1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-11-14 13:36:42 +00:00
Ryujinx/ARMeilleure/CodeGen/RegisterAllocators/LinearScanAllocator.cs
FICTURE7 69093cf2d6
Optimize LSRA (#2563)
* Optimize `TryAllocateRegWithtoutSpill` a bit

* Add a fast path for when all registers are live.
* Do not query `GetOverlapPosition` if the register is already in use
  (i.e: free position is 0).

* Do not allocate child split list if not parent

* Turn `LiveRange` into a reference struct

`LiveRange` is now a reference wrapping struct like `Operand` and
`Operation`.

It has also been changed into a singly linked-list. In micro-benchmarks
traversing the linked-list was faster than binary search on `List<T>`.
Even for quite large input sizes (e.g: 1,000,000), surprisingly.

Could be because the code gen for traversing the linked-list is much
much cleaner and there is no virtual dispatch happening when checking if
intervals overlaps.

* Turn `LiveInterval` into an iterator

The LSRA allocates in forward order and never inspect previous
`LiveInterval` once they are expired. Something similar can be done for
the `LiveRange`s within the `LiveInterval`s themselves.

The `LiveInterval` is turned into a iterator which expires `LiveRange`
within it. The iterator is moved forward along with interval walking
code, i.e: AllocateInterval(context, interval, cIndex).

* Remove `LinearScanAllocator.Sources`

Local methods are less susceptible to do allocations than lambdas.

* Optimize `GetOverlapPosition(interval)` a bit

Time complexity should be in O(n+m) instead of O(nm) now.

* Optimize `NumberLocals` a bit

Use the same idea as in `HybridAllocator` to store the visited state
in the MSB of the Operand's value instead of using a `HashSet<T>`.

* Optimize `InsertSplitCopies` a bit

Avoid allocating a redundant `CopyResolver`.

* Optimize `InsertSplitCopiesAtEdges` a bit

Avoid redundant allocations of `CopyResolver`.

* Use stack allocation for `freePositions`

Avoid redundant computations.

* Add `UseList`

Replace `SortedIntegerList` with an even more specialized data
structure. It allocates memory on the arena allocators and does not
require copying use positions when splitting it.

* Turn `LiveInterval` into a reference struct

`LiveInterval` is now a reference wrapping struct like `Operand` and
`Operation`.

The rationale behind turning this in a reference wrapping struct is
because a `LiveInterval` is associated with each local variable, and
these intervals may themselves be split further. I've seen translations
having up to 8000 local variables.

To make the `LiveInterval` unmanaged, a new data structure called
`LiveIntervalList` was added to store child splits. This differs from
`SortedList<,>` because it can contain intervals with the same start
position.

Really wished we got some more of C++ template in C#. :^(

* Optimize `GetChildSplit` a bit

No need to inspect the remaining ranges if we've reached a range which
starts after position, since the split list is ordered.

* Optimize `CopyResolver` a bit

Lazily allocate the fill, spill and parallel copy structures since most
of the time only one of them is needed.

* Optimize `BitMap.Enumerator` a bit

Marking `MoveNext` as `AggressiveInlining` allows RyuJIT to promote the
`Enumerator` struct into registers completely, reducing load/store code
a lot since it does not have to store the struct on the stack for ABI
purposes.

* Use stack allocation for `use/blockedPositions`

* Optimize `AllocateWithSpill` a bit

* Address feedback

* Make `LiveInterval.AddRange(,)` more conservative

Produces no diff against master, but just for good measure.
2021-10-08 18:15:44 -03:00

