1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-11-14 05:36:40 +00:00
Ryujinx/Ryujinx.Graphics.OpenGL/Pipeline.cs
mageven a33dc2f491
Improved Logger (#1292)
* Logger class changes only

Now compile-time checking is possible with the help of Nullable Value
types.

* Misc formatting

* Manual optimizations

PrintGuestLog
PrintGuestStackTrace
Surfaceflinger DequeueBuffer

* Reduce SendVibrationXX log level to Debug

* Add Notice log level

This level is always enabled and used to print system info, etc...
Also, rewrite LogColor to switch expression as colors are static

* Unify unhandled exception event handlers

* Print enabled LogLevels during init

* Re-add App Exit disposes in proper order

nit: switch case spacing

* Revert PrintGuestStackTrace to Info logs due to #1407

PrintGuestStackTrace is now called in some critical error handlers
so revert to old behavior as KThread isn't part of Guest.

* Batch replace Logger statements
2020-08-04 01:32:53 +02:00

1281 lines
39 KiB
C#

using OpenTK.Graphics.OpenGL;
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.OpenGL.Image;
using Ryujinx.Graphics.OpenGL.Queries;
using Ryujinx.Graphics.Shader;
using System;
namespace Ryujinx.Graphics.OpenGL
{
class Pipeline : IPipeline, IDisposable
{
private Program _program;
private bool _rasterizerDiscard;
private VertexArray _vertexArray;
private Framebuffer _framebuffer;
private IntPtr _indexBaseOffset;
private DrawElementsType _elementsType;
private PrimitiveType _primitiveType;
private int _stencilFrontMask;
private bool _depthMask;
private bool _depthTest;
private bool _hasDepthBuffer;
private int _boundDrawFramebuffer;
private int _boundReadFramebuffer;
private int[] _fpIsBgra = new int[8];
private float[] _fpRenderScale = new float[33];
private float[] _cpRenderScale = new float[32];
private TextureBase _unit0Texture;
private TextureBase _rtColor0Texture;
private TextureBase _rtDepthTexture;
private ClipOrigin _clipOrigin;
private ClipDepthMode _clipDepthMode;
private readonly uint[] _componentMasks;
private bool _scissor0Enable = false;
private bool _tfEnabled;
ColorF _blendConstant = new ColorF(0, 0, 0, 0);
internal Pipeline()
{
_rasterizerDiscard = false;
_clipOrigin = ClipOrigin.LowerLeft;
_clipDepthMode = ClipDepthMode.NegativeOneToOne;
_componentMasks = new uint[Constants.MaxRenderTargets];
for (int index = 0; index < Constants.MaxRenderTargets; index++)
{
_componentMasks[index] = 0xf;
}
for (int index = 0; index < _fpRenderScale.Length; index++)
{
_fpRenderScale[index] = 1f;
}
for (int index = 0; index < _cpRenderScale.Length; index++)
{
_cpRenderScale[index] = 1f;
}
}
public void Barrier()
{
GL.MemoryBarrier(MemoryBarrierFlags.AllBarrierBits);
}
public void BeginTransformFeedback(PrimitiveTopology topology)
{
GL.BeginTransformFeedback(topology.ConvertToTfType());
_tfEnabled = true;
}
public void ClearRenderTargetColor(int index, uint componentMask, ColorF color)
{
GL.ColorMask(
index,
(componentMask & 1) != 0,
(componentMask & 2) != 0,
(componentMask & 4) != 0,
(componentMask & 8) != 0);
float[] colors = new float[] { color.Red, color.Green, color.Blue, color.Alpha };
GL.ClearBuffer(ClearBuffer.Color, index, colors);
RestoreComponentMask(index);
_framebuffer.SignalModified();
}
