: &Array2<f64>) -> Array2<f64> {
let mut normalized_sequence = feature.to_owned();
for mut column in normalized_sequence.columns_mut() {
let mut sum = column.mapv(|x| x.abs()).sum();
if sum < 0.0001 {
sum = 1.;
}
column /= sum;
}
normalized_sequence
}
// All the functions below are more than heavily inspired from
// librosa"s code: https://github.com/librosa/librosa/blob/main/librosa/feature/spectral.py#L1165
// chroma(22050, n_fft=5, n_chroma=12)
//
// Could be precomputed, but it takes very little time to compute it
// on the fly compared to the rest of the functions, and we'd lose the
// possibility to tweak parameters.
fn chroma_filter(
sample_rate: u32,
n_fft: usize,
n_chroma: u32,
tuning: f64,
2021-06-13 13:07:17 +01:00
) -> BlissResult<Array2<f64>> {
2021-05-14 15:35:08 +01:00
let ctroct = 5.0;
let octwidth = 2.;
let n_chroma_float = f64::from(n_chroma);
let n_chroma2 = (n_chroma_float / 2.0).round() as u32;
let n_chroma2_float = f64::from(n_chroma2);
let frequencies = Array::linspace(0., f64::from(sample_rate), (n_fft + 1) as usize);
let mut freq_bins = frequencies;
hz_to_octs_inplace(&mut freq_bins, tuning, n_chroma);
freq_bins.mapv_inplace(|x| x * n_chroma_float);
freq_bins[0] = freq_bins[1] - 1.5 * n_chroma_float;
let mut binwidth_bins = Array::ones(freq_bins.raw_dim());
binwidth_bins.slice_mut(s![0..freq_bins.len() - 1]).assign(
&(&freq_bins.slice(s![1..]) - &freq_bins.slice(s![..-1])).mapv(|x| {
if x <= 1. {
1.
} else {
x
}
}),
);
let mut d: Array2<f64> = Array::zeros((n_chroma as usize, (&freq_bins).len()));
for (idx, mut row) in d.rows_mut().into_iter().enumerate() {
row.fill(idx as f64);
}
d = -d + &freq_bins;
d.mapv_inplace(|x| {
(x + n_chroma2_float + 10. * n_chroma_float) % n_chroma_float - n_chroma2_float
});
d = d / binwidth_bins;
d.mapv_inplace(|x| (-0.5 * (2. * x) * (2. * x)).exp());
let mut wts = d;
// Normalize by computing the l2-norm over the columns
for mut col in wts.columns_mut() {
let mut sum = col.mapv(|x| x * x).sum().sqrt();
if sum < f64::MIN_POSITIVE {
sum = 1.;
}
col /= sum;
}
freq_bins.mapv_inplace(|x| (-0.5 * ((x / n_chroma_float - ctroct) / octwidth).powi(2)).exp());
wts *= &freq_bins;
// np.roll(), np bro
2022-02-17 21:43:28 +00:00
let mut uninit: Vec<f64> = vec![0.; (&wts).len()];
2021-05-14 15:35:08 +01:00
unsafe {
uninit.set_len(wts.len());
}
let mut b = Array::from(uninit)
.into_shape(wts.dim())
2022-02-17 21:43:28 +00:00
.map_err(|e| BlissError::AnalysisError(format!("in chroma: {}", e)))?;
2021-05-14 15:35:08 +01:00
b.slice_mut(s![-3.., ..]).assign(&wts.slice(s![..3, ..]));
b.slice_mut(s![..-3, ..]).assign(&wts.slice(s![3.., ..]));
wts = b;
let non_aliased = (1 + n_fft / 2) as usize;
Ok(wts.slice_move(s![.., ..non_aliased]))
}
fn pip_track(
sample_rate: u32,
spectrum: &Array2<f64>,
n_fft: usize,
2021-06-13 13:07:17 +01:00
) -> BlissResult<(Vec<f64>, Vec<f64>)> {
2021-05-14 15:35:08 +01:00
let sample_rate_float = f64::from(sample_rate);
let fmin = 150.0_f64;
let fmax = 4000.0_f64.min(sample_rate_float / 2.0);
let threshold = 0.1;
let fft_freqs = Array::linspace(0., sample_rate_float / 2., 1 + n_fft / 2);