1099 lines
No EOL
38 KiB
C#

using ARMeilleure.Common;
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.Translation;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Numerics;
namespace ARMeilleure.CodeGen.RegisterAllocators
{
// Based on:
// "Linear Scan Register Allocation for the Java(tm) HotSpot Client Compiler".
// http://www.christianwimmer.at/Publications/Wimmer04a/Wimmer04a.pdf
class LinearScanAllocator : IRegisterAllocator
{
private const int InstructionGap = 2;
private const int InstructionGapMask = InstructionGap - 1;
private const int RegistersCount = 16;
private HashSet<int> _blockEdges;
private LiveRange[] _blockRanges;
private BitMap[] _blockLiveIn;
private List<LiveInterval> _intervals;
private LiveInterval[] _parentIntervals;
private List<(IntrusiveList<Operation>, Operation)> _operationNodes;
private int _operationsCount;
private class AllocationContext
{
public RegisterMasks Masks { get; }
public StackAllocator StackAlloc { get; }
public BitMap Active { get; }
public BitMap Inactive { get; }
public int IntUsedRegisters { get; set; }
public int VecUsedRegisters { get; set; }
private readonly int[] _intFreePositions;
private readonly int[] _vecFreePositions;
private readonly int _intFreePositionsCount;
private readonly int _vecFreePositionsCount;
public AllocationContext(StackAllocator stackAlloc, RegisterMasks masks, int intervalsCount)
{
StackAlloc = stackAlloc;
Masks = masks;
Active = new BitMap(Allocators.Default, intervalsCount);
Inactive = new BitMap(Allocators.Default, intervalsCount);
PopulateFreePositions(RegisterType.Integer, out _intFreePositions, out _intFreePositionsCount);
PopulateFreePositions(RegisterType.Vector, out _vecFreePositions, out _vecFreePositionsCount);
void PopulateFreePositions(RegisterType type, out int[] positions, out int count)
{
positions = new int[RegistersCount];
count = BitOperations.PopCount((uint)masks.GetAvailableRegisters(type));
int mask = masks.GetAvailableRegisters(type);
for (int i = 0; i < positions.Length; i++)
{
if ((mask & (1 << i)) != 0)
{
positions[i] = int.MaxValue;
}
}
}
}
public void GetFreePositions(RegisterType type, in Span<int> positions, out int count)
{
if (type == RegisterType.Integer)
{
_intFreePositions.CopyTo(positions);
count = _intFreePositionsCount;
}
else
{
Debug.Assert(type == RegisterType.Vector);
_vecFreePositions.CopyTo(positions);
count = _vecFreePositionsCount;
}
}
public void MoveActiveToInactive(int bit)
{
Move(Active, Inactive, bit);
}
public void MoveInactiveToActive(int bit)
{
Move(Inactive, Active, bit);
}
private static void Move(BitMap source, BitMap dest, int bit)
{
source.Clear(bit);
dest.Set(bit);
}
}
public AllocationResult RunPass(
ControlFlowGraph cfg,
StackAllocator stackAlloc,
RegisterMasks regMasks)
{
NumberLocals(cfg);
var context = new AllocationContext(stackAlloc, regMasks, _intervals.Count);
BuildIntervals(cfg, context);
for (int index = 0; index < _intervals.Count; index++)
{
LiveInterval current = _intervals[index];
if (current.IsEmpty)
{
continue;
}
if (current.IsFixed)
{
context.Active.Set(index);
if (current.Register.Type == RegisterType.Integer)
{
context.IntUsedRegisters |= 1 << current.Register.Index;
}
else /* if (interval.Register.Type == RegisterType.Vector) */
{
context.VecUsedRegisters |= 1 << current.Register.Index;
}
continue;
}
AllocateInterval(context, current, index);
}
for (int index = RegistersCount * 2; index < _intervals.Count; index++)
{
if (!_intervals[index].IsSpilled)
{
ReplaceLocalWithRegister(_intervals[index]);
