1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-11-14 10:16:43 +00:00
Ryujinx/Ryujinx.Graphics/VDec/VideoDecoder.cs
gdkchan c86aacde76
NVDEC implementation using FFmpeg (#443)
* Initial nvdec implementation using FFmpeg

* Fix swapped channels on the video decoder and the G8R8 texture format

* Fix texture samplers not being set properly (regression)

* Rebased

* Remove unused code introduced on the rebase

* Add support for RGBA8 output format on the video image composer

* Correct spacing

* Some fixes for rebase and other tweaks

* Allow size mismatch on frame copy

* Get rid of GetHostAddress calls on VDec
2018-12-03 00:38:47 -02:00

280 lines
No EOL
12 KiB
C#

using ChocolArm64.Memory;
using Ryujinx.Graphics.Gal;
using Ryujinx.Graphics.Memory;
using Ryujinx.Graphics.Texture;
using Ryujinx.Graphics.Vic;
using System;
namespace Ryujinx.Graphics.VDec
{
unsafe class VideoDecoder
{
private NvGpu Gpu;
private H264Decoder H264Decoder;
private Vp9Decoder Vp9Decoder;
private VideoCodec CurrentVideoCodec;
private long DecoderContextAddress;
private long FrameDataAddress;
private long VpxCurrLumaAddress;
private long VpxRef0LumaAddress;
private long VpxRef1LumaAddress;
private long VpxRef2LumaAddress;
private long VpxCurrChromaAddress;
private long VpxRef0ChromaAddress;
private long VpxRef1ChromaAddress;
private long VpxRef2ChromaAddress;
private long VpxProbTablesAddress;
public VideoDecoder(NvGpu Gpu)
{
this.Gpu = Gpu;
H264Decoder = new H264Decoder();
Vp9Decoder = new Vp9Decoder();
}
public void Process(NvGpuVmm Vmm, int MethodOffset, int[] Arguments)
{
VideoDecoderMeth Method = (VideoDecoderMeth)MethodOffset;
switch (Method)
{
case VideoDecoderMeth.SetVideoCodec: SetVideoCodec (Vmm, Arguments); break;
case VideoDecoderMeth.Execute: Execute (Vmm, Arguments); break;
case VideoDecoderMeth.SetDecoderCtxAddr: SetDecoderCtxAddr (Vmm, Arguments); break;
case VideoDecoderMeth.SetFrameDataAddr: SetFrameDataAddr (Vmm, Arguments); break;
case VideoDecoderMeth.SetVpxCurrLumaAddr: SetVpxCurrLumaAddr (Vmm, Arguments); break;
case VideoDecoderMeth.SetVpxRef0LumaAddr: SetVpxRef0LumaAddr (Vmm, Arguments); break;
case VideoDecoderMeth.SetVpxRef1LumaAddr: SetVpxRef1LumaAddr (Vmm, Arguments); break;
case VideoDecoderMeth.SetVpxRef2LumaAddr: SetVpxRef2LumaAddr (Vmm, Arguments); break;
case VideoDecoderMeth.SetVpxCurrChromaAddr: SetVpxCurrChromaAddr(Vmm, Arguments); break;
case VideoDecoderMeth.SetVpxRef0ChromaAddr: SetVpxRef0ChromaAddr(Vmm, Arguments); break;
case VideoDecoderMeth.SetVpxRef1ChromaAddr: SetVpxRef1ChromaAddr(Vmm, Arguments); break;
case VideoDecoderMeth.SetVpxRef2ChromaAddr: SetVpxRef2ChromaAddr(Vmm, Arguments); break;
case VideoDecoderMeth.SetVpxProbTablesAddr: SetVpxProbTablesAddr(Vmm, Arguments); break;
}
}
private void SetVideoCodec(NvGpuVmm Vmm, int[] Arguments)
{
CurrentVideoCodec = (VideoCodec)Arguments[0];
}
private void Execute(NvGpuVmm Vmm, int[] Arguments)
{
if (CurrentVideoCodec == VideoCodec.H264)
{
int FrameDataSize = Vmm.ReadInt32(DecoderContextAddress + 0x48);
H264ParameterSets Params = MemoryHelper.Read<H264ParameterSets>(Vmm.Memory, Vmm.GetPhysicalAddress(DecoderContextAddress + 0x58));
