1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-11-14 19:26:41 +00:00
Ryujinx/ARMeilleure/CodeGen/RegisterAllocators/LinearScanAllocator.cs
riperiperi 8226997bc7
CodeGen Optimisations (LSRA and Translator) (#978)
* Start of JIT garbage collection improvements

- thread static pool for Operand, MemoryOperand, Operation
- Operands and Operations are always to be constructed via their static
helper classes, so they can be pooled.
- removing LinkedList from Node for sources/destinations (replaced with
List<>s for now, but probably could do arrays since size is bounded)
- removing params constructors from Node
- LinkedList<> to List<> with Clear() for Operand assignments/uses
- ThreadStaticPool is very simple and basically just exists for the
purpose of our specific translation allocation problem. Right now it
will stay at the worst case allocation count for that thread (so far) -
the pool can never shrink.

- Still some cases of Operand[] that haven't been removed yet. Will need
to evaluate them (eg. is there a reasonable max number of params for
Calls?)

* ConcurrentStack instead of ConcurrentQueue for Rejit

* Optimize some parts of LSRA

- BitMap now operates on 64-bit int rather than 32-bit
- BitMap is now pooled in a ThreadStatic pool (within lrsa)
- BitMap now is now its own iterator. Marginally speeds up iterating
through the bits.
- A few cases where enumerators were generated have been converted to
forms that generate less garbage.
- New data structure for sorting _usePositions in LiveIntervals. Much
faster split, NextUseAfter, initial insertion. Random insertion is
slightly slower.
- That last one is WIP since you need to insert the values backwards. It
would be ideal if it just flipped it for you, uncomplicating things on
the caller side.

* Use a static pool of thread static pools. (yes.)

Prevents each execution thread creating its own lowCq pool and making me cry.

* Move constant value to top, change naming convention.

* Fix iteration of memory operands.

* Increase max thread count.