public void ClearRenderTargetDepthStencil(float depthValue, bool depthMask, int stencilValue, int stencilMask)
{
bool stencilMaskChanged =
stencilMask != 0 &&
stencilMask != _stencilFrontMask;
bool depthMaskChanged = depthMask && depthMask != _depthMask;
if (stencilMaskChanged)
{
GL.StencilMaskSeparate(StencilFace.Front, stencilMask);
}
if (depthMaskChanged)
{
GL.DepthMask(depthMask);
}
if (depthMask && stencilMask != 0)
{
GL.ClearBuffer(ClearBufferCombined.DepthStencil, 0, depthValue, stencilValue);
}
else if (depthMask)
{
GL.ClearBuffer(ClearBuffer.Depth, 0, ref depthValue);
}
else if (stencilMask != 0)
{
GL.ClearBuffer(ClearBuffer.Stencil, 0, ref stencilValue);
}
if (stencilMaskChanged)
{
GL.StencilMaskSeparate(StencilFace.Front, _stencilFrontMask);
}
if (depthMaskChanged)
{
GL.DepthMask(_depthMask);
}
_framebuffer.SignalModified();
}
public void CopyBuffer(BufferHandle source, BufferHandle destination, int srcOffset, int dstOffset, int size)
{
Buffer.Copy(source, destination, srcOffset, dstOffset, size);
}
public void DispatchCompute(int groupsX, int groupsY, int groupsZ)
{
if (!_program.IsLinked)
{
Logger.Debug?.Print(LogClass.Gpu, "Dispatch error, shader not linked.");
return;
}
PrepareForDispatch();
GL.DispatchCompute(groupsX, groupsY, groupsZ);
}
public void Draw(int vertexCount, int instanceCount, int firstVertex, int firstInstance)
{
if (!_program.IsLinked)
{
Logger.Debug?.Print(LogClass.Gpu, "Draw error, shader not linked.");
return;
}
PrepareForDraw();
if (_primitiveType == PrimitiveType.Quads)
{
DrawQuadsImpl(vertexCount, instanceCount, firstVertex, firstInstance);
}
else if (_primitiveType == PrimitiveType.QuadStrip)
{
DrawQuadStripImpl(vertexCount, instanceCount, firstVertex, firstInstance);
}
else
{
DrawImpl(vertexCount, instanceCount, firstVertex, firstInstance);
}
_framebuffer.SignalModified();
}
private void DrawQuadsImpl(
int vertexCount,
int instanceCount,
int firstVertex,
int firstInstance)
{
// TODO: Instanced rendering.
int quadsCount = vertexCount / 4;
int[] firsts = new int[quadsCount];
int[] counts = new int[quadsCount];
for (int quadIndex = 0; quadIndex < quadsCount; quadIndex++)
{
firsts[quadIndex] = firstVertex + quadIndex * 4;
counts[quadIndex] = 4;
}
GL.MultiDrawArrays(
PrimitiveType.TriangleFan,
firsts,
counts,
quadsCount);
}
private void DrawQuadStripImpl(
int vertexCount,
int instanceCount,
int firstVertex,
int firstInstance)
{
int quadsCount = (vertexCount - 2) / 2;
if (firstInstance != 0 || instanceCount != 1)
{
for (int quadIndex = 0; quadIndex < quadsCount; quadIndex++)
{
GL.DrawArraysInstancedBaseInstance(PrimitiveType.TriangleFan, firstVertex + quadIndex * 2, 4, instanceCount, firstInstance);
}
}
else
{
int[] firsts = new int[quadsCount];
int[] counts = new int[quadsCount];
firsts[0] = firstVertex;
counts[0] = 4;
for (int quadIndex = 1; quadIndex < quadsCount; quadIndex++)
{
firsts[quadIndex] = firstVertex + quadIndex * 2;
counts[quadIndex] = 4;
}
GL.MultiDrawArrays(
PrimitiveType.TriangleFan,
firsts,
counts,
quadsCount);
}
}
private void DrawImpl(
int vertexCount,
int instanceCount,
int firstVertex,
int firstInstance)
{
if (firstInstance == 0 && instanceCount == 1)
{
GL.DrawArrays(_primitiveType, firstVertex, vertexCount);
}
else if (firstInstance == 0)
{
GL.DrawArraysInstanced(_primitiveType, firstVertex, vertexCount, instanceCount);
}
