1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-11-15 09:26:40 +00:00
Ryujinx/Ryujinx.Tests/Cpu/CpuTestAluBinary.cs
gdkchan a731ab3a2a Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project

* Refactoring around the old IRAdapter, now renamed to PreAllocator

* Optimize the LowestBitSet method

* Add CLZ support and fix CLS implementation

* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks

* Implement the ByteSwap IR instruction, and some refactoring on the assembler

* Implement the DivideUI IR instruction and fix 64-bits IDIV

* Correct constant operand type on CSINC

* Move division instructions implementation to InstEmitDiv

* Fix destination type for the ConditionalSelect IR instruction

* Implement UMULH and SMULH, with new IR instructions

* Fix some issues with shift instructions

* Fix constant types for BFM instructions

* Fix up new tests using the new V128 struct

* Update tests

* Move DIV tests to a separate file

* Add support for calls, and some instructions that depends on them

* Start adding support for SIMD & FP types, along with some of the related ARM instructions

* Fix some typos and the divide instruction with FP operands

* Fix wrong method call on Clz_V

* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes

* Implement SIMD logical instructions and more misc. fixes

* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations

* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes

* Implement SIMD shift instruction and fix Dup_V

* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table

* Fix check with tolerance on tester

* Implement FP & SIMD comparison instructions, and some fixes

* Update FCVT (Scalar) encoding on the table to support the Half-float variants

* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes

* Use old memory access methods, made a start on SIMD memory insts support, some fixes

* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes

* Fix arguments count with struct return values, other fixes

* More instructions

* Misc. fixes and integrate LDj3SNuD fixes

* Update tests

* Add a faster linear scan allocator, unwinding support on windows, and other changes

* Update Ryujinx.HLE

* Update Ryujinx.Graphics

* Fix V128 return pointer passing, RCX is clobbered

* Update Ryujinx.Tests

* Update ITimeZoneService

* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks

* Use generic GetFunctionPointerForDelegate method and other tweaks

* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics

* Remove some unused code on the assembler

* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler

* Add hardware capability detection

* Fix regression on Sha1h and revert Fcm** changes

* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator

* Fix silly mistake introduced on last commit on CpuId

* Generate inline stack probes when the stack allocation is too large

* Initial support for the System-V ABI

* Support multiple destination operands

* Fix SSE2 VectorInsert8 path, and other fixes

* Change placement of XMM callee save and restore code to match other compilers

* Rename Dest to Destination and Inst to Instruction

* Fix a regression related to calls and the V128 type

* Add an extra space on comments to match code style

* Some refactoring

* Fix vector insert FP32 SSE2 path

* Port over the ARM32 instructions

* Avoid memory protection races on JIT Cache

* Another fix on VectorInsert FP32 (thanks to LDj3SNuD

* Float operands don't need to use the same register when VEX is supported

* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks

* Some nits, small improvements on the pre allocator

* CpuThreadState is gone

* Allow changing CPU emulators with a config entry

* Add runtime identifiers on the ARMeilleure project

* Allow switching between CPUs through a config entry (pt. 2)

* Change win10-x64 to win-x64 on projects

* Update the Ryujinx project to use ARMeilleure

* Ensure that the selected register is valid on the hybrid allocator

* Allow exiting on returns to 0 (should fix test regression)

