1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-11-14 06:06:44 +00:00
Ryujinx/Ryujinx.Graphics.Gpu/GpuContext.cs
riperiperi c52158b733
Add timestamp to 16-byte/4-word semaphore releases. (#3049)
* Add timestamp to 16-byte semaphore releases.

BOTW was reading a ulong 8 bytes after a semaphore return. Turns out this is the timestamp it was trying to do performance calculation with, so I've made it write when necessary.

This mode was also added to the DMA semaphore I added recently, as it is required by a few games. (i think quake?)

The timestamp code has been moved to GPU context. Check other games with an unusually low framerate cap or dynamic resolution to see if they have improved.

* Cast dma semaphore payload to ulong to fill the space

* Write timestamp first

Might be just worrying too much, but we don't want the applcation reading timestamp if it sees the payload before timestamp is written.
2022-01-27 22:50:32 +01:00

369 lines
No EOL
13 KiB
C#

using Ryujinx.Common;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.Engine.GPFifo;
using Ryujinx.Graphics.Gpu.Memory;
using Ryujinx.Graphics.Gpu.Shader;
using Ryujinx.Graphics.Gpu.Synchronization;
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Threading;
namespace Ryujinx.Graphics.Gpu
{
/// <summary>
/// GPU emulation context.
/// </summary>
public sealed class GpuContext : IDisposable
{
private const int NsToTicksFractionNumerator = 384;
private const int NsToTicksFractionDenominator = 625;
/// <summary>
/// Event signaled when the host emulation context is ready to be used by the gpu context.
/// </summary>
public ManualResetEvent HostInitalized { get; }
/// <summary>
/// Host renderer.
/// </summary>
public IRenderer Renderer { get; }
/// <summary>
/// GPU General Purpose FIFO queue.
/// </summary>
public GPFifoDevice GPFifo { get; }
/// <summary>
/// GPU synchronization manager.
/// </summary>
public SynchronizationManager Synchronization { get; }
/// <summary>
/// Presentation window.
/// </summary>
public Window Window { get; }
/// <summary>
/// Internal sequence number, used to avoid needless resource data updates
/// in the middle of a command buffer before synchronizations.
/// </summary>
internal int SequenceNumber { get; private set; }
/// <summary>
/// Internal sync number, used to denote points at which host synchronization can be requested.
/// </summary>
internal ulong SyncNumber { get; private set; }
/// <summary>
/// Actions to be performed when a CPU waiting syncpoint or barrier is triggered.
/// If there are more than 0 items when this happens, a host sync object will be generated for the given <see cref="SyncNumber"/>,
/// and the SyncNumber will be incremented.
/// </summary>
internal List<Action> SyncActions { get; }
/// <summary>
/// Actions to be performed when a CPU waiting syncpoint is triggered.
/// If there are more than 0 items when this happens, a host sync object will be generated for the given <see cref="SyncNumber"/>,
/// and the SyncNumber will be incremented.
/// </summary>
internal List<Action> SyncpointActions { get; }
/// <summary>
/// Queue with deferred actions that must run on the render thread.
/// </summary>
internal Queue<Action> DeferredActions { get; }
/// <summary>
/// Registry with physical memories that can be used with this GPU context, keyed by owner process ID.
/// </summary>
internal ConcurrentDictionary<long, PhysicalMemory> PhysicalMemoryRegistry { get; }
/// <summary>
/// Host hardware capabilities.
/// </summary>
internal ref Capabilities Capabilities
{
get
{
if (!_capsLoaded)
{
_caps = Renderer.GetCapabilities();
_capsLoaded = true;
}
return ref _caps;
}
}
/// <summary>
/// Event for signalling shader cache loading progress.
/// </summary>
public event Action<ShaderCacheState, int, int> ShaderCacheStateChanged;
private bool _capsLoaded;
private Capabilities _caps;
private Thread _gpuThread;
/// <summary>
/// Creates a new instance of the GPU emulation context.
/// </summary>
/// <param name="renderer">Host renderer</param>
public GpuContext(IRenderer renderer)
{
Renderer = renderer;
GPFifo = new GPFifoDevice(this);
Synchronization = new SynchronizationManager();
Window = new Window(this);
HostInitalized = new ManualResetEvent(false);
SyncActions = new List<Action>();
SyncpointActions = new List<Action>();
DeferredActions = new Queue<Action>();
PhysicalMemoryRegistry = new ConcurrentDictionary<long, PhysicalMemory>();
}
/// <summary>
/// Creates a new GPU channel.
/// </summary>
/// <returns>The GPU channel</returns>
public GpuChannel CreateChannel()
{
return new GpuChannel(this);
}
/// <summary>
/// Creates a new GPU memory manager.
/// </summary>
/// <param name="pid">ID of the process that owns the memory manager</param>
/// <returns>The memory manager</returns>
/// <exception cref="ArgumentException">Thrown when <paramref name="pid"/> is invalid</exception>
public MemoryManager CreateMemoryManager(long pid)
{
if (!PhysicalMemoryRegistry.TryGetValue(pid, out var physicalMemory))
{
throw new ArgumentException("The PID is invalid or the process was not registered", nameof(pid));
}
return new MemoryManager(physicalMemory);
}
/// <summary>
/// Registers virtual memory used by a process for GPU memory access, caching and read/write tracking.
/// </summary>
/// <param name="pid">ID of the process that owns <paramref name="cpuMemory"/></param>
/// <param name="cpuMemory">Virtual memory owned by the process</param>
/// <exception cref="ArgumentException">Thrown if <paramref name="pid"/> was already registered</exception>