* Address Feedback
2020-03-18 22:44:32 +11:00

1055 lines
No EOL
35 KiB
C#

using ARMeilleure.Common;
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.Translation;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Numerics;
namespace ARMeilleure.CodeGen.RegisterAllocators
{
// Based on:
// "Linear Scan Register Allocation for the Java(tm) HotSpot Client Compiler".
// http://www.christianwimmer.at/Publications/Wimmer04a/Wimmer04a.pdf
class LinearScanAllocator : IRegisterAllocator
{
private const int InstructionGap = 2;
private const int InstructionGapMask = InstructionGap - 1;
private const int RegistersCount = 16;
private HashSet<int> _blockEdges;
private LiveRange[] _blockRanges;
private BitMap[] _blockLiveIn;
private List<LiveInterval> _intervals;
private LiveInterval[] _parentIntervals;
private List<(IntrusiveList<Node>, Node)> _operationNodes;
private int _operationsCount;
private class AllocationContext : IDisposable
{
public RegisterMasks Masks { get; }
public StackAllocator StackAlloc { get; }
public BitMap Active { get; }
public BitMap Inactive { get; }
public int IntUsedRegisters { get; set; }
public int VecUsedRegisters { get; set; }
public AllocationContext(StackAllocator stackAlloc, RegisterMasks masks, int intervalsCount)
{
StackAlloc = stackAlloc;
Masks = masks;
Active = BitMapPool.Allocate(intervalsCount);
Inactive = BitMapPool.Allocate(intervalsCount);
}
public void MoveActiveToInactive(int bit)
{
Move(Active, Inactive, bit);
}
public void MoveInactiveToActive(int bit)
{
Move(Inactive, Active, bit);
}
private static void Move(BitMap source, BitMap dest, int bit)
{
source.Clear(bit);
dest.Set(bit);
}
public void Dispose()
{
BitMapPool.Release();
}
}
public AllocationResult RunPass(
ControlFlowGraph cfg,
StackAllocator stackAlloc,
RegisterMasks regMasks)
{
NumberLocals(cfg);
AllocationContext context = new AllocationContext(stackAlloc, regMasks, _intervals.Count);
BuildIntervals(cfg, context);
for (int index = 0; index < _intervals.Count; index++)
{
LiveInterval current = _intervals[index];
if (current.IsEmpty)
{
continue;
}
if (current.IsFixed)
{
context.Active.Set(index);
if (current.Register.Type == RegisterType.Integer)
{
context.IntUsedRegisters |= 1 << current.Register.Index;
}
else /* if (interval.Register.Type == RegisterType.Vector) */
{
context.VecUsedRegisters |= 1 << current.Register.Index;
}
continue;
}
AllocateInterval(context, current, index);
}
for (int index = RegistersCount * 2; index < _intervals.Count; index++)
{
if (!_intervals[index].IsSpilled)
{
ReplaceLocalWithRegister(_intervals[index]);
}
}
InsertSplitCopies();
InsertSplitCopiesAtEdges(cfg);
AllocationResult result = new AllocationResult(
context.IntUsedRegisters,
context.VecUsedRegisters,
context.StackAlloc.TotalSize);
context.Dispose();
return result;
}
private void AllocateInterval(AllocationContext context, LiveInterval current, int cIndex)
{
// Check active intervals that already ended.
foreach (int iIndex in context.Active)
{
LiveInterval interval = _intervals[iIndex];
if (interval.GetEnd() < current.GetStart())
{
context.Active.Clear(iIndex);
}
else if (!interval.Overlaps(current.GetStart()))
{
context.MoveActiveToInactive(iIndex);
}
}
// Check inactive intervals that already ended or were reactivated.
foreach (int iIndex in context.Inactive)
{
LiveInterval interval = _intervals[iIndex];
if (interval.GetEnd() < current.GetStart())
{
context.Inactive.Clear(iIndex);
}
else if (interval.Overlaps(current.GetStart()))
{
context.MoveInactiveToActive(iIndex);
}
}
if (!TryAllocateRegWithoutSpill(context, current, cIndex))
{
AllocateRegWithSpill(context, current, cIndex);
}
}
private bool TryAllocateRegWithoutSpill(AllocationContext context, LiveInterval current, int cIndex)
{
RegisterType regType = current.Local.Type.ToRegisterType();
int availableRegisters = context.Masks.GetAvailableRegisters(regType);
int[] freePositions = new int[RegistersCount];
