1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-11-18 19:26:39 +00:00
Ryujinx/Ryujinx.Graphics.GAL/Multithreading/ThreadedRenderer.cs
gdkchan 1080f64df9
Implement HLE macros for render target clears (#3528)
* Implement HLE macros for render target clears

* Add constants for the offsets
2022-08-04 21:30:08 +00:00

438 lines
13 KiB
C#

using Ryujinx.Common;
using Ryujinx.Common.Configuration;
using Ryujinx.Graphics.GAL.Multithreading.Commands;
using Ryujinx.Graphics.GAL.Multithreading.Commands.Buffer;
using Ryujinx.Graphics.GAL.Multithreading.Commands.Renderer;
using Ryujinx.Graphics.GAL.Multithreading.Model;
using Ryujinx.Graphics.GAL.Multithreading.Resources;
using Ryujinx.Graphics.GAL.Multithreading.Resources.Programs;
using System;
using System.Diagnostics;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Threading;
namespace Ryujinx.Graphics.GAL.Multithreading
{
/// <summary>
/// The ThreadedRenderer is a layer that can be put in front of any Renderer backend to make
/// its processing happen on a separate thread, rather than intertwined with the GPU emulation.
/// A new thread is created to handle the GPU command processing, separate from the renderer thread.
/// Calls to the renderer, pipeline and resources are queued to happen on the renderer thread.
/// </summary>
public class ThreadedRenderer : IRenderer
{
private const int SpanPoolBytes = 4 * 1024 * 1024;
private const int MaxRefsPerCommand = 2;
private const int QueueCount = 10000;
private int _elementSize;
private IRenderer _baseRenderer;
private Thread _gpuThread;
private bool _disposed;
private bool _running;
private AutoResetEvent _frameComplete = new AutoResetEvent(true);
private ManualResetEventSlim _galWorkAvailable;
private CircularSpanPool _spanPool;
private ManualResetEventSlim _invokeRun;
private bool _lastSampleCounterClear = true;
private byte[] _commandQueue;
private object[] _refQueue;
private int _consumerPtr;
private int _commandCount;
private int _producerPtr;
private int _lastProducedPtr;
private int _invokePtr;
private int _refProducerPtr;
private int _refConsumerPtr;
public event EventHandler<ScreenCaptureImageInfo> ScreenCaptured;
internal BufferMap Buffers { get; }
internal SyncMap Sync { get; }
internal CircularSpanPool SpanPool { get; }
internal ProgramQueue Programs { get; }
public IPipeline Pipeline { get; }
public IWindow Window { get; }
public IRenderer BaseRenderer => _baseRenderer;
public bool PreferThreading => _baseRenderer.PreferThreading;
public ThreadedRenderer(IRenderer renderer)
{
_baseRenderer = renderer;
renderer.ScreenCaptured += (object sender, ScreenCaptureImageInfo info) => ScreenCaptured?.Invoke(this, info);
Pipeline = new ThreadedPipeline(this, renderer.Pipeline);
Window = new ThreadedWindow(this, renderer);
Buffers = new BufferMap();
Sync = new SyncMap();
Programs = new ProgramQueue(renderer);
_galWorkAvailable = new ManualResetEventSlim(false);
_invokeRun = new ManualResetEventSlim();
_spanPool = new CircularSpanPool(this, SpanPoolBytes);
SpanPool = _spanPool;
_elementSize = BitUtils.AlignUp(CommandHelper.GetMaxCommandSize(), 4);
_commandQueue = new byte[_elementSize * QueueCount];
_refQueue = new object[MaxRefsPerCommand * QueueCount];
}
public void RunLoop(Action gpuLoop)
{
_running = true;
_gpuThread = new Thread(() => {
gpuLoop();
_running = false;
_galWorkAvailable.Set();
});
_gpuThread.Name = "GPU.MainThread";
_gpuThread.Start();
RenderLoop();
}
public void RenderLoop()
{
// Power through the render queue until the Gpu thread work is done.
while (_running && !_disposed)
{
_galWorkAvailable.Wait();
_galWorkAvailable.Reset();
// The other thread can only increase the command count.