* Remove register assignments for most used variables on the hybrid allocator

* Do not use fixed registers as spill temp

* Add missing namespace and remove unneeded using

* Address PR feedback

* Fix types, etc

* Enable AssumeStrictAbiCompliance by default

* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 21:56:22 +03:00

238 lines
10 KiB
C#

#define AluBinary
using NUnit.Framework;
namespace Ryujinx.Tests.Cpu
{
[Category("AluBinary")]
public sealed class CpuTestAluBinary : CpuTest
{
#if AluBinary
private const int RndCnt = 2;
[Test, Pairwise, Description("CRC32X <Wd>, <Wn>, <Xm>"), Ignore("Unicorn fails.")]
public void Crc32x([Values(0u, 31u)] uint rd,
[Values(1u, 31u)] uint rn,
[Values(2u, 31u)] uint rm,
[Values(0x00000000u, 0xFFFFFFFFu)] [Random(RndCnt)] uint wn,
[Values((ulong)0x00_00_00_00_00_00_00_00,
(ulong)0x7F_FF_FF_FF_FF_FF_FF_FF,
(ulong)0x80_00_00_00_00_00_00_00,
(ulong)0xFF_FF_FF_FF_FF_FF_FF_FF)] [Random(RndCnt)] ulong xm)
{
uint opcode = 0x9AC04C00; // CRC32X W0, W0, X0
opcode |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
uint w31 = TestContext.CurrentContext.Random.NextUInt();
SingleOpcode(opcode, x1: wn, x2: xm, x31: w31);
CompareAgainstUnicorn();
}
[Test, Pairwise, Description("CRC32W <Wd>, <Wn>, <Wm>"), Ignore("Unicorn fails.")]
public void Crc32w([Values(0u, 31u)] uint rd,
[Values(1u, 31u)] uint rn,
[Values(2u, 31u)] uint rm,
[Values(0x00000000u, 0xFFFFFFFFu)] [Random(RndCnt)] uint wn,
[Values((uint)0x00_00_00_00, (uint)0x7F_FF_FF_FF,
(uint)0x80_00_00_00, (uint)0xFF_FF_FF_FF)] [Random(RndCnt)] uint wm)
{
uint opcode = 0x1AC04800; // CRC32W W0, W0, W0
opcode |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
uint w31 = TestContext.CurrentContext.Random.NextUInt();
SingleOpcode(opcode, x1: wn, x2: wm, x31: w31);
CompareAgainstUnicorn();
}
[Test, Pairwise, Description("CRC32H <Wd>, <Wn>, <Wm>"), Ignore("Unicorn fails.")]
public void Crc32h([Values(0u, 31u)] uint rd,
[Values(1u, 31u)] uint rn,
[Values(2u, 31u)] uint rm,
[Values(0x00000000u, 0xFFFFFFFFu)] [Random(RndCnt)] uint wn,
[Values((ushort)0x00_00, (ushort)0x7F_FF,
(ushort)0x80_00, (ushort)0xFF_FF)] [Random(RndCnt)] ushort wm)
{
uint opcode = 0x1AC04400; // CRC32H W0, W0, W0
opcode |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
uint w31 = TestContext.CurrentContext.Random.NextUInt();
SingleOpcode(opcode, x1: wn, x2: wm, x31: w31);
CompareAgainstUnicorn();
}
[Test, Pairwise, Description("CRC32B <Wd>, <Wn>, <Wm>"), Ignore("Unicorn fails.")]
public void Crc32b([Values(0u, 31u)] uint rd,
[Values(1u, 31u)] uint rn,
[Values(2u, 31u)] uint rm,
[Values(0x00000000u, 0xFFFFFFFFu)] [Random(RndCnt)] uint wn,
[Values((byte)0x00, (byte)0x7F,
(byte)0x80, (byte)0xFF)] [Random(RndCnt)] byte wm)
{
uint opcode = 0x1AC04000; // CRC32B W0, W0, W0
opcode |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
uint w31 = TestContext.CurrentContext.Random.NextUInt();
SingleOpcode(opcode, x1: wn, x2: wm, x31: w31);
CompareAgainstUnicorn();
}
[Test, Pairwise, Description("CRC32CX <Wd>, <Wn>, <Xm>")]
public void Crc32cx([Values(0u, 31u)] uint rd,
[Values(1u, 31u)] uint rn,
[Values(2u, 31u)] uint rm,
[Values(0x00000000u, 0xFFFFFFFFu)] [Random(RndCnt)] uint wn,
[Values((ulong)0x00_00_00_00_00_00_00_00,
(ulong)0x7F_FF_FF_FF_FF_FF_FF_FF,
(ulong)0x80_00_00_00_00_00_00_00,
(ulong)0xFF_FF_FF_FF_FF_FF_FF_FF)] [Random(RndCnt)] ulong xm)
{
uint opcode = 0x9AC05C00; // CRC32CX W0, W0, X0
opcode |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
uint w31 = TestContext.CurrentContext.Random.NextUInt();
SingleOpcode(opcode, x1: wn, x2: xm, x31: w31);
CompareAgainstUnicorn();
}
[Test, Pairwise, Description("CRC32CW <Wd>, <Wn>, <Wm>")]
public void Crc32cw([Values(0u, 31u)] uint rd,
[Values(1u, 31u)] uint rn,
[Values(2u, 31u)] uint rm,
[Values(0x00000000u, 0xFFFFFFFFu)] [Random(RndCnt)] uint wn,
[Values((uint)0x00_00_00_00, (uint)0x7F_FF_FF_FF,