for (int index = 0; index < RegistersCount; index++)
{
if ((availableRegisters & (1 << index)) != 0)
{
freePositions[index] = int.MaxValue;
}
}
foreach (int iIndex in context.Active)
{
LiveInterval interval = _intervals[iIndex];
if (interval.Register.Type == regType)
{
freePositions[interval.Register.Index] = 0;
}
}
foreach (int iIndex in context.Inactive)
{
LiveInterval interval = _intervals[iIndex];
if (interval.Register.Type == regType)
{
int overlapPosition = interval.GetOverlapPosition(current);
if (overlapPosition != LiveInterval.NotFound && freePositions[interval.Register.Index] > overlapPosition)
{
freePositions[interval.Register.Index] = overlapPosition;
}
}
}
int selectedReg = GetHighestValueIndex(freePositions);
int selectedNextUse = freePositions[selectedReg];
// Intervals starts and ends at odd positions, unless they span an entire
// block, in this case they will have ranges at a even position.
// When a interval is loaded from the stack to a register, we can only
// do the split at a odd position, because otherwise the split interval
// that is inserted on the list to be processed may clobber a register
// used by the instruction at the same position as the split.
// The problem only happens when a interval ends exactly at this instruction,
// because otherwise they would interfere, and the register wouldn't be selected.
// When the interval is aligned and the above happens, there's no problem as
// the instruction that is actually with the last use is the one
// before that position.
selectedNextUse &= ~InstructionGapMask;
if (selectedNextUse <= current.GetStart())
{
return false;
}
else if (selectedNextUse < current.GetEnd())
{
Debug.Assert(selectedNextUse > current.GetStart(), "Trying to split interval at the start.");
LiveInterval splitChild = current.Split(selectedNextUse);
if (splitChild.UsesCount != 0)
{
Debug.Assert(splitChild.GetStart() > current.GetStart(), "Split interval has an invalid start position.");
InsertInterval(splitChild);
}
else
{
Spill(context, splitChild);
}
}
current.Register = new Register(selectedReg, regType);
if (regType == RegisterType.Integer)
{
context.IntUsedRegisters |= 1 << selectedReg;
}
else /* if (regType == RegisterType.Vector) */
{
context.VecUsedRegisters |= 1 << selectedReg;
}
context.Active.Set(cIndex);
return true;
}
private void AllocateRegWithSpill(AllocationContext context, LiveInterval current, int cIndex)
{
RegisterType regType = current.Local.Type.ToRegisterType();
int availableRegisters = context.Masks.GetAvailableRegisters(regType);
int[] usePositions = new int[RegistersCount];
int[] blockedPositions = new int[RegistersCount];
for (int index = 0; index < RegistersCount; index++)
{
if ((availableRegisters & (1 << index)) != 0)
{
usePositions[index] = int.MaxValue;
blockedPositions[index] = int.MaxValue;
}
}
void SetUsePosition(int index, int position)
{
usePositions[index] = Math.Min(usePositions[index], position);
}
void SetBlockedPosition(int index, int position)
{
blockedPositions[index] = Math.Min(blockedPositions[index], position);
SetUsePosition(index, position);
}
foreach (int iIndex in context.Active)
{
LiveInterval interval = _intervals[iIndex];
if (!interval.IsFixed && interval.Register.Type == regType)
{
int nextUse = interval.NextUseAfter(current.GetStart());
if (nextUse != -1)
{
SetUsePosition(interval.Register.Index, nextUse);
}
}
}
foreach (int iIndex in context.Inactive)
{
LiveInterval interval = _intervals[iIndex];
if (!interval.IsFixed && interval.Register.Type == regType && interval.Overlaps(current))
{
int nextUse = interval.NextUseAfter(current.GetStart());
if (nextUse != -1)
{
SetUsePosition(interval.Register.Index, nextUse);
}
}
}
foreach (int iIndex in context.Active)
{
LiveInterval interval = _intervals[iIndex];
if (interval.IsFixed && interval.Register.Type == regType)
{
SetBlockedPosition(interval.Register.Index, 0);
}
}