H264Matrices Matrices = new H264Matrices()
{
ScalingMatrix4 = Vmm.ReadBytes(DecoderContextAddress + 0x1c0, 6 * 16),
ScalingMatrix8 = Vmm.ReadBytes(DecoderContextAddress + 0x220, 2 * 64)
};
byte[] FrameData = Vmm.ReadBytes(FrameDataAddress, FrameDataSize);
H264Decoder.Decode(Params, Matrices, FrameData);
}
else if (CurrentVideoCodec == VideoCodec.Vp9)
{
int FrameDataSize = Vmm.ReadInt32(DecoderContextAddress + 0x30);
Vp9FrameKeys Keys = new Vp9FrameKeys()
{
CurrKey = Vmm.GetPhysicalAddress(VpxCurrLumaAddress),
Ref0Key = Vmm.GetPhysicalAddress(VpxRef0LumaAddress),
Ref1Key = Vmm.GetPhysicalAddress(VpxRef1LumaAddress),
Ref2Key = Vmm.GetPhysicalAddress(VpxRef2LumaAddress)
};
Vp9FrameHeader Header = MemoryHelper.Read<Vp9FrameHeader>(Vmm.Memory, Vmm.GetPhysicalAddress(DecoderContextAddress + 0x48));
Vp9ProbabilityTables Probs = new Vp9ProbabilityTables()
{
SegmentationTreeProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x387, 0x7),
SegmentationPredProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x38e, 0x3),
Tx8x8Probs = Vmm.ReadBytes(VpxProbTablesAddress + 0x470, 0x2),
Tx16x16Probs = Vmm.ReadBytes(VpxProbTablesAddress + 0x472, 0x4),
Tx32x32Probs = Vmm.ReadBytes(VpxProbTablesAddress + 0x476, 0x6),
CoefProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x5a0, 0x900),
SkipProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x537, 0x3),
InterModeProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x400, 0x1c),
InterpFilterProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x52a, 0x8),
IsInterProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x41c, 0x4),
CompModeProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x532, 0x5),
SingleRefProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x580, 0xa),
CompRefProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x58a, 0x5),
YModeProbs0 = Vmm.ReadBytes(VpxProbTablesAddress + 0x480, 0x20),
YModeProbs1 = Vmm.ReadBytes(VpxProbTablesAddress + 0x47c, 0x4),
PartitionProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x4e0, 0x40),
MvJointProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x53b, 0x3),
MvSignProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x53e, 0x3),
MvClassProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x54c, 0x14),
MvClass0BitProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x540, 0x3),
MvBitsProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x56c, 0x14),
MvClass0FrProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x560, 0xc),
MvFrProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x542, 0x6),
MvClass0HpProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x548, 0x2),
MvHpProbs = Vmm.ReadBytes(VpxProbTablesAddress + 0x54a, 0x2)
};
byte[] FrameData = Vmm.ReadBytes(FrameDataAddress, FrameDataSize);
Vp9Decoder.Decode(Keys, Header, Probs, FrameData);
}
else
{
ThrowUnimplementedCodec();
}
}
private void SetDecoderCtxAddr(NvGpuVmm Vmm, int[] Arguments)
{
DecoderContextAddress = GetAddress(Arguments);
}
private void SetFrameDataAddr(NvGpuVmm Vmm, int[] Arguments)
{
FrameDataAddress = GetAddress(Arguments);
}
private void SetVpxCurrLumaAddr(NvGpuVmm Vmm, int[] Arguments)
{