else
{
GL.DrawArraysInstancedBaseInstance(
_primitiveType,
firstVertex,
vertexCount,
instanceCount,
firstInstance);
}
}
public void DrawIndexed(
int indexCount,
int instanceCount,
int firstIndex,
int firstVertex,
int firstInstance)
{
if (!_program.IsLinked)
{
Logger.Debug?.Print(LogClass.Gpu, "Draw error, shader not linked.");
return;
}
PrepareForDraw();
int indexElemSize = 1;
switch (_elementsType)
{
case DrawElementsType.UnsignedShort: indexElemSize = 2; break;
case DrawElementsType.UnsignedInt: indexElemSize = 4; break;
}
IntPtr indexBaseOffset = _indexBaseOffset + firstIndex * indexElemSize;
if (_primitiveType == PrimitiveType.Quads)
{
DrawQuadsIndexedImpl(
indexCount,
instanceCount,
indexBaseOffset,
indexElemSize,
firstVertex,
firstInstance);
}
else if (_primitiveType == PrimitiveType.QuadStrip)
{
DrawQuadStripIndexedImpl(
indexCount,
instanceCount,
indexBaseOffset,
indexElemSize,
firstVertex,
firstInstance);
}
else
{
DrawIndexedImpl(
indexCount,
instanceCount,
indexBaseOffset,
firstVertex,
firstInstance);
}
_framebuffer.SignalModified();
}
private void DrawQuadsIndexedImpl(
int indexCount,
int instanceCount,
IntPtr indexBaseOffset,
int indexElemSize,
int firstVertex,
int firstInstance)
{
int quadsCount = indexCount / 4;
if (firstInstance != 0 || instanceCount != 1)
{
if (firstVertex != 0 && firstInstance != 0)
{
for (int quadIndex = 0; quadIndex < quadsCount; quadIndex++)
{
GL.DrawElementsInstancedBaseVertexBaseInstance(
PrimitiveType.TriangleFan,
4,
_elementsType,
indexBaseOffset + quadIndex * 4 * indexElemSize,
instanceCount,
firstVertex,
firstInstance);
}
}
else if (firstInstance != 0)
{
for (int quadIndex = 0; quadIndex < quadsCount; quadIndex++)
{
GL.DrawElementsInstancedBaseInstance(
PrimitiveType.TriangleFan,
4,
_elementsType,
indexBaseOffset + quadIndex * 4 * indexElemSize,
instanceCount,
firstInstance);
}
}
else
{
for (int quadIndex = 0; quadIndex < quadsCount; quadIndex++)
{
GL.DrawElementsInstanced(
PrimitiveType.TriangleFan,
4,
_elementsType,
indexBaseOffset + quadIndex * 4 * indexElemSize,
instanceCount);
}
}
}
else
{
IntPtr[] indices = new IntPtr[quadsCount];
int[] counts = new int[quadsCount];
int[] baseVertices = new int[quadsCount];
for (int quadIndex = 0; quadIndex < quadsCount; quadIndex++)
{
indices[quadIndex] = indexBaseOffset + quadIndex * 4 * indexElemSize;
counts[quadIndex] = 4;
baseVertices[quadIndex] = firstVertex;
}
GL.MultiDrawElementsBaseVertex(
PrimitiveType.TriangleFan,
counts,
_elementsType,
indices,
quadsCount,
baseVertices);
}
}
private void DrawQuadStripIndexedImpl(
int indexCount,
int instanceCount,
IntPtr indexBaseOffset,
int indexElemSize,
int firstVertex,
int firstInstance)
{
// TODO: Instanced rendering.
int quadsCount = (indexCount - 2) / 2;
IntPtr[] indices = new IntPtr[quadsCount];
int[] counts = new int[quadsCount];
int[] baseVertices = new int[quadsCount];
indices[0] = indexBaseOffset;
counts[0] = 4;
baseVertices[0] = firstVertex;
for (int quadIndex = 1; quadIndex < quadsCount; quadIndex++)
{
indices[quadIndex] = indexBaseOffset + quadIndex * 2 * indexElemSize;
counts[quadIndex] = 4;
baseVertices[quadIndex] = firstVertex;
}
GL.MultiDrawElementsBaseVertex(
PrimitiveType.TriangleFan,
counts,
_elementsType,
indices,
quadsCount,
baseVertices);
}
private void DrawIndexedImpl(
int indexCount,
