Add more generic sorting things

This commit is contained in:
Polochon-street 2022-09-15 19:03:56 +02:00
parent 661d848331
commit e6ad4c96a6
5 changed files with 1405 additions and 195 deletions

View file

@ -2,7 +2,7 @@
/// through [Library]. /// through [Library].
/// ///
/// For simplicity's sake, this example recursively gets songs from a folder /// For simplicity's sake, this example recursively gets songs from a folder
/// to emulate an audio player library. /// to emulate an audio player library, without handling CUE files.
use anyhow::Result; use anyhow::Result;
use bliss_audio::library::{AppConfigTrait, BaseConfig, Library}; use bliss_audio::library::{AppConfigTrait, BaseConfig, Library};
use clap::{App, Arg, SubCommand}; use clap::{App, Arg, SubCommand};
@ -36,6 +36,10 @@ impl AppConfigTrait for Config {
fn base_config(&self) -> &BaseConfig { fn base_config(&self) -> &BaseConfig {
&self.base_config &self.base_config
} }
fn base_config_mut(&mut self) -> &mut BaseConfig {
&mut self.base_config
}
} }
trait CustomLibrary { trait CustomLibrary {

View file

@ -2,7 +2,7 @@
/// through [Library]. /// through [Library].
/// ///
/// For simplicity's sake, this example recursively gets songs from a folder /// For simplicity's sake, this example recursively gets songs from a folder
/// to emulate an audio player library. /// to emulate an audio player library, without handling CUE files.
use anyhow::Result; use anyhow::Result;
use bliss_audio::library::{AppConfigTrait, BaseConfig, Library}; use bliss_audio::library::{AppConfigTrait, BaseConfig, Library};
use clap::{App, Arg, SubCommand}; use clap::{App, Arg, SubCommand};
@ -36,6 +36,10 @@ impl AppConfigTrait for Config {
fn base_config(&self) -> &BaseConfig { fn base_config(&self) -> &BaseConfig {
&self.base_config &self.base_config
} }
fn base_config_mut(&mut self) -> &mut BaseConfig {
&mut self.base_config
}
} }
trait CustomLibrary { trait CustomLibrary {
@ -71,7 +75,6 @@ struct ExtraInfo {
extension: Option<String>, extension: Option<String>,
file_name: Option<String>, file_name: Option<String>,
mime_type: String, mime_type: String,
// TODO add mime-type so it's more real
} }
fn main() -> Result<()> { fn main() -> Result<()> {

View file

@ -264,11 +264,11 @@ mod tests {
#[test] #[test]
fn test_analyze_paths() { fn test_analyze_paths() {
let paths = vec![ let paths = vec![
PathBuf::from("./data/s16_mono_22_5kHz.flac"), "./data/s16_mono_22_5kHz.flac",
PathBuf::from("./data/testcue.cue"), "./data/testcue.cue",
PathBuf::from("./data/white_noise.flac"), "./data/white_noise.flac",
PathBuf::from("definitely-not-existing.foo"), "definitely-not-existing.foo",
PathBuf::from("not-existing.foo"), "not-existing.foo",
]; ];
let mut results = analyze_paths(&paths) let mut results = analyze_paths(&paths)
.map(|x| match &x.1 { .map(|x| match &x.1 {

