mirror of
https://github.com/Ryujinx/Ryujinx.git
synced 2024-11-14 14:36:57 +00:00
f77694e4f7
* Implement a new physical memory manager and replace DeviceMemory * Proper generic constraints * Fix debug build * Add memory tests * New CPU memory manager and general code cleanup * Remove host memory management from CPU project, use Ryujinx.Memory instead * Fix tests * Document exceptions on MemoryBlock * Fix leak on unix memory allocation * Proper disposal of some objects on tests * Fix JitCache not being set as initialized * GetRef without checks for 8-bits and 16-bits CAS * Add MemoryBlock destructor * Throw in separate method to improve codegen * Address PR feedback * QueryModified improvements * Fix memory write tracking not marking all pages as modified in some cases * Simplify MarkRegionAsModified * Remove XML doc for ghost param * Add back optimization to avoid useless buffer updates * Add Ryujinx.Cpu project, move MemoryManager there and remove MemoryBlockWrapper * Some nits * Do not perform address translation when size is 0 * Address PR feedback and format NativeInterface class * Remove ghost parameter description * Update Ryujinx.Cpu to .NET Core 3.1 * Address PR feedback * Fix build * Return a well defined value for GetPhysicalAddress with invalid VA, and do not return unmapped ranges as modified * Typo
536 lines
19 KiB
C#
536 lines
19 KiB
C#
using ARMeilleure.State;
|
|
|
|
using NUnit.Framework;
|
|
using Ryujinx.Cpu;
|
|
using Ryujinx.Memory;
|
|
using Ryujinx.Tests.Unicorn;
|
|
|
|
using System;
|
|
using MemoryPermission = Ryujinx.Tests.Unicorn.MemoryPermission;
|
|
|
|
namespace Ryujinx.Tests.Cpu
|
|
{
|
|
[TestFixture]
|
|
public class CpuTest32
|
|
{
|
|
private uint _currAddress;
|
|
private ulong _size;
|
|
|
|
private uint _entryPoint;
|
|
|
|
private MemoryBlock _ram;
|
|
|
|
private MemoryManager _memory;
|
|
|
|
private ExecutionContext _context;
|
|
|
|
private CpuContext _cpuContext;
|
|
|
|
private static bool _unicornAvailable;
|
|
private UnicornAArch32 _unicornEmu;
|
|
|
|
private bool usingMemory;
|
|
|
|
static CpuTest32()
|
|
{
|
|
_unicornAvailable = UnicornAArch32.IsAvailable();
|
|
|
|
if (!_unicornAvailable)
|
|
{
|
|
Console.WriteLine("WARNING: Could not find Unicorn.");
|
|
}
|
|
}
|
|
|
|
[SetUp]
|
|
public void Setup()
|
|
{
|
|
_currAddress = 0x1000;
|
|
_size = 0x1000;
|
|
|
|
_entryPoint = _currAddress;
|
|
|
|
_ram = new MemoryBlock(_size * 2);
|
|
_memory = new MemoryManager(_ram, 1UL << 16);
|
|
_memory.Map(_currAddress, 0, _size * 2);
|
|
|
|
_context = CpuContext.CreateExecutionContext();
|
|
_context.IsAarch32 = true;
|
|
|
|
_cpuContext = new CpuContext(_memory);
|
|
|
|
if (_unicornAvailable)
|
|
{
|
|
_unicornEmu = new UnicornAArch32();
|
|
_unicornEmu.MemoryMap(_currAddress, _size, MemoryPermission.READ | MemoryPermission.EXEC);
|
|
_unicornEmu.MemoryMap(_currAddress + _size, _size, MemoryPermission.READ | MemoryPermission.WRITE);
|
|
_unicornEmu.PC = _entryPoint;
|
|
}
|
|
}
|
|
|
|
[TearDown]
|
|
public void Teardown()
|
|
{
|
|
_memory.Dispose();
|
|
_context.Dispose();
|
|
_ram.Dispose();
|
|
_memory = null;
|