// We can assume that if it is above 0, it will stay there or get higher.
while (_commandCount > 0)
{
int commandPtr = _consumerPtr;
Span<byte> command = new Span<byte>(_commandQueue, commandPtr * _elementSize, _elementSize);
// Run the command.
CommandHelper.RunCommand(command, this, _baseRenderer);
if (Interlocked.CompareExchange(ref _invokePtr, -1, commandPtr) == commandPtr)
{
_invokeRun.Set();
}
_consumerPtr = (_consumerPtr + 1) % QueueCount;
Interlocked.Decrement(ref _commandCount);
}
}
}
internal SpanRef<T> CopySpan<T>(ReadOnlySpan<T> data) where T : unmanaged
{
return _spanPool.Insert(data);
}
private TableRef<T> Ref<T>(T reference)
{
return new TableRef<T>(this, reference);
}
internal ref T New<T>() where T : struct
{
while (_producerPtr == (_consumerPtr + QueueCount - 1) % QueueCount)
{
// If incrementing the producer pointer would overflow, we need to wait.
// _consumerPtr can only move forward, so there's no race to worry about here.
Thread.Sleep(1);
}
int taken = _producerPtr;
_lastProducedPtr = taken;
_producerPtr = (_producerPtr + 1) % QueueCount;
Span<byte> memory = new Span<byte>(_commandQueue, taken * _elementSize, _elementSize);
ref T result = ref Unsafe.As<byte, T>(ref MemoryMarshal.GetReference(memory));
memory[memory.Length - 1] = (byte)((IGALCommand)result).CommandType;
return ref result;
}
internal int AddTableRef(object obj)
{
// The reference table is sized so that it will never overflow, so long as the references are taken after the command is allocated.
int index = _refProducerPtr;
_refQueue[index] = obj;
_refProducerPtr = (_refProducerPtr + 1) % _refQueue.Length;
return index;
}
internal object RemoveTableRef(int index)
{
Debug.Assert(index == _refConsumerPtr);
object result = _refQueue[_refConsumerPtr];
_refQueue[_refConsumerPtr] = null;
_refConsumerPtr = (_refConsumerPtr + 1) % _refQueue.Length;
return result;
}
internal void QueueCommand()
{
int result = Interlocked.Increment(ref _commandCount);
if (result == 1)
{
_galWorkAvailable.Set();
}
}
internal void InvokeCommand()
{
_invokeRun.Reset();
_invokePtr = _lastProducedPtr;
QueueCommand();
// Wait for the command to complete.
_invokeRun.Wait();
}
internal void WaitForFrame()
{
_frameComplete.WaitOne();
}
internal void SignalFrame()
{
_frameComplete.Set();
}
internal bool IsGpuThread()
{
return Thread.CurrentThread == _gpuThread;
}
public void BackgroundContextAction(Action action, bool alwaysBackground = false)
{
if (IsGpuThread() && !alwaysBackground)
{
// The action must be performed on the render thread.