}
}
InsertSplitCopies();
InsertSplitCopiesAtEdges(cfg);
return new AllocationResult(context.IntUsedRegisters, context.VecUsedRegisters, context.StackAlloc.TotalSize);
}
private void AllocateInterval(AllocationContext context, LiveInterval current, int cIndex)
{
// Check active intervals that already ended.
foreach (int iIndex in context.Active)
{
LiveInterval interval = _intervals[iIndex];
interval.Forward(current.GetStart());
if (interval.GetEnd() < current.GetStart())
{
context.Active.Clear(iIndex);
}
else if (!interval.Overlaps(current.GetStart()))
{
context.MoveActiveToInactive(iIndex);
}
}
// Check inactive intervals that already ended or were reactivated.
foreach (int iIndex in context.Inactive)
{
LiveInterval interval = _intervals[iIndex];
interval.Forward(current.GetStart());
if (interval.GetEnd() < current.GetStart())
{
context.Inactive.Clear(iIndex);
}
else if (interval.Overlaps(current.GetStart()))
{
context.MoveInactiveToActive(iIndex);
}
}
if (!TryAllocateRegWithoutSpill(context, current, cIndex))
{
AllocateRegWithSpill(context, current, cIndex);
}
}
private bool TryAllocateRegWithoutSpill(AllocationContext context, LiveInterval current, int cIndex)
{
RegisterType regType = current.Local.Type.ToRegisterType();
Span<int> freePositions = stackalloc int[RegistersCount];
context.GetFreePositions(regType, freePositions, out int freePositionsCount);
foreach (int iIndex in context.Active)
{
LiveInterval interval = _intervals[iIndex];
Register reg = interval.Register;
if (reg.Type == regType)
{
freePositions[reg.Index] = 0;
freePositionsCount--;
}
}
// If all registers are already active, return early. No point in inspecting the inactive set to look for
// holes.
if (freePositionsCount == 0)
{
return false;
}
foreach (int iIndex in context.Inactive)
{
LiveInterval interval = _intervals[iIndex];
Register reg = interval.Register;
ref int freePosition = ref freePositions[reg.Index];
if (reg.Type == regType && freePosition != 0)
{
int overlapPosition = interval.GetOverlapPosition(current);
if (overlapPosition != LiveInterval.NotFound && freePosition > overlapPosition)
{
freePosition = overlapPosition;
}
}
}
int selectedReg = GetHighestValueIndex(freePositions);
int selectedNextUse = freePositions[selectedReg];
// Intervals starts and ends at odd positions, unless they span an entire
// block, in this case they will have ranges at a even position.
// When a interval is loaded from the stack to a register, we can only
// do the split at a odd position, because otherwise the split interval
// that is inserted on the list to be processed may clobber a register
// used by the instruction at the same position as the split.
// The problem only happens when a interval ends exactly at this instruction,
// because otherwise they would interfere, and the register wouldn't be selected.
// When the interval is aligned and the above happens, there's no problem as
// the instruction that is actually with the last use is the one
// before that position.
selectedNextUse &= ~InstructionGapMask;
if (selectedNextUse <= current.GetStart())
{
return false;
}
else if (selectedNextUse < current.GetEnd())
{
LiveInterval splitChild = current.Split(selectedNextUse);
if (splitChild.UsesCount != 0)
{
Debug.Assert(splitChild.GetStart() > current.GetStart(), "Split interval has an invalid start position.");
InsertInterval(splitChild);
}
else
{
Spill(context, splitChild);
}
}
current.Register = new Register(selectedReg, regType);
if (regType == RegisterType.Integer)