int instanceCount,
IntPtr indexBaseOffset,
int firstVertex,
int firstInstance)
{
if (firstInstance == 0 && firstVertex == 0 && instanceCount == 1)
{
GL.DrawElements(_primitiveType, indexCount, _elementsType, indexBaseOffset);
}
else if (firstInstance == 0 && instanceCount == 1)
{
GL.DrawElementsBaseVertex(
_primitiveType,
indexCount,
_elementsType,
indexBaseOffset,
firstVertex);
}
else if (firstInstance == 0 && firstVertex == 0)
{
GL.DrawElementsInstanced(
_primitiveType,
indexCount,
_elementsType,
indexBaseOffset,
instanceCount);
}
else if (firstInstance == 0)
{
GL.DrawElementsInstancedBaseVertex(
_primitiveType,
indexCount,
_elementsType,
indexBaseOffset,
instanceCount,
firstVertex);
}
else if (firstVertex == 0)
{
GL.DrawElementsInstancedBaseInstance(
_primitiveType,
indexCount,
_elementsType,
indexBaseOffset,
instanceCount,
firstInstance);
}
else
{
GL.DrawElementsInstancedBaseVertexBaseInstance(
_primitiveType,
indexCount,
_elementsType,
indexBaseOffset,
instanceCount,
firstVertex,
firstInstance);
}
}
public void EndTransformFeedback()
{
GL.EndTransformFeedback();
_tfEnabled = false;
}
public void SetAlphaTest(bool enable, float reference, CompareOp op)
{
if (!enable)
{
GL.Disable(EnableCap.AlphaTest);
return;
}
GL.AlphaFunc((AlphaFunction)op.Convert(), reference);
GL.Enable(EnableCap.AlphaTest);
}
public void SetBlendState(int index, BlendDescriptor blend)
{
if (!blend.Enable)
{
GL.Disable(IndexedEnableCap.Blend, index);
return;
}
GL.BlendEquationSeparate(
index,
blend.ColorOp.Convert(),
blend.AlphaOp.Convert());
GL.BlendFuncSeparate(
index,
(BlendingFactorSrc)blend.ColorSrcFactor.Convert(),
(BlendingFactorDest)blend.ColorDstFactor.Convert(),
(BlendingFactorSrc)blend.AlphaSrcFactor.Convert(),
(BlendingFactorDest)blend.AlphaDstFactor.Convert());
if (_blendConstant != blend.BlendConstant)
{
_blendConstant = blend.BlendConstant;
GL.BlendColor(
blend.BlendConstant.Red,
blend.BlendConstant.Green,
blend.BlendConstant.Blue,
blend.BlendConstant.Alpha);
}
GL.Enable(IndexedEnableCap.Blend, index);
}
public void SetLogicOpState(bool enable, LogicalOp op)
{
if (enable)
{
GL.Enable(EnableCap.ColorLogicOp);
GL.LogicOp((LogicOp)op.Convert());
}
else
{
GL.Disable(EnableCap.ColorLogicOp);
}
}
public void SetDepthBias(PolygonModeMask enables, float factor, float units, float clamp)
{
if ((enables & PolygonModeMask.Point) != 0)
{
GL.Enable(EnableCap.PolygonOffsetPoint);
}
else
{
GL.Disable(EnableCap.PolygonOffsetPoint);
}
if ((enables & PolygonModeMask.Line) != 0)
{
GL.Enable(EnableCap.PolygonOffsetLine);
}
else
{
GL.Disable(EnableCap.PolygonOffsetLine);
}
if ((enables & PolygonModeMask.Fill) != 0)
{
GL.Enable(EnableCap.PolygonOffsetFill);
}
else
{
GL.Disable(EnableCap.PolygonOffsetFill);
}
if (enables == 0)
{
return;
}
if (HwCapabilities.SupportsPolygonOffsetClamp)
{
GL.PolygonOffsetClamp(factor, units, clamp);
}
else
{
GL.PolygonOffset(factor, units);
}
}
public void SetDepthClamp(bool clamp)
{
if (!clamp)
{
GL.Disable(EnableCap.DepthClamp);
return;
}
GL.Enable(EnableCap.DepthClamp);
}
public void SetDepthMode(DepthMode mode)
{
ClipDepthMode depthMode = mode.Convert();
if (_clipDepthMode != depthMode)
{
_clipDepthMode = depthMode;
GL.ClipControl(_clipOrigin, depthMode);
}
}
public void SetDepthTest(DepthTestDescriptor depthTest)
{