let length = spectrum.len_of(Axis(0));
// TODO>1.0 Make this a bitvec when that won't mean depending on a crate
let freq_mask = fft_freqs
.iter()
.map(|&f| (fmin <= f) && (f < fmax))
.collect::<Vec<bool>>();
let ref_value = spectrum.map_axis(Axis(0), |x| {
let first: f64 = *x.first().expect("empty spectrum axis");
let max = x.fold(first, |acc, &elem| if acc > elem { acc } else { elem });
threshold * max
});
// There will be at most taken_columns * length elements in pitches / mags
let taken_columns = freq_mask
.iter()
.fold(0, |acc, &x| if x { acc + 1 } else { acc });
let mut pitches = Vec::with_capacity(taken_columns * length);
let mut mags = Vec::with_capacity(taken_columns * length);
let beginning = freq_mask
.iter()
.position(|&b| b)
.ok_or_else(|| BlissError::AnalysisError("in chroma".to_string()))?;
2021-05-14 15:35:08 +01:00
let end = freq_mask
.iter()
.rposition(|&b| b)
.ok_or_else(|| BlissError::AnalysisError("in chroma".to_string()))?;
2021-05-14 15:35:08 +01:00
let zipped = Zip::indexed(spectrum.slice(s![beginning..end - 3, ..]))
.and(spectrum.slice(s![beginning + 1..end - 2, ..]))
.and(spectrum.slice(s![beginning + 2..end - 1, ..]));
// No need to handle the last column, since freq_mask[length - 1] is
// always going to be `false` for 22.5kHz
zipped.for_each(|(i, j), &before_elem, &elem, &after_elem| {
if elem > ref_value[j] && after_elem <= elem && before_elem < elem {
let avg = 0.5 * (after_elem - before_elem);
let mut shift = 2. * elem - after_elem - before_elem;
if shift.abs() < f64::MIN_POSITIVE {
shift += 1.;
}
shift = avg / shift;
pitches.push(((i + beginning + 1) as f64 + shift) * sample_rate_float / n_fft as f64);
mags.push(elem + 0.5 * avg * shift);
}
});
Ok((pitches, mags))
}
// Only use this with strictly positive `frequencies`.
fn pitch_tuning(
frequencies: &mut Array1<f64>,
resolution: f64,
bins_per_octave: u32,
2021-06-13 13:07:17 +01:00
) -> BlissResult<f64> {
2021-05-14 15:35:08 +01:00
if frequencies.is_empty() {
return Ok(0.0);
}
hz_to_octs_inplace(frequencies, 0.0, 12);
frequencies.mapv_inplace(|x| f64::from(bins_per_octave) * x % 1.0);
// Put everything between -0.5 and 0.5.
frequencies.mapv_inplace(|x| if x >= 0.5 { x - 1. } else { x });
let indexes = ((frequencies.to_owned() - -0.5) / resolution).mapv(|x| x as usize);
let mut counts: Array1<usize> = Array::zeros(((0.5 - -0.5) / resolution) as usize);
for &idx in indexes.iter() {
counts[idx] += 1;
}
let max_index = counts
.argmax()
2022-02-17 21:43:28 +00:00
.map_err(|e| BlissError::AnalysisError(format!("in chroma: {}", e)))?;
2021-05-14 15:35:08 +01:00
// Return the bin with the most reoccuring frequency.
Ok((-50. + (100. * resolution * max_index as f64)) / 100.)
}
fn estimate_tuning(
sample_rate: u32,
spectrum: &Array2<f64>,
n_fft: usize,
resolution: f64,
bins_per_octave: u32,
2021-06-13 13:07:17 +01:00
) -> BlissResult<f64> {
2022-01-05 18:19:50 +00:00
let (pitch, mag) = pip_track(sample_rate, spectrum, n_fft)?;
2021-05-14 15:35:08 +01:00
let (filtered_pitch, filtered_mag): (Vec<N64>, Vec<N64>) = pitch
.iter()
.zip(&mag)
.filter(|(&p, _)| p > 0.)