foreach (int iIndex in context.Inactive)
{
LiveInterval interval = _intervals[iIndex];
if (interval.IsFixed && interval.Register.Type == regType)
{
int overlapPosition = interval.GetOverlapPosition(current);
if (overlapPosition != LiveInterval.NotFound)
{
SetBlockedPosition(interval.Register.Index, overlapPosition);
}
}
}
int selectedReg = GetHighestValueIndex(usePositions);
int currentFirstUse = current.FirstUse();
Debug.Assert(currentFirstUse >= 0, "Current interval has no uses.");
if (usePositions[selectedReg] < currentFirstUse)
{
// All intervals on inactive and active are being used before current,
// so spill the current interval.
Debug.Assert(currentFirstUse > current.GetStart(), "Trying to spill a interval currently being used.");
LiveInterval splitChild = current.Split(currentFirstUse);
Debug.Assert(splitChild.GetStart() > current.GetStart(), "Split interval has an invalid start position.");
InsertInterval(splitChild);
Spill(context, current);
}
else if (blockedPositions[selectedReg] > current.GetEnd())
{
// Spill made the register available for the entire current lifetime,
// so we only need to split the intervals using the selected register.
current.Register = new Register(selectedReg, regType);
SplitAndSpillOverlappingIntervals(context, current);
context.Active.Set(cIndex);
}
else
{
// There are conflicts even after spill due to the use of fixed registers
// that can't be spilled, so we need to also split current at the point of
// the first fixed register use.
current.Register = new Register(selectedReg, regType);
int splitPosition = blockedPositions[selectedReg] & ~InstructionGapMask;
Debug.Assert(splitPosition > current.GetStart(), "Trying to split a interval at a invalid position.");
LiveInterval splitChild = current.Split(splitPosition);
if (splitChild.UsesCount != 0)
{
Debug.Assert(splitChild.GetStart() > current.GetStart(), "Split interval has an invalid start position.");
InsertInterval(splitChild);
}
else
{
Spill(context, splitChild);
}
SplitAndSpillOverlappingIntervals(context, current);
context.Active.Set(cIndex);
}
}
private static int GetHighestValueIndex(int[] array)
{
int higuest = array[0];
if (higuest == int.MaxValue)
{
return 0;
}
int selected = 0;
for (int index = 1; index < array.Length; index++)
{
int current = array[index];
if (higuest < current)
{
higuest = current;
selected = index;
if (current == int.MaxValue)
{
break;
}
}
}
return selected;
}
private void SplitAndSpillOverlappingIntervals(AllocationContext context, LiveInterval current)
{
foreach (int iIndex in context.Active)
{
LiveInterval interval = _intervals[iIndex];
if (!interval.IsFixed && interval.Register == current.Register)
{
SplitAndSpillOverlappingInterval(context, current, interval);
context.Active.Clear(iIndex);
}
}
foreach (int iIndex in context.Inactive)
{
LiveInterval interval = _intervals[iIndex];
if (!interval.IsFixed && interval.Register == current.Register && interval.Overlaps(current))
{
SplitAndSpillOverlappingInterval(context, current, interval);
context.Inactive.Clear(iIndex);
}
}
}
private void SplitAndSpillOverlappingInterval(
AllocationContext context,
LiveInterval current,
LiveInterval interval)
{
// If there's a next use after the start of the current interval,
// we need to split the spilled interval twice, and re-insert it
// on the "pending" list to ensure that it will get a new register
// on that use position.
int nextUse = interval.NextUseAfter(current.GetStart());
LiveInterval splitChild;
if (interval.GetStart() < current.GetStart())
{
splitChild = interval.Split(current.GetStart());
}
else
{
splitChild = interval;
}
if (nextUse != -1)
{
Debug.Assert(nextUse > current.GetStart(), "Trying to spill a interval currently being used.");
if (nextUse > splitChild.GetStart())
{
LiveInterval right = splitChild.Split(nextUse);
Spill(context, splitChild);
splitChild = right;
}
InsertInterval(splitChild);
}
else
{