GL.DepthFunc((DepthFunction)depthTest.Func.Convert());
_depthMask = depthTest.WriteEnable;
_depthTest = depthTest.TestEnable;
UpdateDepthTest();
}
public void SetFaceCulling(bool enable, Face face)
{
if (!enable)
{
GL.Disable(EnableCap.CullFace);
return;
}
GL.CullFace(face.Convert());
GL.Enable(EnableCap.CullFace);
}
public void SetFrontFace(FrontFace frontFace)
{
GL.FrontFace(frontFace.Convert());
}
public void SetImage(int index, ShaderStage stage, ITexture texture)
{
int unit = _program.GetImageUnit(stage, index);
if (unit != -1 && texture != null)
{
TextureBase texBase = (TextureBase)texture;
FormatInfo formatInfo = FormatTable.GetFormatInfo(texBase.Format);
SizedInternalFormat format = (SizedInternalFormat)formatInfo.PixelInternalFormat;
GL.BindImageTexture(unit, texBase.Handle, 0, true, 0, TextureAccess.ReadWrite, format);
}
}
public void SetIndexBuffer(BufferRange buffer, IndexType type)
{
_elementsType = type.Convert();
_indexBaseOffset = (IntPtr)buffer.Offset;
EnsureVertexArray();
_vertexArray.SetIndexBuffer(buffer.Handle);
}
public void SetOrigin(Origin origin)
{
ClipOrigin clipOrigin = origin == Origin.UpperLeft ? ClipOrigin.UpperLeft : ClipOrigin.LowerLeft;
SetOrigin(clipOrigin);
}
public void SetPointParameters(float size, bool isProgramPointSize, bool enablePointSprite, Origin origin)
{
// GL_POINT_SPRITE was deprecated in core profile 3.2+ and causes GL_INVALID_ENUM when set.
// As we don't know if the current context is core or compat, it's safer to keep this code.
if (enablePointSprite)
{
GL.Enable(EnableCap.PointSprite);
}
else
{
GL.Disable(EnableCap.PointSprite);
}
if (isProgramPointSize)
{
GL.Enable(EnableCap.ProgramPointSize);
}
else
{
GL.Disable(EnableCap.ProgramPointSize);
}
GL.PointParameter(origin == Origin.LowerLeft
? PointSpriteCoordOriginParameter.LowerLeft
: PointSpriteCoordOriginParameter.UpperLeft);
// Games seem to set point size to 0 which generates a GL_INVALID_VALUE
// From the spec, GL_INVALID_VALUE is generated if size is less than or equal to 0.
GL.PointSize(Math.Max(float.Epsilon, size));
}
public void SetPrimitiveRestart(bool enable, int index)
{
if (!enable)
{
GL.Disable(EnableCap.PrimitiveRestart);
return;
}
GL.PrimitiveRestartIndex(index);
GL.Enable(EnableCap.PrimitiveRestart);
}
public void SetPrimitiveTopology(PrimitiveTopology topology)
{
_primitiveType = topology.Convert();
}
public void SetProgram(IProgram program)
{
_program = (Program)program;
if (_tfEnabled)
{
GL.PauseTransformFeedback();
_program.Bind();
GL.ResumeTransformFeedback();
}
else
{
_program.Bind();
}
UpdateFpIsBgra();
SetRenderTargetScale(_fpRenderScale[0]);
}
public void SetRasterizerDiscard(bool discard)
{
if (discard)
{
GL.Enable(EnableCap.RasterizerDiscard);
}
else
{
GL.Disable(EnableCap.RasterizerDiscard);
}
_rasterizerDiscard = discard;
}
public void SetRenderTargetScale(float scale)
{
_fpRenderScale[0] = scale;
if (_program != null && _program.FragmentRenderScaleUniform != -1)
{
GL.Uniform1(_program.FragmentRenderScaleUniform, 1, _fpRenderScale); // Just the first element.
}
}
public void SetRenderTargetColorMasks(ReadOnlySpan<uint> componentMasks)
{
for (int index = 0; index < componentMasks.Length; index++)
{
_componentMasks[index] = componentMasks[index];
RestoreComponentMask(index);
}
}