New<ActionCommand>().Set(Ref(action));
InvokeCommand();
}
else
{
_baseRenderer.BackgroundContextAction(action, true);
}
}
public BufferHandle CreateBuffer(int size)
{
BufferHandle handle = Buffers.CreateBufferHandle();
New<CreateBufferCommand>().Set(handle, size);
QueueCommand();
return handle;
}
public IProgram CreateProgram(ShaderSource[] shaders, ShaderInfo info)
{
var program = new ThreadedProgram(this);
SourceProgramRequest request = new SourceProgramRequest(program, shaders, info);
Programs.Add(request);
New<CreateProgramCommand>().Set(Ref((IProgramRequest)request));
QueueCommand();
return program;
}
public ISampler CreateSampler(SamplerCreateInfo info)
{
var sampler = new ThreadedSampler(this);
New<CreateSamplerCommand>().Set(Ref(sampler), info);
QueueCommand();
return sampler;
}
public void CreateSync(ulong id)
{
Sync.CreateSyncHandle(id);
New<CreateSyncCommand>().Set(id);
QueueCommand();
}
public ITexture CreateTexture(TextureCreateInfo info, float scale)
{
if (IsGpuThread())
{
var texture = new ThreadedTexture(this, info, scale);
New<CreateTextureCommand>().Set(Ref(texture), info, scale);
QueueCommand();
return texture;
}
else
{
var texture = new ThreadedTexture(this, info, scale);
texture.Base = _baseRenderer.CreateTexture(info, scale);
return texture;
}
}
public void DeleteBuffer(BufferHandle buffer)
{
New<BufferDisposeCommand>().Set(buffer);
QueueCommand();
}
public ReadOnlySpan<byte> GetBufferData(BufferHandle buffer, int offset, int size)
{
if (IsGpuThread())
{
ResultBox<PinnedSpan<byte>> box = new ResultBox<PinnedSpan<byte>>();
New<BufferGetDataCommand>().Set(buffer, offset, size, Ref(box));
InvokeCommand();
return box.Result.Get();
}
else
{
return _baseRenderer.GetBufferData(Buffers.MapBufferBlocking(buffer), offset, size);
}
}
public Capabilities GetCapabilities()
{
ResultBox<Capabilities> box = new ResultBox<Capabilities>();
New<GetCapabilitiesCommand>().Set(Ref(box));
InvokeCommand();
return box.Result;
}
public HardwareInfo GetHardwareInfo()
{
return _baseRenderer.GetHardwareInfo();
}
/// <summary>
/// Initialize the base renderer. Must be called on the render thread.
/// </summary>
/// <param name="logLevel">Log level to use</param>
public void Initialize(GraphicsDebugLevel logLevel)
{
_baseRenderer.Initialize(logLevel);
}
public IProgram LoadProgramBinary(byte[] programBinary, bool hasFragmentShader, ShaderInfo info)
{
var program = new ThreadedProgram(this);
BinaryProgramRequest request = new BinaryProgramRequest(program, programBinary, hasFragmentShader, info);
Programs.Add(request);
New<CreateProgramCommand>().Set(Ref((IProgramRequest)request));
QueueCommand();
return program;
}
public void PreFrame()
{
New<PreFrameCommand>();
QueueCommand();
}
public ICounterEvent ReportCounter(CounterType type, EventHandler<ulong> resultHandler, bool hostReserved)
{
ThreadedCounterEvent evt = new ThreadedCounterEvent(this, type, _lastSampleCounterClear);
New<ReportCounterCommand>().Set(Ref(evt), type, Ref(resultHandler), hostReserved);
QueueCommand();
if (type == CounterType.SamplesPassed)
{
_lastSampleCounterClear = false;
}
return evt;
}
public void ResetCounter(CounterType type)
{
New<ResetCounterCommand>().Set(type);
QueueCommand();
_lastSampleCounterClear = true;
}
public void Screenshot()
{
_baseRenderer.Screenshot();
}
public void SetBufferData(BufferHandle buffer, int offset, ReadOnlySpan<byte> data)
{
New<BufferSetDataCommand>().Set(buffer, offset, CopySpan(data));
QueueCommand();
}
public void UpdateCounters()
{
New<UpdateCountersCommand>();
QueueCommand();
}
public void WaitSync(ulong id)
{
Sync.WaitSyncAvailability(id);
_baseRenderer.WaitSync(id);
}
public void Dispose()
{
// Dispose must happen from the render thread, after all commands have completed.
// Stop the GPU thread.
_disposed = true;
_gpuThread.Join();
// Dispose the renderer.
_baseRenderer.Dispose();
// Dispose events.
_frameComplete.Dispose();
_galWorkAvailable.Dispose();
_invokeRun.Dispose();
Sync.Dispose();
}
}
}