{
context.IntUsedRegisters |= 1 << selectedReg;
}
else /* if (regType == RegisterType.Vector) */
{
context.VecUsedRegisters |= 1 << selectedReg;
}
context.Active.Set(cIndex);
return true;
}
private void AllocateRegWithSpill(AllocationContext context, LiveInterval current, int cIndex)
{
RegisterType regType = current.Local.Type.ToRegisterType();
Span<int> usePositions = stackalloc int[RegistersCount];
Span<int> blockedPositions = stackalloc int[RegistersCount];
context.GetFreePositions(regType, usePositions, out _);
context.GetFreePositions(regType, blockedPositions, out _);
foreach (int iIndex in context.Active)
{
LiveInterval interval = _intervals[iIndex];
Register reg = interval.Register;
if (reg.Type == regType)
{
ref int usePosition = ref usePositions[reg.Index];
ref int blockedPosition = ref blockedPositions[reg.Index];
if (interval.IsFixed)
{
usePosition = 0;
blockedPosition = 0;
}
else
{
int nextUse = interval.NextUseAfter(current.GetStart());
if (nextUse != LiveInterval.NotFound && usePosition > nextUse)
{
usePosition = nextUse;
}
}
}
}
foreach (int iIndex in context.Inactive)
{
LiveInterval interval = _intervals[iIndex];
Register reg = interval.Register;
if (reg.Type == regType)
{
ref int usePosition = ref usePositions[reg.Index];
ref int blockedPosition = ref blockedPositions[reg.Index];
if (interval.IsFixed)
{
int overlapPosition = interval.GetOverlapPosition(current);
if (overlapPosition != LiveInterval.NotFound)
{
blockedPosition = Math.Min(blockedPosition, overlapPosition);
usePosition = Math.Min(usePosition, overlapPosition);
}
}
else if (interval.Overlaps(current))
{
int nextUse = interval.NextUseAfter(current.GetStart());
if (nextUse != LiveInterval.NotFound && usePosition > nextUse)
{
usePosition = nextUse;
}
}
}
}
int selectedReg = GetHighestValueIndex(usePositions);
int currentFirstUse = current.FirstUse();
Debug.Assert(currentFirstUse >= 0, "Current interval has no uses.");
if (usePositions[selectedReg] < currentFirstUse)
{
// All intervals on inactive and active are being used before current,
// so spill the current interval.
Debug.Assert(currentFirstUse > current.GetStart(), "Trying to spill a interval currently being used.");
LiveInterval splitChild = current.Split(currentFirstUse);
Debug.Assert(splitChild.GetStart() > current.GetStart(), "Split interval has an invalid start position.");
InsertInterval(splitChild);
Spill(context, current);
}
else if (blockedPositions[selectedReg] > current.GetEnd())
{
// Spill made the register available for the entire current lifetime,
// so we only need to split the intervals using the selected register.
current.Register = new Register(selectedReg, regType);
SplitAndSpillOverlappingIntervals(context, current);
context.Active.Set(cIndex);
}
else
{
// There are conflicts even after spill due to the use of fixed registers
// that can't be spilled, so we need to also split current at the point of
// the first fixed register use.
current.Register = new Register(selectedReg, regType);
int splitPosition = blockedPositions[selectedReg] & ~InstructionGapMask;
Debug.Assert(splitPosition > current.GetStart(), "Trying to split a interval at a invalid position.");
LiveInterval splitChild = current.Split(splitPosition);
if (splitChild.UsesCount != 0)
{
Debug.Assert(splitChild.GetStart() > current.GetStart(), "Split interval has an invalid start position.");
InsertInterval(splitChild);
}
else
{
Spill(context, splitChild);
}
SplitAndSpillOverlappingIntervals(context, current);
context.Active.Set(cIndex);