VpxCurrLumaAddress = GetAddress(Arguments);
}
private void SetVpxRef0LumaAddr(NvGpuVmm Vmm, int[] Arguments)
{
VpxRef0LumaAddress = GetAddress(Arguments);
}
private void SetVpxRef1LumaAddr(NvGpuVmm Vmm, int[] Arguments)
{
VpxRef1LumaAddress = GetAddress(Arguments);
}
private void SetVpxRef2LumaAddr(NvGpuVmm Vmm, int[] Arguments)
{
VpxRef2LumaAddress = GetAddress(Arguments);
}
private void SetVpxCurrChromaAddr(NvGpuVmm Vmm, int[] Arguments)
{
VpxCurrChromaAddress = GetAddress(Arguments);
}
private void SetVpxRef0ChromaAddr(NvGpuVmm Vmm, int[] Arguments)
{
VpxRef0ChromaAddress = GetAddress(Arguments);
}
private void SetVpxRef1ChromaAddr(NvGpuVmm Vmm, int[] Arguments)
{
VpxRef1ChromaAddress = GetAddress(Arguments);
}
private void SetVpxRef2ChromaAddr(NvGpuVmm Vmm, int[] Arguments)
{
VpxRef2ChromaAddress = GetAddress(Arguments);
}
private void SetVpxProbTablesAddr(NvGpuVmm Vmm, int[] Arguments)
{
VpxProbTablesAddress = GetAddress(Arguments);
}
private static long GetAddress(int[] Arguments)
{
return (long)(uint)Arguments[0] << 8;
}
internal void CopyPlanes(NvGpuVmm Vmm, SurfaceOutputConfig OutputConfig)
{
switch (OutputConfig.PixelFormat)
{
case SurfacePixelFormat.RGBA8: CopyPlanesRgba8 (Vmm, OutputConfig); break;
case SurfacePixelFormat.YUV420P: CopyPlanesYuv420p(Vmm, OutputConfig); break;
default: ThrowUnimplementedPixelFormat(OutputConfig.PixelFormat); break;
}
}
private void CopyPlanesRgba8(NvGpuVmm Vmm, SurfaceOutputConfig OutputConfig)
{
FFmpegFrame Frame = FFmpegWrapper.GetFrameRgba();
if ((Frame.Width | Frame.Height) == 0)
{
return;
}
GalImage Image = new GalImage(
OutputConfig.SurfaceWidth,
OutputConfig.SurfaceHeight, 1,
OutputConfig.GobBlockHeight,
GalMemoryLayout.BlockLinear,
GalImageFormat.RGBA8 | GalImageFormat.Unorm);
ImageUtils.WriteTexture(Vmm, Image, Vmm.GetPhysicalAddress(OutputConfig.SurfaceLumaAddress), Frame.Data);
}
private void CopyPlanesYuv420p(NvGpuVmm Vmm, SurfaceOutputConfig OutputConfig)
{
FFmpegFrame Frame = FFmpegWrapper.GetFrame();
if ((Frame.Width | Frame.Height) == 0)
{
return;
}
int HalfSrcWidth = Frame.Width / 2;
int HalfWidth = Frame.Width / 2;
int HalfHeight = Frame.Height / 2;
int AlignedWidth = (OutputConfig.SurfaceWidth + 0xff) & ~0xff;
for (int Y = 0; Y < Frame.Height; Y++)
{
int Src = Y * Frame.Width;
int Dst = Y * AlignedWidth;
int Size = Frame.Width;
for (int Offset = 0; Offset < Size; Offset++)
{
Vmm.WriteByte(OutputConfig.SurfaceLumaAddress + Dst + Offset, *(Frame.LumaPtr + Src + Offset));
}
}
//Copy chroma data from both channels with interleaving.
for (int Y = 0; Y < HalfHeight; Y++)
{
int Src = Y * HalfSrcWidth;
int Dst = Y * AlignedWidth;
for (int X = 0; X < HalfWidth; X++)
{
Vmm.WriteByte(OutputConfig.SurfaceChromaUAddress + Dst + X * 2 + 0, *(Frame.ChromaBPtr + Src + X));
Vmm.WriteByte(OutputConfig.SurfaceChromaUAddress + Dst + X * 2 + 1, *(Frame.ChromaRPtr + Src + X));
}
}
}
private void ThrowUnimplementedCodec()
{
throw new NotImplementedException("Codec \"" + CurrentVideoCodec + "\" is not supported!");
}
private void ThrowUnimplementedPixelFormat(SurfacePixelFormat PixelFormat)
{
throw new NotImplementedException("Pixel format \"" + PixelFormat + "\" is not supported!");
}
}
}