File diff suppressed because it is too large Load diff

View file

@ -7,6 +7,8 @@
//! They will yield different styles of playlists, so don't hesitate to //! They will yield different styles of playlists, so don't hesitate to
//! experiment with them if the default (euclidean distance for now) doesn't //! experiment with them if the default (euclidean distance for now) doesn't
//! suit you. //! suit you.
// TODO on the `by_key` functions: maybe Fn(&T) -> &Song is enough? Compared
// to -> Song
use crate::{BlissError, BlissResult, Song, NUMBER_FEATURES}; use crate::{BlissError, BlissResult, Song, NUMBER_FEATURES};
use ndarray::{Array, Array1, Array2, Axis}; use ndarray::{Array, Array1, Array2, Axis};
use ndarray_stats::QuantileExt; use ndarray_stats::QuantileExt;
@ -47,6 +49,23 @@ pub fn closest_to_first_song(
songs.sort_by_cached_key(|song| n32(first_song.custom_distance(song, &distance))); songs.sort_by_cached_key(|song| n32(first_song.custom_distance(song, &distance)));
} }
/// Sort `songs` in place by putting songs close to `first_song` first
/// using the `distance` metric.
///
/// Sort songs with a key extraction function, useful for when you have a
/// structure like `CustomSong { bliss_song: Song, something_else: bool }`
pub fn closest_to_first_song_by_key<F, T>(
first_song: &T,
#[allow(clippy::ptr_arg)] songs: &mut Vec<T>,
distance: impl DistanceMetric,
key_fn: F,
) where
F: Fn(&T) -> Song,
{
let first_song = key_fn(first_song);
songs.sort_by_cached_key(|song| n32(first_song.custom_distance(&key_fn(song), &distance)));
}
/// Sort `songs` in place using the `distance` metric and ordering by /// Sort `songs` in place using the `distance` metric and ordering by
/// the smallest distance between each song. /// the smallest distance between each song.
/// ///
@ -71,6 +90,43 @@ pub fn song_to_song(first_song: &Song, songs: &mut Vec<Song>, distance: impl Dis
*songs = new_songs; *songs = new_songs;
} }
/// Sort `songs` in place using the `distance` metric and ordering by
/// the smallest distance between each song.
///
/// If the generated playlist is `[song1, song2, song3, song4]`, it means
/// song2 is closest to song1, song3 is closest to song2, and song4 is closest
/// to song3.
///
/// Note that this has a tendency to go from one style to the other very fast,
/// and it can be slow on big libraries.
///
/// Sort songs with a key extraction function, useful for when you have a
/// structure like `CustomSong { bliss_song: Song, something_else: bool }`
// TODO: maybe Clone is not needed?
pub fn song_to_song_by_key<F, T: std::cmp::PartialEq + Clone>(
first_song: &T,
songs: &mut Vec<T>,
distance: impl DistanceMetric,
key_fn: F,
) where
F: Fn(&T) -> Song,
{
let mut new_songs: Vec<T> = Vec::with_capacity(songs.len());
let mut bliss_song = key_fn(&first_song.to_owned());
while !songs.is_empty() {
let distances: Array1<f32> = Array::from_shape_fn(songs.len(), |i| {
bliss_song.custom_distance(&key_fn(&songs[i]), &distance)
});
let idx = distances.argmin().unwrap();
let song = songs[idx].to_owned();
bliss_song = key_fn(&songs[idx]).to_owned();
new_songs.push(song.to_owned());
songs.retain(|s| s != &song);
}
*songs = new_songs;
}
/// Remove duplicate songs from a playlist, in place. /// Remove duplicate songs from a playlist, in place.
/// ///
/// Two songs are considered duplicates if they either have the same, /// Two songs are considered duplicates if they either have the same,
@ -86,6 +142,29 @@ pub fn dedup_playlist(songs: &mut Vec<Song>, distance_threshold: Option<f32>) {
dedup_playlist_custom_distance(songs, distance_threshold, euclidean_distance); dedup_playlist_custom_distance(songs, distance_threshold, euclidean_distance);
} }
/// Remove duplicate songs from a playlist, in place.
///
/// Two songs are considered duplicates if they either have the same,
/// non-empty title and artist name, or if they are close enough in terms
/// of distance.
///