}
}
private static int GetHighestValueIndex(Span<int> span)
{
int highest = span[0];
if (highest == int.MaxValue)
{
return 0;
}
int selected = 0;
for (int index = 1; index < span.Length; index++)
{
int current = span[index];
if (highest < current)
{
highest = current;
selected = index;
if (current == int.MaxValue)
{
break;
}
}
}
return selected;
}
private void SplitAndSpillOverlappingIntervals(AllocationContext context, LiveInterval current)
{
foreach (int iIndex in context.Active)
{
LiveInterval interval = _intervals[iIndex];
if (!interval.IsFixed && interval.Register == current.Register)
{
SplitAndSpillOverlappingInterval(context, current, interval);
context.Active.Clear(iIndex);
}
}
foreach (int iIndex in context.Inactive)
{
LiveInterval interval = _intervals[iIndex];
if (!interval.IsFixed && interval.Register == current.Register && interval.Overlaps(current))
{
SplitAndSpillOverlappingInterval(context, current, interval);
context.Inactive.Clear(iIndex);
}
}
}
private void SplitAndSpillOverlappingInterval(
AllocationContext context,
LiveInterval current,
LiveInterval interval)
{
// If there's a next use after the start of the current interval,
// we need to split the spilled interval twice, and re-insert it
// on the "pending" list to ensure that it will get a new register
// on that use position.
int nextUse = interval.NextUseAfter(current.GetStart());
LiveInterval splitChild;
if (interval.GetStart() < current.GetStart())
{
splitChild = interval.Split(current.GetStart());
}
else
{
splitChild = interval;
}
if (nextUse != -1)
{
Debug.Assert(nextUse > current.GetStart(), "Trying to spill a interval currently being used.");
if (nextUse > splitChild.GetStart())
{
LiveInterval right = splitChild.Split(nextUse);
Spill(context, splitChild);
splitChild = right;
}
InsertInterval(splitChild);
}
else
{
Spill(context, splitChild);
}
}
private void InsertInterval(LiveInterval interval)
{
Debug.Assert(interval.UsesCount != 0, "Trying to insert a interval without uses.");
Debug.Assert(!interval.IsEmpty, "Trying to insert a empty interval.");
Debug.Assert(!interval.IsSpilled, "Trying to insert a spilled interval.");
int startIndex = RegistersCount * 2;
int insertIndex = _intervals.BinarySearch(startIndex, _intervals.Count - startIndex, interval, null);
if (insertIndex < 0)
{
insertIndex = ~insertIndex;
}
_intervals.Insert(insertIndex, interval);
}
private void Spill(AllocationContext context, LiveInterval interval)
{
Debug.Assert(!interval.IsFixed, "Trying to spill a fixed interval.");
Debug.Assert(interval.UsesCount == 0, "Trying to spill a interval with uses.");
// We first check if any of the siblings were spilled, if so we can reuse
// the stack offset. Otherwise, we allocate a new space on the stack.
// This prevents stack-to-stack copies being necessary for a split interval.
if (!interval.TrySpillWithSiblingOffset())
{
interval.Spill(context.StackAlloc.Allocate(interval.Local.Type));
}
}
private void InsertSplitCopies()
{
Dictionary<int, CopyResolver> copyResolvers = new Dictionary<int, CopyResolver>();
CopyResolver GetCopyResolver(int position)
{
if (!copyResolvers.TryGetValue(position, out CopyResolver copyResolver))
{
copyResolver = new CopyResolver();
copyResolvers.Add(position, copyResolver);
}
return copyResolver;
}
foreach (LiveInterval interval in _intervals.Where(x => x.IsSplit))
{
LiveInterval previous = interval;
foreach (LiveInterval splitChild in interval.SplitChildren())
{
int splitPosition = splitChild.GetStart();