(uint)0x80_00_00_00, (uint)0xFF_FF_FF_FF)] [Random(RndCnt)] uint wm)
{
uint opcode = 0x1AC05800; // CRC32CW W0, W0, W0
opcode |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
uint w31 = TestContext.CurrentContext.Random.NextUInt();
SingleOpcode(opcode, x1: wn, x2: wm, x31: w31);
CompareAgainstUnicorn();
}
[Test, Pairwise, Description("CRC32CH <Wd>, <Wn>, <Wm>")]
public void Crc32ch([Values(0u, 31u)] uint rd,
[Values(1u, 31u)] uint rn,
[Values(2u, 31u)] uint rm,
[Values(0x00000000u, 0xFFFFFFFFu)] [Random(RndCnt)] uint wn,
[Values((ushort)0x00_00, (ushort)0x7F_FF,
(ushort)0x80_00, (ushort)0xFF_FF)] [Random(RndCnt)] ushort wm)
{
uint opcode = 0x1AC05400; // CRC32CH W0, W0, W0
opcode |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
uint w31 = TestContext.CurrentContext.Random.NextUInt();
SingleOpcode(opcode, x1: wn, x2: wm, x31: w31);
CompareAgainstUnicorn();
}
[Test, Pairwise, Description("CRC32CB <Wd>, <Wn>, <Wm>")]
public void Crc32cb([Values(0u, 31u)] uint rd,
[Values(1u, 31u)] uint rn,
[Values(2u, 31u)] uint rm,
[Values(0x00000000u, 0xFFFFFFFFu)] [Random(RndCnt)] uint wn,
[Values((byte)0x00, (byte)0x7F,
(byte)0x80, (byte)0xFF)] [Random(RndCnt)] byte wm)
{
uint opcode = 0x1AC05000; // CRC32CB W0, W0, W0
opcode |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
uint w31 = TestContext.CurrentContext.Random.NextUInt();
SingleOpcode(opcode, x1: wn, x2: wm, x31: w31);
CompareAgainstUnicorn();
}
[Test, Pairwise, Description("SDIV <Xd>, <Xn>, <Xm>")]
public void Sdiv_64bit([Values(0u, 31u)] uint rd,
[Values(1u, 31u)] uint rn,
[Values(2u, 31u)] uint rm,
[Values(0x0000000000000000ul, 0x7FFFFFFFFFFFFFFFul,
0x8000000000000000ul, 0xFFFFFFFFFFFFFFFFul)] [Random(RndCnt)] ulong xn,
[Values(0x0000000000000000ul, 0x7FFFFFFFFFFFFFFFul,
0x8000000000000000ul, 0xFFFFFFFFFFFFFFFFul)] [Random(RndCnt)] ulong xm)
{
uint opcode = 0x9AC00C00; // SDIV X0, X0, X0
opcode |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
ulong x31 = TestContext.CurrentContext.Random.NextULong();
SingleOpcode(opcode, x1: xn, x2: xm, x31: x31);
CompareAgainstUnicorn();
}
[Test, Pairwise, Description("SDIV <Wd>, <Wn>, <Wm>")]
public void Sdiv_32bit([Values(0u, 31u)] uint rd,
[Values(1u, 31u)] uint rn,
[Values(2u, 31u)] uint rm,
[Values(0x00000000u, 0x7FFFFFFFu,
0x80000000u, 0xFFFFFFFFu)] [Random(RndCnt)] uint wn,
[Values(0x00000000u, 0x7FFFFFFFu,
0x80000000u, 0xFFFFFFFFu)] [Random(RndCnt)] uint wm)
{
uint opcode = 0x1AC00C00; // SDIV W0, W0, W0
opcode |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
uint w31 = TestContext.CurrentContext.Random.NextUInt();
SingleOpcode(opcode, x1: wn, x2: wm, x31: w31);
CompareAgainstUnicorn();
}
[Test, Pairwise, Description("UDIV <Xd>, <Xn>, <Xm>")]
public void Udiv_64bit([Values(0u, 31u)] uint rd,
[Values(1u, 31u)] uint rn,
[Values(2u, 31u)] uint rm,
[Values(0x0000000000000000ul, 0x7FFFFFFFFFFFFFFFul,
0x8000000000000000ul, 0xFFFFFFFFFFFFFFFFul)] [Random(RndCnt)] ulong xn,
[Values(0x0000000000000000ul, 0x7FFFFFFFFFFFFFFFul,
0x8000000000000000ul, 0xFFFFFFFFFFFFFFFFul)] [Random(RndCnt)] ulong xm)
{
uint opcode = 0x9AC00800; // UDIV X0, X0, X0
opcode |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
ulong x31 = TestContext.CurrentContext.Random.NextULong();
SingleOpcode(opcode, x1: xn, x2: xm, x31: x31);
CompareAgainstUnicorn();
}
[Test, Pairwise, Description("UDIV <Wd>, <Wn>, <Wm>")]
public void Udiv_32bit([Values(0u, 31u)] uint rd,
[Values(1u, 31u)] uint rn,
[Values(2u, 31u)] uint rm,
[Values(0x00000000u, 0x7FFFFFFFu,
0x80000000u, 0xFFFFFFFFu)] [Random(RndCnt)] uint wn,
[Values(0x00000000u, 0x7FFFFFFFu,
0x80000000u, 0xFFFFFFFFu)] [Random(RndCnt)] uint wm)
{
uint opcode = 0x1AC00800; // UDIV W0, W0, W0
opcode |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
uint w31 = TestContext.CurrentContext.Random.NextUInt();
SingleOpcode(opcode, x1: wn, x2: wm, x31: w31);
CompareAgainstUnicorn();
}
#endif
}
}