Spill(context, splitChild);
}
}
private void InsertInterval(LiveInterval interval)
{
Debug.Assert(interval.UsesCount != 0, "Trying to insert a interval without uses.");
Debug.Assert(!interval.IsEmpty, "Trying to insert a empty interval.");
Debug.Assert(!interval.IsSpilled, "Trying to insert a spilled interval.");
int startIndex = RegistersCount * 2;
int insertIndex = _intervals.BinarySearch(startIndex, _intervals.Count - startIndex, interval, null);
if (insertIndex < 0)
{
insertIndex = ~insertIndex;
}
_intervals.Insert(insertIndex, interval);
}
private void Spill(AllocationContext context, LiveInterval interval)
{
Debug.Assert(!interval.IsFixed, "Trying to spill a fixed interval.");
Debug.Assert(interval.UsesCount == 0, "Trying to spill a interval with uses.");
// We first check if any of the siblings were spilled, if so we can reuse
// the stack offset. Otherwise, we allocate a new space on the stack.
// This prevents stack-to-stack copies being necessary for a split interval.
if (!interval.TrySpillWithSiblingOffset())
{
interval.Spill(context.StackAlloc.Allocate(interval.Local.Type));
}
}
private void InsertSplitCopies()
{
Dictionary<int, CopyResolver> copyResolvers = new Dictionary<int, CopyResolver>();
CopyResolver GetCopyResolver(int position)
{
CopyResolver copyResolver = new CopyResolver();
if (copyResolvers.TryAdd(position, copyResolver))
{
return copyResolver;
}
return copyResolvers[position];
}
foreach (LiveInterval interval in _intervals.Where(x => x.IsSplit))
{
LiveInterval previous = interval;
foreach (LiveInterval splitChild in interval.SplitChilds())
{
int splitPosition = splitChild.GetStart();
if (!_blockEdges.Contains(splitPosition) && previous.GetEnd() == splitPosition)
{
GetCopyResolver(splitPosition).AddSplit(previous, splitChild);
}
previous = splitChild;
}
}
foreach (KeyValuePair<int, CopyResolver> kv in copyResolvers)
{
CopyResolver copyResolver = kv.Value;
if (!copyResolver.HasCopy)
{
continue;
}
int splitPosition = kv.Key;
(IntrusiveList<Node> nodes, Node node) = GetOperationNode(splitPosition);
Operation[] sequence = copyResolver.Sequence();
nodes.AddBefore(node, sequence[0]);
node = sequence[0];
for (int index = 1; index < sequence.Length; index++)
{
nodes.AddAfter(node, sequence[index]);
node = sequence[index];
}
}
}
private void InsertSplitCopiesAtEdges(ControlFlowGraph cfg)
{
int blocksCount = cfg.Blocks.Count;
bool IsSplitEdgeBlock(BasicBlock block)
{
return block.Index >= blocksCount;
}
for (BasicBlock block = cfg.Blocks.First; block != null; block = block.ListNext)
{
if (IsSplitEdgeBlock(block))
{
continue;
}
bool hasSingleOrNoSuccessor = block.Next == null || block.Branch == null;
for (int i = 0; i < 2; i++)
{
// This used to use an enumerable, but it ended up generating a lot of garbage, so now it is a loop.
BasicBlock successor = (i == 0) ? block.Next : block.Branch;
if (successor == null)
{
continue;
}
int succIndex = successor.Index;
// If the current node is a split node, then the actual successor node
// (the successor before the split) should be right after it.
if (IsSplitEdgeBlock(successor))
{
succIndex = FirstSuccessor(successor).Index;
}
CopyResolver copyResolver = new CopyResolver();
foreach (int iIndex in _blockLiveIn[succIndex])
{
LiveInterval interval = _parentIntervals[iIndex];
if (!interval.IsSplit)
{
continue;
}
int lEnd = _blockRanges[block.Index].End - 1;
int rStart = _blockRanges[succIndex].Start;
LiveInterval left = interval.GetSplitChild(lEnd);
LiveInterval right = interval.GetSplitChild(rStart);
if (left != null && right != null && left != right)
{
copyResolver.AddSplit(left, right);
}
}
if (!copyResolver.HasCopy)
{
continue;
}
Operation[] sequence = copyResolver.Sequence();
if (hasSingleOrNoSuccessor)
{
foreach (Operation operation in sequence)
{
block.Append(operation);
}
}
else if (successor.Predecessors.Count == 1)
{
successor.Operations.AddFirst(sequence[0]);
Node prependNode = sequence[0];