.map(|(x, y)| (n64(*x), n64(*y)))
.unzip();
2022-04-11 16:26:05 +01:00
if pitch.is_empty() {
return Ok(0.);
}
2021-05-14 15:35:08 +01:00
let threshold: N64 = Array::from(filtered_mag.to_vec())
.quantile_axis_mut(Axis(0), n64(0.5), &Midpoint)
2022-02-17 21:43:28 +00:00
.map_err(|e| BlissError::AnalysisError(format!("in chroma: {}", e)))?
2021-05-14 15:35:08 +01:00
.into_scalar();
let mut pitch = filtered_pitch
.iter()
.zip(&filtered_mag)
.filter_map(|(&p, &m)| if m >= threshold { Some(p.into()) } else { None })
.collect::<Array1<f64>>();
pitch_tuning(&mut pitch, resolution, bins_per_octave)
}
fn chroma_stft(
sample_rate: u32,
spectrum: &mut Array2<f64>,
n_fft: usize,
n_chroma: u32,
tuning: f64,
) -> Result<Array2<f64>, BlissError> {
spectrum.par_mapv_inplace(|x| x * x);
let mut raw_chroma = chroma_filter(sample_rate, n_fft, n_chroma, tuning)?;
raw_chroma = raw_chroma.dot(spectrum);
for mut row in raw_chroma.columns_mut() {
let mut sum = row.mapv(|x| x.abs()).sum();
if sum < f64::MIN_POSITIVE {
sum = 1.;
}
row /= sum;
}
Ok(raw_chroma)
}
#[cfg(test)]
mod test {
use super::*;
use crate::utils::stft;
use crate::{Song, SAMPLE_RATE};
use ndarray::{arr1, arr2, Array2};
use ndarray_npy::ReadNpyExt;
use std::fs::File;
2021-06-13 13:07:17 +01:00
use std::path::Path;
2021-05-14 15:35:08 +01:00
#[test]
fn test_chroma_interval_features() {
let file = File::open("data/chroma.npy").unwrap();
let chroma = Array2::<f64>::read_npy(file).unwrap();
let features = chroma_interval_features(&chroma);
let expected_features = arr1(&[
0.03860284, 0.02185281, 0.04224379, 0.06385278, 0.07311148, 0.02512566, 0.00319899,
0.00311308, 0.00107433, 0.00241861,
]);
for (expected, actual) in expected_features.iter().zip(&features) {
assert!(0.00000001 > (expected - actual.abs()));
}
}
#[test]
fn test_extract_interval_features() {
let file = File::open("data/chroma-interval.npy").unwrap();
let chroma = Array2::<f64>::read_npy(file).unwrap();
let templates = arr2(&[
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 1, 1, 0],
[0, 0, 0, 1, 0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]);
let file = File::open("data/interval-feature-matrix.npy").unwrap();
let expected_interval_features = Array2::<f64>::read_npy(file).unwrap();
let interval_features = extract_interval_features(&chroma, &templates);
for (expected, actual) in expected_interval_features
.iter()
.zip(interval_features.iter())
{
assert!(0.0000001 > (expected - actual).abs());
}
}
#[test]
fn test_normalize_feature_sequence() {
let array = arr2(&[[0.1, 0.3, 0.4], [1.1, 0.53, 1.01]]);
let expected_array = arr2(&[
[0.08333333, 0.36144578, 0.28368794],
[0.91666667, 0.63855422, 0.71631206],
]);
let normalized_array = normalize_feature_sequence(&array);
assert!(!array.is_empty() && !expected_array.is_empty());
for (expected, actual) in normalized_array.iter().zip(expected_array.iter()) {
assert!(0.0000001 > (expected - actual).abs());
}
}
#[test]
fn test_chroma_desc() {