if (!_blockEdges.Contains(splitPosition) && previous.GetEnd() == splitPosition)
{
GetCopyResolver(splitPosition).AddSplit(previous, splitChild);
}
previous = splitChild;
}
}
foreach (KeyValuePair<int, CopyResolver> kv in copyResolvers)
{
CopyResolver copyResolver = kv.Value;
if (!copyResolver.HasCopy)
{
continue;
}
int splitPosition = kv.Key;
(IntrusiveList<Operation> nodes, Operation node) = GetOperationNode(splitPosition);
Operation[] sequence = copyResolver.Sequence();
nodes.AddBefore(node, sequence[0]);
node = sequence[0];
for (int index = 1; index < sequence.Length; index++)
{
nodes.AddAfter(node, sequence[index]);
node = sequence[index];
}
}
}
private void InsertSplitCopiesAtEdges(ControlFlowGraph cfg)
{
int blocksCount = cfg.Blocks.Count;
bool IsSplitEdgeBlock(BasicBlock block)
{
return block.Index >= blocksCount;
}
// Reset iterators to beginning because GetSplitChild depends on the state of the iterator.
foreach (LiveInterval interval in _intervals)
{
interval.Reset();
}
for (BasicBlock block = cfg.Blocks.First; block != null; block = block.ListNext)
{
if (IsSplitEdgeBlock(block))
{
continue;
}
bool hasSingleOrNoSuccessor = block.SuccessorsCount <= 1;
for (int i = 0; i < block.SuccessorsCount; i++)
{
BasicBlock successor = block.GetSuccessor(i);
int succIndex = successor.Index;
// If the current node is a split node, then the actual successor node
// (the successor before the split) should be right after it.
if (IsSplitEdgeBlock(successor))
{
succIndex = successor.GetSuccessor(0).Index;
}
CopyResolver copyResolver = null;
foreach (int iIndex in _blockLiveIn[succIndex])
{
LiveInterval interval = _parentIntervals[iIndex];
if (!interval.IsSplit)
{
continue;
}
int lEnd = _blockRanges[block.Index].End - 1;
int rStart = _blockRanges[succIndex].Start;
LiveInterval left = interval.GetSplitChild(lEnd);
LiveInterval right = interval.GetSplitChild(rStart);
if (left != default && right != default && left != right)
{
if (copyResolver == null)
{
copyResolver = new CopyResolver();
}
copyResolver.AddSplit(left, right);
}
}
if (copyResolver == null || !copyResolver.HasCopy)
{
continue;
}
Operation[] sequence = copyResolver.Sequence();
if (hasSingleOrNoSuccessor)
{
foreach (Operation operation in sequence)
{
block.Append(operation);
}
}
else if (successor.Predecessors.Count == 1)
{
successor.Operations.AddFirst(sequence[0]);
Operation prependNode = sequence[0];
for (int index = 1; index < sequence.Length; index++)
{
Operation operation = sequence[index];
successor.Operations.AddAfter(prependNode, operation);
prependNode = operation;
}
}
else
{
// Split the critical edge.
BasicBlock splitBlock = cfg.SplitEdge(block, successor);
foreach (Operation operation in sequence)
{
splitBlock.Append(operation);
}
}
}
}
}
private void ReplaceLocalWithRegister(LiveInterval current)
{
Operand register = GetRegister(current);
foreach (int usePosition in current.UsePositions())
{
(_, Operation operation) = GetOperationNode(usePosition);
for (int index = 0; index < operation.SourcesCount; index++)
{
Operand source = operation.GetSource(index);
if (source == current.Local)
{
operation.SetSource(index, register);
}
else if (source.Kind == OperandKind.Memory)
{
MemoryOperand memOp = source.GetMemory();
if (memOp.BaseAddress == current.Local)
{
memOp.BaseAddress = register;
}
if (memOp.Index == current.Local)
{
memOp.Index = register;
}
}
}
for (int index = 0; index < operation.DestinationsCount; index++)
{
Operand dest = operation.GetDestination(index);
if (dest == current.Local)
{