public void SetRenderTargets(ITexture[] colors, ITexture depthStencil)
{
EnsureFramebuffer();
_rtColor0Texture = (TextureBase)colors[0];
_rtDepthTexture = (TextureBase)depthStencil;
for (int index = 0; index < colors.Length; index++)
{
TextureView color = (TextureView)colors[index];
_framebuffer.AttachColor(index, color);
_fpIsBgra[index] = color != null && color.Format.IsBgra8() ? 1 : 0;
}
UpdateFpIsBgra();
TextureView depthStencilView = (TextureView)depthStencil;
_framebuffer.AttachDepthStencil(depthStencilView);
_framebuffer.SetDrawBuffers(colors.Length);
_hasDepthBuffer = depthStencil != null && depthStencilView.Format != Format.S8Uint;
UpdateDepthTest();
}
public void SetSampler(int index, ShaderStage stage, ISampler sampler)
{
int unit = _program.GetTextureUnit(stage, index);
if (unit != -1 && sampler != null)
{
((Sampler)sampler).Bind(unit);
}
}
public void SetScissorEnable(int index, bool enable)
{
if (enable)
{
GL.Enable(IndexedEnableCap.ScissorTest, index);
}
else
{
GL.Disable(IndexedEnableCap.ScissorTest, index);
}
if (index == 0)
{
_scissor0Enable = enable;
}
}
public void SetScissor(int index, int x, int y, int width, int height)
{
GL.ScissorIndexed(index, x, y, width, height);
}
public void SetStencilTest(StencilTestDescriptor stencilTest)
{
if (!stencilTest.TestEnable)
{
GL.Disable(EnableCap.StencilTest);
return;
}
GL.StencilOpSeparate(
StencilFace.Front,
stencilTest.FrontSFail.Convert(),
stencilTest.FrontDpFail.Convert(),
stencilTest.FrontDpPass.Convert());
GL.StencilFuncSeparate(
StencilFace.Front,
(StencilFunction)stencilTest.FrontFunc.Convert(),
stencilTest.FrontFuncRef,
stencilTest.FrontFuncMask);
GL.StencilMaskSeparate(StencilFace.Front, stencilTest.FrontMask);
GL.StencilOpSeparate(
StencilFace.Back,
stencilTest.BackSFail.Convert(),
stencilTest.BackDpFail.Convert(),
stencilTest.BackDpPass.Convert());
GL.StencilFuncSeparate(
StencilFace.Back,
(StencilFunction)stencilTest.BackFunc.Convert(),
stencilTest.BackFuncRef,
stencilTest.BackFuncMask);
GL.StencilMaskSeparate(StencilFace.Back, stencilTest.BackMask);
GL.Enable(EnableCap.StencilTest);
_stencilFrontMask = stencilTest.FrontMask;
}
public void SetStorageBuffer(int index, ShaderStage stage, BufferRange buffer)
{
SetBuffer(index, stage, buffer, isStorage: true);
}
public void SetTexture(int index, ShaderStage stage, ITexture texture)
{
int unit = _program.GetTextureUnit(stage, index);
if (unit != -1 && texture != null)
{
if (unit == 0)
{
_unit0Texture = (TextureBase)texture;
}
else
{
((TextureBase)texture).Bind(unit);
}
// Update scale factor for bound textures.
switch (stage)
{
case ShaderStage.Fragment:
if (_program.FragmentRenderScaleUniform != -1)
{
// Only update and send sampled texture scales if the shader uses them.
bool interpolate = false;
float scale = texture.ScaleFactor;
if (scale != 1)
{
TextureBase activeTarget = _rtColor0Texture ?? _rtDepthTexture;
if (activeTarget != null && activeTarget.Width / (float)texture.Width == activeTarget.Height / (float)texture.Height)
{
// If the texture's size is a multiple of the sampler size,
// enable interpolation using gl_FragCoord.
// (helps "invent" new integer values between scaled pixels)
interpolate = true;
}
}
_fpRenderScale[index + 1] = interpolate ? -scale : scale;
}
break;
case ShaderStage.Compute:
_cpRenderScale[index] = texture.ScaleFactor;