for (int index = 1; index < sequence.Length; index++)
{
Operation operation = sequence[index];
successor.Operations.AddAfter(prependNode, operation);
prependNode = operation;
}
}
else
{
// Split the critical edge.
BasicBlock splitBlock = cfg.SplitEdge(block, successor);
foreach (Operation operation in sequence)
{
splitBlock.Append(operation);
}
}
}
}
}
private void ReplaceLocalWithRegister(LiveInterval current)
{
Operand register = GetRegister(current);
IList<int> usePositions = current.UsePositions();
for (int i = usePositions.Count - 1; i >= 0; i--)
{
int usePosition = -usePositions[i];
(_, Node operation) = GetOperationNode(usePosition);
for (int index = 0; index < operation.SourcesCount; index++)
{
Operand source = operation.GetSource(index);
if (source == current.Local)
{
operation.SetSource(index, register);
}
else if (source.Kind == OperandKind.Memory)
{
MemoryOperand memOp = (MemoryOperand)source;
if (memOp.BaseAddress == current.Local)
{
memOp.BaseAddress = register;
}
if (memOp.Index == current.Local)
{
memOp.Index = register;
}
}
}
for (int index = 0; index < operation.DestinationsCount; index++)
{
Operand dest = operation.GetDestination(index);
if (dest == current.Local)
{
operation.SetDestination(index, register);
}
}
}
}
private static Operand GetRegister(LiveInterval interval)
{
Debug.Assert(!interval.IsSpilled, "Spilled intervals are not allowed.");
return OperandHelper.Register(
interval.Register.Index,
interval.Register.Type,
interval.Local.Type);
}
private (IntrusiveList<Node>, Node) GetOperationNode(int position)
{
return _operationNodes[position / InstructionGap];
}
private void NumberLocals(ControlFlowGraph cfg)
{
_operationNodes = new List<(IntrusiveList<Node>, Node)>();
_intervals = new List<LiveInterval>();
for (int index = 0; index < RegistersCount; index++)
{
_intervals.Add(new LiveInterval(new Register(index, RegisterType.Integer)));
_intervals.Add(new LiveInterval(new Register(index, RegisterType.Vector)));
}
HashSet<Operand> visited = new HashSet<Operand>();
_operationsCount = 0;
for (int index = cfg.PostOrderBlocks.Length - 1; index >= 0; index--)
{
BasicBlock block = cfg.PostOrderBlocks[index];
for (Node node = block.Operations.First; node != null; node = node.ListNext)
{
_operationNodes.Add((block.Operations, node));
for (int i = 0; i < node.DestinationsCount; i++)
{
Operand dest = node.GetDestination(i);
if (dest.Kind == OperandKind.LocalVariable && visited.Add(dest))
{
dest.NumberLocal(_intervals.Count);
_intervals.Add(new LiveInterval(dest));
}
}
}
_operationsCount += block.Operations.Count * InstructionGap;
if (block.Operations.Count == 0)
{
// Pretend we have a dummy instruction on the empty block.
_operationNodes.Add((null, null));
_operationsCount += InstructionGap;
}
}
_parentIntervals = _intervals.ToArray();
}
private void BuildIntervals(ControlFlowGraph cfg, AllocationContext context)
{
_blockRanges = new LiveRange[cfg.Blocks.Count];
int mapSize = _intervals.Count;
BitMap[] blkLiveGen = new BitMap[cfg.Blocks.Count];
BitMap[] blkLiveKill = new BitMap[cfg.Blocks.Count];
// Compute local live sets.
for (BasicBlock block = cfg.Blocks.First; block != null; block = block.ListNext)
{
BitMap liveGen = BitMapPool.Allocate(mapSize);
BitMap liveKill = BitMapPool.Allocate(mapSize);
for (Node node = block.Operations.First; node != null; node = node.ListNext)
{
Sources(node, (source) =>
{
int id = GetOperandId(source);
if (!liveKill.IsSet(id))
{
liveGen.Set(id);
}
});
for (int i = 0; i < node.DestinationsCount; i++)
{
Operand dest = node.GetDestination(i);
liveKill.Set(GetOperandId(dest));
}
}
blkLiveGen [block.Index] = liveGen;
blkLiveKill[block.Index] = liveKill;
}
// Compute global live sets.
BitMap[] blkLiveIn = new BitMap[cfg.Blocks.Count];
BitMap[] blkLiveOut = new BitMap[cfg.Blocks.Count];
for (int index = 0; index < cfg.Blocks.Count; index++)
{
blkLiveIn [index] = BitMapPool.Allocate(mapSize);