operation.SetDestination(index, register);
}
}
}
}
private static Operand GetRegister(LiveInterval interval)
{
Debug.Assert(!interval.IsSpilled, "Spilled intervals are not allowed.");
return Operand.Factory.Register(
interval.Register.Index,
interval.Register.Type,
interval.Local.Type);
}
private (IntrusiveList<Operation>, Operation) GetOperationNode(int position)
{
return _operationNodes[position / InstructionGap];
}
private void NumberLocals(ControlFlowGraph cfg)
{
_operationNodes = new List<(IntrusiveList<Operation>, Operation)>();
_intervals = new List<LiveInterval>();
for (int index = 0; index < RegistersCount; index++)
{
_intervals.Add(new LiveInterval(new Register(index, RegisterType.Integer)));
_intervals.Add(new LiveInterval(new Register(index, RegisterType.Vector)));
}
// The "visited" state is stored in the MSB of the local's value.
const ulong VisitedMask = 1ul << 63;
bool IsVisited(Operand local)
{
return (local.GetValueUnsafe() & VisitedMask) != 0;
}
void SetVisited(Operand local)
{
local.GetValueUnsafe() |= VisitedMask;
}
_operationsCount = 0;
for (int index = cfg.PostOrderBlocks.Length - 1; index >= 0; index--)
{
BasicBlock block = cfg.PostOrderBlocks[index];
for (Operation node = block.Operations.First; node != default; node = node.ListNext)
{
_operationNodes.Add((block.Operations, node));
for (int i = 0; i < node.DestinationsCount; i++)
{
Operand dest = node.GetDestination(i);
if (dest.Kind == OperandKind.LocalVariable && !IsVisited(dest))
{
dest.NumberLocal(_intervals.Count);
_intervals.Add(new LiveInterval(dest));
SetVisited(dest);
}
}
}
_operationsCount += block.Operations.Count * InstructionGap;
if (block.Operations.Count == 0)
{
// Pretend we have a dummy instruction on the empty block.
_operationNodes.Add((default, default));
_operationsCount += InstructionGap;
}
}
_parentIntervals = _intervals.ToArray();
}
private void BuildIntervals(ControlFlowGraph cfg, AllocationContext context)
{
_blockRanges = new LiveRange[cfg.Blocks.Count];
int mapSize = _intervals.Count;
BitMap[] blkLiveGen = new BitMap[cfg.Blocks.Count];
BitMap[] blkLiveKill = new BitMap[cfg.Blocks.Count];
// Compute local live sets.
for (BasicBlock block = cfg.Blocks.First; block != null; block = block.ListNext)
{
BitMap liveGen = new BitMap(Allocators.Default, mapSize);
BitMap liveKill = new BitMap(Allocators.Default, mapSize);
for (Operation node = block.Operations.First; node != default; node = node.ListNext)
{
for (int i = 0; i < node.SourcesCount; i++)
{
VisitSource(node.GetSource(i));
}
for (int i = 0; i < node.DestinationsCount; i++)
{
VisitDestination(node.GetDestination(i));
}
void VisitSource(Operand source)
{
if (IsLocalOrRegister(source.Kind))
{
int id = GetOperandId(source);
if (!liveKill.IsSet(id))
{
liveGen.Set(id);
}
}
else if (source.Kind == OperandKind.Memory)
{
MemoryOperand memOp = source.GetMemory();
if (memOp.BaseAddress != default)
{
VisitSource(memOp.BaseAddress);
}
if (memOp.Index != default)
{
VisitSource(memOp.Index);
}
}
}
void VisitDestination(Operand dest)
{
liveKill.Set(GetOperandId(dest));
}
}
blkLiveGen [block.Index] = liveGen;
blkLiveKill[block.Index] = liveKill;
}
// Compute global live sets.
BitMap[] blkLiveIn = new BitMap[cfg.Blocks.Count];
BitMap[] blkLiveOut = new BitMap[cfg.Blocks.Count];
for (int index = 0; index < cfg.Blocks.Count; index++)
{
blkLiveIn [index] = new BitMap(Allocators.Default, mapSize);
blkLiveOut[index] = new BitMap(Allocators.Default, mapSize);
}
bool modified;
do
{
modified = false;