break;
}
}
}
public void SetTransformFeedbackBuffer(int index, BufferRange buffer)
{
const BufferRangeTarget target = BufferRangeTarget.TransformFeedbackBuffer;
if (_tfEnabled)
{
GL.PauseTransformFeedback();
GL.BindBufferRange(target, index, buffer.Handle.ToInt32(), (IntPtr)buffer.Offset, buffer.Size);
GL.ResumeTransformFeedback();
}
else
{
GL.BindBufferRange(target, index, buffer.Handle.ToInt32(), (IntPtr)buffer.Offset, buffer.Size);
}
}
public void SetUniformBuffer(int index, ShaderStage stage, BufferRange buffer)
{
SetBuffer(index, stage, buffer, isStorage: false);
}
public void SetUserClipDistance(int index, bool enableClip)
{
if (!enableClip)
{
GL.Disable(EnableCap.ClipDistance0 + index);
return;
}
GL.Enable(EnableCap.ClipDistance0 + index);
}
public void SetVertexAttribs(ReadOnlySpan<VertexAttribDescriptor> vertexAttribs)
{
EnsureVertexArray();
_vertexArray.SetVertexAttributes(vertexAttribs);
}
public void SetVertexBuffers(ReadOnlySpan<VertexBufferDescriptor> vertexBuffers)
{
EnsureVertexArray();
_vertexArray.SetVertexBuffers(vertexBuffers);
}
public void SetViewports(int first, ReadOnlySpan<Viewport> viewports)
{
float[] viewportArray = new float[viewports.Length * 4];
double[] depthRangeArray = new double[viewports.Length * 2];
for (int index = 0; index < viewports.Length; index++)
{
int viewportElemIndex = index * 4;
Viewport viewport = viewports[index];
viewportArray[viewportElemIndex + 0] = viewport.Region.X;
viewportArray[viewportElemIndex + 1] = viewport.Region.Y;
if (HwCapabilities.SupportsViewportSwizzle)
{
GL.NV.ViewportSwizzle(
index,
viewport.SwizzleX.Convert(),
viewport.SwizzleY.Convert(),
viewport.SwizzleZ.Convert(),
viewport.SwizzleW.Convert());
}
viewportArray[viewportElemIndex + 2] = MathF.Abs(viewport.Region.Width);
viewportArray[viewportElemIndex + 3] = MathF.Abs(viewport.Region.Height);
depthRangeArray[index * 2 + 0] = viewport.DepthNear;
depthRangeArray[index * 2 + 1] = viewport.DepthFar;
}
GL.ViewportArray(first, viewports.Length, viewportArray);
GL.DepthRangeArray(first, viewports.Length, depthRangeArray);
}
public void TextureBarrier()
{
GL.MemoryBarrier(MemoryBarrierFlags.TextureFetchBarrierBit);
}
public void TextureBarrierTiled()
{
GL.MemoryBarrier(MemoryBarrierFlags.TextureFetchBarrierBit);
}
private void SetBuffer(int index, ShaderStage stage, BufferRange buffer, bool isStorage)
{
int bindingPoint = isStorage
? _program.GetStorageBufferBindingPoint(stage, index)
: _program.GetUniformBufferBindingPoint(stage, index);
if (bindingPoint == -1)
{
return;
}
BufferRangeTarget target = isStorage
? BufferRangeTarget.ShaderStorageBuffer
: BufferRangeTarget.UniformBuffer;
if (buffer.Handle == null)
{
GL.BindBufferRange(target, bindingPoint, 0, IntPtr.Zero, 0);
return;
}
IntPtr bufferOffset = (IntPtr)buffer.Offset;
GL.BindBufferRange(target, bindingPoint, buffer.Handle.ToInt32(), bufferOffset, buffer.Size);
}
private void SetOrigin(ClipOrigin origin)
{
if (_clipOrigin != origin)
{
_clipOrigin = origin;
GL.ClipControl(origin, _clipDepthMode);
}
}
private void EnsureVertexArray()
{
if (_vertexArray == null)
{
_vertexArray = new VertexArray();
_vertexArray.Bind();
}
}
private void EnsureFramebuffer()
{
if (_framebuffer == null)
{
_framebuffer = new Framebuffer();
int boundHandle = _framebuffer.Bind();