2021-06-13 13:07:17 +01:00
let song = Song::decode(Path::new("data/s16_mono_22_5kHz.flac")).unwrap();
2021-05-14 15:35:08 +01:00
let mut chroma_desc = ChromaDesc::new(SAMPLE_RATE, 12);
chroma_desc.do_(&song.sample_array).unwrap();
let expected_values = vec![
-0.35661936,
-0.63578653,
-0.29593682,
0.06421304,
0.21852458,
-0.581239,
-0.9466835,
-0.9481153,
-0.9820945,
-0.95968974,
];
for (expected, actual) in expected_values.iter().zip(chroma_desc.get_values().iter()) {
assert!(0.0000001 > (expected - actual).abs());
}
}
#[test]
fn test_chroma_stft_decode() {
2021-06-13 13:07:17 +01:00
let signal = Song::decode(Path::new("data/s16_mono_22_5kHz.flac"))
2021-05-14 15:35:08 +01:00
.unwrap()
.sample_array;
let mut stft = stft(&signal, 8192, 2205);
let file = File::open("data/chroma.npy").unwrap();
let expected_chroma = Array2::<f64>::read_npy(file).unwrap();
let chroma = chroma_stft(22050, &mut stft, 8192, 12, -0.04999999999999999).unwrap();
assert!(!chroma.is_empty() && !expected_chroma.is_empty());
for (expected, actual) in expected_chroma.iter().zip(chroma.iter()) {
assert!(0.0000001 > (expected - actual).abs());
}
}
#[test]
fn test_estimate_tuning() {
let file = File::open("data/spectrum-chroma.npy").unwrap();
let arr = Array2::<f64>::read_npy(file).unwrap();
let tuning = estimate_tuning(22050, &arr, 2048, 0.01, 12).unwrap();
assert!(0.000001 > (-0.09999999999999998 - tuning).abs());
}
2022-04-11 16:26:05 +01:00
#[test]
fn test_chroma_estimate_tuning_empty_fix() {
assert!(0. == estimate_tuning(22050, &Array2::zeros((8192, 1)), 8192, 0.01, 12).unwrap());
}
2021-05-14 15:35:08 +01:00
#[test]
fn test_estimate_tuning_decode() {
2021-06-13 13:07:17 +01:00
let signal = Song::decode(Path::new("data/s16_mono_22_5kHz.flac"))
2021-05-14 15:35:08 +01:00
.unwrap()
.sample_array;
let stft = stft(&signal, 8192, 2205);
let tuning = estimate_tuning(22050, &stft, 8192, 0.01, 12).unwrap();
assert!(0.000001 > (-0.04999999999999999 - tuning).abs());
}
#[test]
fn test_pitch_tuning() {
let file = File::open("data/pitch-tuning.npy").unwrap();
let mut pitch = Array1::<f64>::read_npy(file).unwrap();
assert_eq!(-0.1, pitch_tuning(&mut pitch, 0.05, 12).unwrap());
}
#[test]
fn test_pitch_tuning_no_frequencies() {
let mut frequencies = arr1(&[]);
assert_eq!(0.0, pitch_tuning(&mut frequencies, 0.05, 12).unwrap());
}
#[test]
fn test_pip_track() {
let file = File::open("data/spectrum-chroma.npy").unwrap();
let spectrum = Array2::<f64>::read_npy(file).unwrap();
let mags_file = File::open("data/spectrum-chroma-mags.npy").unwrap();
let expected_mags = Array1::<f64>::read_npy(mags_file).unwrap();
let pitches_file = File::open("data/spectrum-chroma-pitches.npy").unwrap();
let expected_pitches = Array1::<f64>::read_npy(pitches_file).unwrap();
let (mut pitches, mut mags) = pip_track(22050, &spectrum, 2048).unwrap();
pitches.sort_by(|a, b| a.partial_cmp(b).unwrap());
mags.sort_by(|a, b| a.partial_cmp(b).unwrap());