/// Dedup songs with a key extraction function, useful for when you have a
/// structure like `CustomSong { bliss_song: Song, something_else: bool }` you
/// want to deduplicate.
///
/// # Arguments
///
/// * `songs`: The playlist to remove duplicates from.
/// * `distance_threshold`: The distance threshold under which two songs are
/// considered identical. If `None`, a default value of 0.05 will be used.
/// * `key_fn`: A function used to retrieve the bliss [Song] from `T`.
pub fn dedup_playlist_by_key<T, F>(songs: &mut Vec<T>, distance_threshold: Option<f32>, key_fn: F)
where
F: Fn(&T) -> Song,
{
dedup_playlist_custom_distance_by_key(songs, distance_threshold, euclidean_distance, key_fn);
}
/// Remove duplicate songs from a playlist, in place, using a custom distance /// Remove duplicate songs from a playlist, in place, using a custom distance
/// metric. /// metric.
/// ///
@ -115,6 +194,45 @@ pub fn dedup_playlist_custom_distance(
}); });
} }
/// Remove duplicate songs from a playlist, in place, using a custom distance
/// metric.
///
/// Two songs are considered duplicates if they either have the same,
/// non-empty title and artist name, or if they are close enough in terms
/// of distance.
///
/// Dedup songs with a key extraction function, useful for when you have a
/// structure like `CustomSong { bliss_song: Song, something_else: bool }`
/// you want to deduplicate.
///
/// # Arguments
///
/// * `songs`: The playlist to remove duplicates from.
/// * `distance_threshold`: The distance threshold under which two songs are
/// considered identical. If `None`, a default value of 0.05 will be used.
/// * `distance`: A custom distance metric.
/// * `key_fn`: A function used to retrieve the bliss [Song] from `T`.
pub fn dedup_playlist_custom_distance_by_key<F, T>(
songs: &mut Vec<T>,
distance_threshold: Option<f32>,
distance: impl DistanceMetric,
key_fn: F,
) where
F: Fn(&T) -> Song,
{
songs.dedup_by(|s1, s2| {
let s1 = key_fn(s1);
let s2 = key_fn(s2);
n32(s1.custom_distance(&s2, &distance)) < distance_threshold.unwrap_or(0.05)
|| (s1.title.is_some()
&& s2.title.is_some()
&& s1.artist.is_some()
&& s2.artist.is_some()
&& s1.title == s2.title
&& s1.artist == s2.artist)
});
}
/// Return a list of albums in a `pool` of songs that are similar to /// Return a list of albums in a `pool` of songs that are similar to
/// songs in `group`, discarding songs that don't belong to an album. /// songs in `group`, discarding songs that don't belong to an album.
/// It basically makes an "album" playlist from the `pool` of songs. /// It basically makes an "album" playlist from the `pool` of songs.
@ -203,6 +321,114 @@ pub fn closest_album_to_group(group: Vec<Song>, pool: Vec<Song>) -> BlissResult<
Ok(playlist) Ok(playlist)
} }
/// Return a list of albums in a `pool` of songs that are similar to
/// songs in `group`, discarding songs that don't belong to an album.
/// It basically makes an "album" playlist from the `pool` of songs.
///
/// `group` should be ordered by track number.
///
/// Songs from `group` would usually just be songs from an album, but not
/// necessarily - they are discarded from `pool` no matter what.
///
/// Order songs with a key extraction function, useful for when you have a
/// structure like `CustomSong { bliss_song: Song, something_else: bool }`
/// you want to order.
///
/// # Arguments
///
/// * `group` - A small group of songs, e.g. an album.
/// * `pool` - A pool of songs to find similar songs in, e.g. a user's song
/// library.
/// * `key_fn`: A function used to retrieve the bliss [Song] from `T`.
///
/// # Returns
///
/// A vector of T, including `group` at the beginning, that you
/// most likely want to plug in your audio player by using something like
/// `ret.map(|song| song.path.to_owned()).collect::<Vec<String>>()`.
// TODO: maybe Clone is not needed?
pub fn closest_album_to_group_by_key<T: PartialEq + Clone, F>(
group: Vec<T>,
pool: Vec<T>,
key_fn: F,
) -> BlissResult<Vec<T>>
where