blkLiveOut[index] = BitMapPool.Allocate(mapSize);
}
bool modified;
do
{
modified = false;
for (int index = 0; index < cfg.PostOrderBlocks.Length; index++)
{
BasicBlock block = cfg.PostOrderBlocks[index];
BitMap liveOut = blkLiveOut[block.Index];
if ((block.Next != null && liveOut.Set(blkLiveIn[block.Next.Index])) ||
(block.Branch != null && liveOut.Set(blkLiveIn[block.Branch.Index])))
{
modified = true;
}
BitMap liveIn = blkLiveIn[block.Index];
liveIn.Set (liveOut);
liveIn.Clear(blkLiveKill[block.Index]);
liveIn.Set (blkLiveGen [block.Index]);
}
}
while (modified);
_blockLiveIn = blkLiveIn;
_blockEdges = new HashSet<int>();
// Compute lifetime intervals.
int operationPos = _operationsCount;
for (int index = 0; index < cfg.PostOrderBlocks.Length; index++)
{
BasicBlock block = cfg.PostOrderBlocks[index];
// We handle empty blocks by pretending they have a dummy instruction,
// because otherwise the block would have the same start and end position,
// and this is not valid.
int instCount = Math.Max(block.Operations.Count, 1);
int blockStart = operationPos - instCount * InstructionGap;
int blockEnd = operationPos;
_blockRanges[block.Index] = new LiveRange(blockStart, blockEnd);
_blockEdges.Add(blockStart);
BitMap liveOut = blkLiveOut[block.Index];
foreach (int id in liveOut)
{
_intervals[id].AddRange(blockStart, blockEnd);
}
if (block.Operations.Count == 0)
{
operationPos -= InstructionGap;
continue;
}
foreach (Node node in BottomOperations(block))
{
operationPos -= InstructionGap;
for (int i = 0; i < node.DestinationsCount; i++)
{
Operand dest = node.GetDestination(i);
LiveInterval interval = _intervals[GetOperandId(dest)];
interval.SetStart(operationPos + 1);
interval.AddUsePosition(operationPos + 1);
}
Sources(node, (source) =>
{
LiveInterval interval = _intervals[GetOperandId(source)];
interval.AddRange(blockStart, operationPos + 1);
interval.AddUsePosition(operationPos);
});
if (node is Operation operation && operation.Instruction == Instruction.Call)
{
AddIntervalCallerSavedReg(context.Masks.IntCallerSavedRegisters, operationPos, RegisterType.Integer);
AddIntervalCallerSavedReg(context.Masks.VecCallerSavedRegisters, operationPos, RegisterType.Vector);
}
}
}
}
private void AddIntervalCallerSavedReg(int mask, int operationPos, RegisterType regType)
{
while (mask != 0)
{
int regIndex = BitOperations.TrailingZeroCount(mask);
Register callerSavedReg = new Register(regIndex, regType);
LiveInterval interval = _intervals[GetRegisterId(callerSavedReg)];
interval.AddRange(operationPos + 1, operationPos + InstructionGap);
mask &= ~(1 << regIndex);
}
}
private static int GetOperandId(Operand operand)
{
if (operand.Kind == OperandKind.LocalVariable)
{
return operand.AsInt32();
}
else if (operand.Kind == OperandKind.Register)
{
return GetRegisterId(operand.GetRegister());
}
else
{
throw new ArgumentException($"Invalid operand kind \"{operand.Kind}\".");
}
}
private static int GetRegisterId(Register register)
{
return (register.Index << 1) | (register.Type == RegisterType.Vector ? 1 : 0);
}
private static BasicBlock FirstSuccessor(BasicBlock block)
{
return block.Next ?? block.Branch;
}
private static IEnumerable<Node> BottomOperations(BasicBlock block)
{
Node node = block.Operations.Last;
while (node != null && !(node is PhiNode))
{
yield return node;
node = node.ListPrevious;
}
}
private static void Sources(Node node, Action<Operand> action)
{
for (int index = 0; index < node.SourcesCount; index++)
{
Operand source = node.GetSource(index);
if (IsLocalOrRegister(source.Kind))
{
action(source);
}
else if (source.Kind == OperandKind.Memory)
{
MemoryOperand memOp = (MemoryOperand)source;
if (memOp.BaseAddress != null)
{
action(memOp.BaseAddress);
}
if (memOp.Index != null)
{
action(memOp.Index);
}
}
}
}
private static bool IsLocalOrRegister(OperandKind kind)
{
return kind == OperandKind.LocalVariable ||
kind == OperandKind.Register;
}
}
}