for (expected_pitches, actual_pitches) in expected_pitches.iter().zip(pitches.iter()) {
assert!(0.00000001 > (expected_pitches - actual_pitches).abs());
}
for (expected_mags, actual_mags) in expected_mags.iter().zip(mags.iter()) {
assert!(0.00000001 > (expected_mags - actual_mags).abs());
}
}
#[test]
fn test_chroma_filter() {
let file = File::open("data/chroma-filter.npy").unwrap();
let expected_filter = Array2::<f64>::read_npy(file).unwrap();
let filter = chroma_filter(22050, 2048, 12, -0.1).unwrap();
for (expected, actual) in expected_filter.iter().zip(filter.iter()) {
assert!(0.000000001 > (expected - actual).abs());
}
}
}
#[cfg(all(feature = "bench", test))]
mod bench {
extern crate test;
use super::*;
use crate::utils::stft;
use crate::{Song, SAMPLE_RATE};
use ndarray::{arr2, Array1, Array2};
use ndarray_npy::ReadNpyExt;
use std::fs::File;
2021-06-13 13:07:17 +01:00
use std::path::Path;
use test::Bencher;
2021-05-14 15:35:08 +01:00
#[bench]
fn bench_estimate_tuning(b: &mut Bencher) {
let file = File::open("data/spectrum-chroma.npy").unwrap();
let arr = Array2::<f64>::read_npy(file).unwrap();
b.iter(|| {
estimate_tuning(22050, &arr, 2048, 0.01, 12).unwrap();
});
}
#[bench]
fn bench_pitch_tuning(b: &mut Bencher) {
let file = File::open("data/pitch-tuning.npy").unwrap();
let pitch = Array1::<f64>::read_npy(file).unwrap();
b.iter(|| {
pitch_tuning(&mut pitch.to_owned(), 0.05, 12).unwrap();
});
}
#[bench]
fn bench_pip_track(b: &mut Bencher) {
let file = File::open("data/spectrum-chroma.npy").unwrap();
let spectrum = Array2::<f64>::read_npy(file).unwrap();
b.iter(|| {
pip_track(22050, &spectrum, 2048).unwrap();
});
}
#[bench]
fn bench_chroma_filter(b: &mut Bencher) {
b.iter(|| {
chroma_filter(22050, 2048, 12, -0.1).unwrap();
});
}
#[bench]
fn bench_normalize_feature_sequence(b: &mut Bencher) {
let array = arr2(&[[0.1, 0.3, 0.4], [1.1, 0.53, 1.01]]);
b.iter(|| {
normalize_feature_sequence(&array);
});
}
#[bench]
fn bench_chroma_desc(b: &mut Bencher) {
2021-06-13 13:07:17 +01:00
let song = Song::decode(Path::new("data/s16_mono_22_5kHz.flac")).unwrap();
2021-05-14 15:35:08 +01:00
let mut chroma_desc = ChromaDesc::new(SAMPLE_RATE, 12);
let signal = song.sample_array;
b.iter(|| {
chroma_desc.do_(&signal).unwrap();
chroma_desc.get_values();
});
}
#[bench]
fn bench_chroma_stft(b: &mut Bencher) {
2021-06-13 13:07:17 +01:00
let song = Song::decode(Path::new("data/s16_mono_22_5kHz.flac")).unwrap();
2021-05-14 15:35:08 +01:00
let mut chroma_desc = ChromaDesc::new(SAMPLE_RATE, 12);
let signal = song.sample_array;
b.iter(|| {
chroma_desc.do_(&signal).unwrap();
chroma_desc.get_values();
});
}
#[bench]
fn bench_chroma_stft_decode(b: &mut Bencher) {
2021-06-13 13:07:17 +01:00
let signal = Song::decode(Path::new("data/s16_mono_22_5kHz.flac"))
2021-05-14 15:35:08 +01:00
.unwrap()
.sample_array;
let mut stft = stft(&signal, 8192, 2205);
b.iter(|| {
chroma_stft(22050, &mut stft, 8192, 12, -0.04999999999999999).unwrap();
});
}
}