_boundDrawFramebuffer = _boundReadFramebuffer = boundHandle;
GL.Enable(EnableCap.FramebufferSrgb);
}
}
internal (int drawHandle, int readHandle) GetBoundFramebuffers()
{
return (_boundDrawFramebuffer, _boundReadFramebuffer);
}
private void UpdateFpIsBgra()
{
if (_program != null)
{
GL.Uniform1(_program.FragmentIsBgraUniform, 8, _fpIsBgra);
}
}
private void UpdateDepthTest()
{
// Enabling depth operations is only valid when we have
// a depth buffer, otherwise it's not allowed.
if (_hasDepthBuffer)
{
if (_depthTest)
{
GL.Enable(EnableCap.DepthTest);
}
else
{
GL.Disable(EnableCap.DepthTest);
}
GL.DepthMask(_depthMask);
}
else
{
GL.Disable(EnableCap.DepthTest);
GL.DepthMask(false);
}
}
public void UpdateRenderScale(ShaderStage stage, int textureCount)
{
if (_program != null)
{
switch (stage)
{
case ShaderStage.Fragment:
if (_program.FragmentRenderScaleUniform != -1)
{
GL.Uniform1(_program.FragmentRenderScaleUniform, textureCount + 1, _fpRenderScale);
}
break;
case ShaderStage.Compute:
if (_program.ComputeRenderScaleUniform != -1)
{
GL.Uniform1(_program.ComputeRenderScaleUniform, textureCount, _cpRenderScale);
}
break;
}
}
}
private void PrepareForDispatch()
{
if (_unit0Texture != null)
{
_unit0Texture.Bind(0);
}
}
private void PrepareForDraw()
{
_vertexArray.Validate();
if (_unit0Texture != null)
{
_unit0Texture.Bind(0);
}
}
private void RestoreComponentMask(int index)
{
GL.ColorMask(
index,
(_componentMasks[index] & 1u) != 0,
(_componentMasks[index] & 2u) != 0,
(_componentMasks[index] & 4u) != 0,
(_componentMasks[index] & 8u) != 0);
}
public void RestoreScissor0Enable()
{
if (_scissor0Enable)
{
GL.Enable(IndexedEnableCap.ScissorTest, 0);
}
}
public void RestoreRasterizerDiscard()
{
if (_rasterizerDiscard)
{
GL.Enable(EnableCap.RasterizerDiscard);
}
}
public bool TryHostConditionalRendering(ICounterEvent value, ulong compare, bool isEqual)
{
if (value is CounterQueueEvent)
{
// Compare an event and a constant value.
CounterQueueEvent evt = (CounterQueueEvent)value;
// Easy host conditional rendering when the check matches what GL can do:
// - Event is of type samples passed.
// - Result is not a combination of multiple queries.
// - Comparing against 0.
// - Event has not already been flushed.
if (evt.Disposed)
{
// If the event has been flushed, then just use the values on the CPU.
// The query object may already be repurposed for another draw (eg. begin + end).
return false;
}
if (compare == 0 && evt.Type == QueryTarget.SamplesPassed && evt.ClearCounter)
{
GL.BeginConditionalRender(evt.Query, isEqual ? ConditionalRenderType.QueryNoWaitInverted : ConditionalRenderType.QueryNoWait);
return true;
}
}
// The GPU will flush the queries to CPU and evaluate the condition there instead.
GL.Flush(); // The thread will be stalled manually flushing the counter, so flush GL commands now.
return false;
}
public bool TryHostConditionalRendering(ICounterEvent value, ICounterEvent compare, bool isEqual)
{
GL.Flush(); // The GPU thread will be stalled manually flushing the counter, so flush GL commands now.
return false; // We don't currently have a way to compare two counters for conditional rendering.
}
public void EndHostConditionalRendering()
{
GL.EndConditionalRender();
}
public void Dispose()
{
_framebuffer?.Dispose();
_vertexArray?.Dispose();
}
}
}