F: Fn(&T) -> Song,
{
let mut albums_analysis: HashMap<String, Array2<f32>> = HashMap::new();
let mut albums = Vec::new();
// Remove songs from the group from the pool.
let pool = pool
.into_iter()
.filter(|s| !group.contains(s))
.collect::<Vec<_>>();
for song in &pool {
let song = key_fn(song);
if let Some(album) = song.album {
if let Some(analysis) = albums_analysis.get_mut(&album as &str) {
analysis
.push_row(song.analysis.as_arr1().view())
.map_err(|e| {
BlissError::ProviderError(format!("while computing distances: {}", e))
})?;
} else {
let mut array = Array::zeros((1, song.analysis.as_arr1().len()));
array.assign(&song.analysis.as_arr1());
albums_analysis.insert(album.to_owned(), array);
}
}
}
let mut group_analysis = Array::zeros((group.len(), NUMBER_FEATURES));
for (song, mut column) in group.iter().zip(group_analysis.axis_iter_mut(Axis(0))) {
let song = key_fn(song);
column.assign(&song.analysis.as_arr1());
}
let first_analysis = group_analysis
.mean_axis(Axis(0))
.ok_or_else(|| BlissError::ProviderError(String::from("Mean of empty slice")))?;
for (album, analysis) in albums_analysis.iter() {
let mean_analysis = analysis
.mean_axis(Axis(0))
.ok_or_else(|| BlissError::ProviderError(String::from("Mean of empty slice")))?;
let album = album.to_owned();
albums.push((album, mean_analysis.to_owned()));
}
albums.sort_by_key(|(_, analysis)| n32(euclidean_distance(&first_analysis, analysis)));
let mut playlist = group;
for (album, _) in albums {
let mut al = pool
.iter()
.filter(|s| {
let s = key_fn(s);
s.album.is_some() && s.album.as_ref().unwrap() == &album.to_string()
})
.map(|s| s.to_owned())
.collect::<Vec<T>>();
al.sort_by(|s1, s2| {
let s1 = key_fn(s1);
let s2 = key_fn(s2);
let track_number1 = s1
.track_number
.to_owned()
.unwrap_or_else(|| String::from(""));
let track_number2 = s2
.track_number
.to_owned()
.unwrap_or_else(|| String::from(""));
if let Ok(x) = track_number1.parse::<i32>() {
if let Ok(y) = track_number2.parse::<i32>() {
return x.cmp(&y);
}
}
s1.track_number.cmp(&s2.track_number)
});
playlist.extend_from_slice(&al);
}
Ok(playlist)
}
#[cfg(test)] #[cfg(test)]
mod test { mod test {
use super::*; use super::*;
@ -210,6 +436,12 @@ mod test {
use ndarray::arr1; use ndarray::arr1;
use std::path::Path; use std::path::Path;
#[derive(Debug, Clone, PartialEq)]
struct CustomSong {
something: bool,
bliss_song: Song,
}
#[test] #[test]
fn test_dedup_playlist_custom_distance() { fn test_dedup_playlist_custom_distance() {
let first_song = Song { let first_song = Song {
@ -316,6 +548,91 @@ mod test {
fourth_song.to_owned(), fourth_song.to_owned(),
] ]
); );
let first_song = CustomSong {
bliss_song: first_song,
something: true,
};
let second_song = CustomSong {
bliss_song: second_song,
something: true,
};
let first_song_dupe = CustomSong {
bliss_song: first_song_dupe,
something: true,
};
let third_song = CustomSong {
bliss_song: third_song,
something: true,
};
let fourth_song = CustomSong {
bliss_song: fourth_song,
something: true,
};
let fifth_song = CustomSong {
bliss_song: fifth_song,
something: true,
};
let mut playlist = vec![
first_song.to_owned(),
first_song_dupe.to_owned(),
second_song.to_owned(),
third_song.to_owned(),
fourth_song.to_owned(),
fifth_song.to_owned(),
];
dedup_playlist_custom_distance_by_key(&mut playlist, None, euclidean_distance, |s| {
s.bliss_song.to_owned()
});
assert_eq!(
playlist,
vec![
first_song.to_owned(),
second_song.to_owned(),
fourth_song.to_owned(),
],
);
let mut playlist = vec![
first_song.to_owned(),
first_song_dupe.to_owned(),
second_song.to_owned(),
third_song.to_owned(),
fourth_song.to_owned(),
fifth_song.to_owned(),
];
dedup_playlist_custom_distance_by_key(&mut playlist, Some(20.), cosine_distance, |s| {
s.bliss_song.to_owned()
});
assert_eq!(playlist, vec![first_song.to_owned()]);
let mut playlist = vec![
first_song.to_owned(),
first_song_dupe.to_owned(),
second_song.to_owned(),
third_song.to_owned(),
fourth_song.to_owned(),