public void RegisterProcess(long pid, Cpu.IVirtualMemoryManagerTracked cpuMemory)
{
var physicalMemory = new PhysicalMemory(this, cpuMemory);
if (!PhysicalMemoryRegistry.TryAdd(pid, physicalMemory))
{
throw new ArgumentException("The PID was already registered", nameof(pid));
}
physicalMemory.ShaderCache.ShaderCacheStateChanged += ShaderCacheStateUpdate;
}
/// <summary>
/// Unregisters a process, indicating that its memory will no longer be used, and that caches can be freed.
/// </summary>
/// <param name="pid">ID of the process</param>
public void UnregisterProcess(long pid)
{
if (PhysicalMemoryRegistry.TryRemove(pid, out var physicalMemory))
{
physicalMemory.ShaderCache.ShaderCacheStateChanged -= ShaderCacheStateUpdate;
physicalMemory.Dispose();
}
}
/// <summary>
/// Converts a nanoseconds timestamp value to Maxwell time ticks.
/// </summary>
/// <remarks>
/// The frequency is 614400000 Hz.
/// </remarks>
/// <param name="nanoseconds">Timestamp in nanoseconds</param>
/// <returns>Maxwell ticks</returns>
private static ulong ConvertNanosecondsToTicks(ulong nanoseconds)
{
// We need to divide first to avoid overflows.
// We fix up the result later by calculating the difference and adding
// that to the result.
ulong divided = nanoseconds / NsToTicksFractionDenominator;
ulong rounded = divided * NsToTicksFractionDenominator;
ulong errorBias = (nanoseconds - rounded) * NsToTicksFractionNumerator / NsToTicksFractionDenominator;
return divided * NsToTicksFractionNumerator + errorBias;
}
/// <summary>
/// Gets the value of the GPU timer.
/// </summary>
/// <returns>The current GPU timestamp</returns>
public ulong GetTimestamp()
{
ulong ticks = ConvertNanosecondsToTicks((ulong)PerformanceCounter.ElapsedNanoseconds);
if (GraphicsConfig.FastGpuTime)
{
// Divide by some amount to report time as if operations were performed faster than they really are.
// This can prevent some games from switching to a lower resolution because rendering is too slow.
ticks /= 256;
}
return ticks;
}
/// <summary>
/// Shader cache state update handler.
/// </summary>
/// <param name="state">Current state of the shader cache load process</param>
/// <param name="current">Number of the current shader being processed</param>
/// <param name="total">Total number of shaders to process</param>
private void ShaderCacheStateUpdate(ShaderCacheState state, int current, int total)
{
ShaderCacheStateChanged?.Invoke(state, current, total);
}
/// <summary>
/// Initialize the GPU shader cache.
/// </summary>
public void InitializeShaderCache()
{
HostInitalized.WaitOne();
foreach (var physicalMemory in PhysicalMemoryRegistry.Values)
{
physicalMemory.ShaderCache.Initialize();
}
}
/// <summary>
/// Sets the current thread as the main GPU thread.
/// </summary>
public void SetGpuThread()
{
_gpuThread = Thread.CurrentThread;
}
/// <summary>
/// Checks if the current thread is the GPU thread.
/// </summary>
/// <returns>True if the thread is the GPU thread, false otherwise</returns>
public bool IsGpuThread()
{
return _gpuThread == Thread.CurrentThread;
}
/// <summary>
/// Processes the queue of shaders that must save their binaries to the disk cache.
/// </summary>
public void ProcessShaderCacheQueue()
{
foreach (var physicalMemory in PhysicalMemoryRegistry.Values)
{
physicalMemory.ShaderCache.ProcessShaderCacheQueue();
}
}
/// <summary>
/// Advances internal sequence number.
/// This forces the update of any modified GPU resource.
/// </summary>
internal void AdvanceSequence()
{
SequenceNumber++;
}
/// <summary>
/// Registers an action to be performed the next time a syncpoint is incremented.
/// This will also ensure a host sync object is created, and <see cref="SyncNumber"/> is incremented.
/// </summary>
/// <param name="action">The action to be performed on sync object creation</param>
/// <param name="syncpointOnly">True if the sync action should only run when syncpoints are incremented</param>
public void RegisterSyncAction(Action action, bool syncpointOnly = false)
{
if (syncpointOnly)
{
SyncpointActions.Add(action);
}
else
{
SyncActions.Add(action);
}
}
/// <summary>
/// Creates a host sync object if there are any pending sync actions. The actions will then be called.
/// If no actions are present, a host sync object is not created.
/// </summary>
/// <param name="syncpoint">True if host sync is being created by a syncpoint</param>
public void CreateHostSyncIfNeeded(bool syncpoint)
{
if (SyncActions.Count > 0 || (syncpoint && SyncpointActions.Count > 0))
{
Renderer.CreateSync(SyncNumber);
SyncNumber++;
foreach (Action action in SyncActions)
{
action();
}
foreach (Action action in SyncpointActions)
{
action();
}
SyncActions.Clear();
SyncpointActions.Clear();
}
}
/// <summary>
/// Performs deferred actions.
/// This is useful for actions that must run on the render thread, such as resource disposal.
/// </summary>
internal void RunDeferredActions()
{
while (DeferredActions.TryDequeue(out Action action))
{
action();
}
}
/// <summary>
/// Disposes all GPU resources currently cached.
/// It's an error to push any GPU commands after disposal.
/// Additionally, the GPU commands FIFO must be empty for disposal,
/// and processing of all commands must have finished.
/// </summary>
public void Dispose()
{
Renderer.Dispose();
GPFifo.Dispose();
HostInitalized.Dispose();
// Has to be disposed before processing deferred actions, as it will produce some.
foreach (var physicalMemory in PhysicalMemoryRegistry.Values)
{
physicalMemory.Dispose();
}
PhysicalMemoryRegistry.Clear();
RunDeferredActions();
}
}
}