for (int index = 0; index < cfg.PostOrderBlocks.Length; index++)
{
BasicBlock block = cfg.PostOrderBlocks[index];
BitMap liveOut = blkLiveOut[block.Index];
for (int i = 0; i < block.SuccessorsCount; i++)
{
BasicBlock succ = block.GetSuccessor(i);
modified |= liveOut.Set(blkLiveIn[succ.Index]);
}
BitMap liveIn = blkLiveIn[block.Index];
liveIn.Set (liveOut);
liveIn.Clear(blkLiveKill[block.Index]);
liveIn.Set (blkLiveGen [block.Index]);
}
}
while (modified);
_blockLiveIn = blkLiveIn;
_blockEdges = new HashSet<int>();
// Compute lifetime intervals.
int operationPos = _operationsCount;
for (int index = 0; index < cfg.PostOrderBlocks.Length; index++)
{
BasicBlock block = cfg.PostOrderBlocks[index];
// We handle empty blocks by pretending they have a dummy instruction,
// because otherwise the block would have the same start and end position,
// and this is not valid.
int instCount = Math.Max(block.Operations.Count, 1);
int blockStart = operationPos - instCount * InstructionGap;
int blockEnd = operationPos;
_blockRanges[block.Index] = new LiveRange(blockStart, blockEnd);
_blockEdges.Add(blockStart);
BitMap liveOut = blkLiveOut[block.Index];
foreach (int id in liveOut)
{
_intervals[id].AddRange(blockStart, blockEnd);
}
if (block.Operations.Count == 0)
{
operationPos -= InstructionGap;
continue;
}
for (Operation node = block.Operations.Last; node != default; node = node.ListPrevious)
{
operationPos -= InstructionGap;
for (int i = 0; i < node.DestinationsCount; i++)
{
VisitDestination(node.GetDestination(i));
}
for (int i = 0; i < node.SourcesCount; i++)
{
VisitSource(node.GetSource(i));
}
if (node.Instruction == Instruction.Call)
{
AddIntervalCallerSavedReg(context.Masks.IntCallerSavedRegisters, operationPos, RegisterType.Integer);
AddIntervalCallerSavedReg(context.Masks.VecCallerSavedRegisters, operationPos, RegisterType.Vector);
}
void VisitSource(Operand source)
{
if (IsLocalOrRegister(source.Kind))
{
LiveInterval interval = _intervals[GetOperandId(source)];
interval.AddRange(blockStart, operationPos + 1);
interval.AddUsePosition(operationPos);
}
else if (source.Kind == OperandKind.Memory)
{
MemoryOperand memOp = source.GetMemory();
if (memOp.BaseAddress != default)
{
VisitSource(memOp.BaseAddress);
}
if (memOp.Index != default)
{
VisitSource(memOp.Index);
}
}
}
void VisitDestination(Operand dest)
{
LiveInterval interval = _intervals[GetOperandId(dest)];
interval.SetStart(operationPos + 1);
interval.AddUsePosition(operationPos + 1);
}
}
}
foreach (LiveInterval interval in _parentIntervals)
{
interval.Reset();
}
}
private void AddIntervalCallerSavedReg(int mask, int operationPos, RegisterType regType)
{
while (mask != 0)
{
int regIndex = BitOperations.TrailingZeroCount(mask);
Register callerSavedReg = new Register(regIndex, regType);
LiveInterval interval = _intervals[GetRegisterId(callerSavedReg)];
interval.AddRange(operationPos + 1, operationPos + InstructionGap);
mask &= ~(1 << regIndex);
}
}
private static int GetOperandId(Operand operand)
{
if (operand.Kind == OperandKind.LocalVariable)
{
return operand.GetLocalNumber();
}
else if (operand.Kind == OperandKind.Register)
{
return GetRegisterId(operand.GetRegister());
}
else
{
throw new ArgumentException($"Invalid operand kind \"{operand.Kind}\".");
}
}
private static int GetRegisterId(Register register)
{
return (register.Index << 1) | (register.Type == RegisterType.Vector ? 1 : 0);
}
private static bool IsLocalOrRegister(OperandKind kind)
{
return kind == OperandKind.LocalVariable ||
kind == OperandKind.Register;
}
}
}