fifth_song.to_owned(),
];
dedup_playlist_by_key(&mut playlist, Some(20.), |s| s.bliss_song.to_owned());
assert_eq!(playlist, vec![first_song.to_owned()]);
let mut playlist = vec![
first_song.to_owned(),
first_song_dupe.to_owned(),
second_song.to_owned(),
third_song.to_owned(),
fourth_song.to_owned(),
fifth_song.to_owned(),
];
dedup_playlist_by_key(&mut playlist, None, |s| s.bliss_song.to_owned());
assert_eq!(
playlist,
vec![
first_song.to_owned(),
second_song.to_owned(),
fourth_song.to_owned(),
]
);
} }
#[test] #[test]
@ -358,20 +675,64 @@ mod test {
}; };
let mut songs = vec![ let mut songs = vec![
first_song.to_owned(), first_song.to_owned(),
third_song.to_owned(),
first_song_dupe.to_owned(), first_song_dupe.to_owned(),
second_song.to_owned(), second_song.to_owned(),
third_song.to_owned(),
fourth_song.to_owned(), fourth_song.to_owned(),
]; ];
song_to_song(&first_song, &mut songs, euclidean_distance); song_to_song(&first_song, &mut songs, euclidean_distance);
assert_eq!( assert_eq!(
songs, songs,
vec![ vec![
first_song, first_song.to_owned(),
first_song_dupe.to_owned(), first_song_dupe.to_owned(),
second_song.to_owned(),
third_song.to_owned(),
fourth_song.to_owned(),
],
);
let first_song = CustomSong {
bliss_song: first_song,
something: true,
};
let second_song = CustomSong {
bliss_song: second_song,
something: true,
};
let first_song_dupe = CustomSong {
bliss_song: first_song_dupe,
something: true,
};
let third_song = CustomSong {
bliss_song: third_song,
something: true,
};
let fourth_song = CustomSong {
bliss_song: fourth_song,
something: true,
};
let mut songs: Vec<CustomSong> = vec![
first_song.to_owned(),
first_song_dupe.to_owned(),
third_song.to_owned(),
fourth_song.to_owned(),
second_song.to_owned(),
];
song_to_song_by_key(&first_song, &mut songs, euclidean_distance, |s| {
s.bliss_song.to_owned()
});
assert_eq!(
songs,
vec![
first_song,
first_song_dupe,
second_song, second_song,
third_song, third_song,
fourth_song fourth_song,
], ],
); );
} }
@ -431,6 +792,46 @@ mod test {
fifth_song.to_owned(), fifth_song.to_owned(),
]; ];
closest_to_first_song(&first_song, &mut songs, euclidean_distance); closest_to_first_song(&first_song, &mut songs, euclidean_distance);
let first_song = CustomSong {
bliss_song: first_song,
something: true,
};
let second_song = CustomSong {
bliss_song: second_song,
something: true,
};
let first_song_dupe = CustomSong {
bliss_song: first_song_dupe,
something: true,
};
let third_song = CustomSong {
bliss_song: third_song,
something: true,
};
let fourth_song = CustomSong {
bliss_song: fourth_song,
something: true,
};
let fifth_song = CustomSong {
bliss_song: fifth_song,
something: true,
};
let mut songs: Vec<CustomSong> = vec![
first_song.to_owned(),
first_song_dupe.to_owned(),
second_song.to_owned(),
third_song.to_owned(),
fourth_song.to_owned(),
fifth_song.to_owned(),
];
closest_to_first_song_by_key(&first_song, &mut songs, euclidean_distance, |s| {
s.bliss_song.to_owned()
});
assert_eq!( assert_eq!(
songs, songs,
vec![ vec![
@ -538,5 +939,46 @@ mod test {
], ],
closest_album_to_group(group, pool.to_owned()).unwrap(), closest_album_to_group(group, pool.to_owned()).unwrap(),
); );
let first_song = CustomSong {
bliss_song: first_song,
something: true,
};
let second_song = CustomSong {
bliss_song: second_song,
something: true,
};
let third_song = CustomSong {
bliss_song: third_song,
something: true,
};
let fourth_song = CustomSong {
bliss_song: fourth_song,
something: true,
};
let fifth_song = CustomSong {
bliss_song: fifth_song,
something: true,
};
let pool = vec![
first_song.to_owned(),
fourth_song.to_owned(),
third_song.to_owned(),
second_song.to_owned(),
fifth_song.to_owned(),
];
let group = vec![first_song.to_owned(), third_song.to_owned()];
assert_eq!(
vec![
first_song.to_owned(),
third_song.to_owned(),
fourth_song.to_owned(),
second_song.to_owned()
],
closest_album_to_group_by_key(group, pool.to_owned(), |s| s.bliss_song.to_owned())
.unwrap(),
);
} }
} }