|
_context = null;
|
|
_cpuContext = null;
|
|
_unicornEmu = null;
|
|
}
|
|
|
|
protected void Reset()
|
|
{
|
|
Teardown();
|
|
Setup();
|
|
}
|
|
|
|
protected void Opcode(uint opcode)
|
|
{
|
|
_memory.Write(_currAddress, opcode);
|
|
|
|
if (_unicornAvailable)
|
|
{
|
|
_unicornEmu.MemoryWrite32(_currAddress, opcode);
|
|
}
|
|
|
|
_currAddress += 4;
|
|
}
|
|
|
|
protected ExecutionContext GetContext() => _context;
|
|
protected void SetContext(uint r0 = 0,
|
|
uint r1 = 0,
|
|
uint r2 = 0,
|
|
uint r3 = 0,
|
|
uint sp = 0,
|
|
V128 v0 = default,
|
|
V128 v1 = default,
|
|
V128 v2 = default,
|
|
V128 v3 = default,
|
|
V128 v4 = default,
|
|
V128 v5 = default,
|
|
V128 v14 = default,
|
|
V128 v15 = default,
|
|
bool overflow = false,
|
|
bool carry = false,
|
|
bool zero = false,
|
|
bool negative = false,
|
|
int fpscr = 0)
|
|
{
|
|
_context.SetX(0, r0);
|
|
_context.SetX(1, r1);
|
|
_context.SetX(2, r2);
|
|
_context.SetX(3, r3);
|
|
|
|
_context.SetX(0xd, sp);
|
|
|
|
_context.SetV(0, v0);
|
|
_context.SetV(1, v1);
|
|
_context.SetV(2, v2);
|
|
_context.SetV(3, v3);
|
|
_context.SetV(4, v4);
|
|
_context.SetV(5, v5);
|
|
_context.SetV(14, v14);
|
|
_context.SetV(15, v15);
|
|
|
|
_context.SetPstateFlag(PState.VFlag, overflow);
|
|
_context.SetPstateFlag(PState.CFlag, carry);
|
|
_context.SetPstateFlag(PState.ZFlag, zero);
|
|
_context.SetPstateFlag(PState.NFlag, negative);
|
|
|
|
_context.Fpsr = FPSR.A32Mask & (FPSR)fpscr;
|
|
_context.Fpcr = FPCR.A32Mask & (FPCR)fpscr;
|
|
|
|
if (_unicornAvailable)
|
|
{
|
|
_unicornEmu.R[0] = r0;
|
|
_unicornEmu.R[1] = r1;
|
|
_unicornEmu.R[2] = r2;
|
|
_unicornEmu.R[3] = r3;
|
|
|
|
_unicornEmu.SP = sp;
|
|
|
|
_unicornEmu.Q[0] = V128ToSimdValue(v0);
|
|
_unicornEmu.Q[1] = V128ToSimdValue(v1);
|
|
_unicornEmu.Q[2] = V128ToSimdValue(v2);
|
|
_unicornEmu.Q[3] = V128ToSimdValue(v3);
|
|
_unicornEmu.Q[4] = V128ToSimdValue(v4);
|
|
_unicornEmu.Q[5] = V128ToSimdValue(v5);
|
|
_unicornEmu.Q[14] = V128ToSimdValue(v14);
|
|
_unicornEmu.Q[15] = V128ToSimdValue(v15);
|
|
|
|
_unicornEmu.OverflowFlag = overflow;
|
|
_unicornEmu.CarryFlag = carry;
|
|
_unicornEmu.ZeroFlag = zero;
|
|
_unicornEmu.NegativeFlag = negative;
|
|
|
|
_unicornEmu.Fpscr = fpscr;
|
|
}
|
|
}
|
|
|
|
protected void ExecuteOpcodes(bool runUnicorn = true)
|
|
{
|
|
_cpuContext.Execute(_context, _entryPoint);
|
|
|
|
if (_unicornAvailable && runUnicorn)
|
|
{
|
|
_unicornEmu.RunForCount((ulong)(_currAddress - _entryPoint - 4) / 4);
|
|
}
|
|
}
|
|
|
|
protected ExecutionContext SingleOpcode(uint opcode,
|
|
uint r0 = 0,
|
|
uint r1 = 0,
|
|
uint r2 = 0,
|
|
uint r3 = 0,
|
|
uint sp = 0,
|
|
V128 v0 = default,
|
|
V128 v1 = default,
|
|
V128 v2 = default,
|
|
V128 v3 = default,
|
|
V128 v4 = default,
|
|
V128 v5 = default,
|
|
V128 v14 = default,
|
|
V128 v15 = default,
|
|
bool overflow = false,
|
|
bool carry = false,
|
|
bool zero = false,
|
|
bool negative = false,
|
|
int fpscr = 0,
|
|
bool copyFpFlags = false,
|
|
bool runUnicorn = true)
|
|
{
|
|
Opcode(opcode);
|
|
if (copyFpFlags)
|
|
{
|
|
Opcode(0xeef1fa10);
|
|
}
|
|
Opcode(0xe12fff1e); // BX LR
|
|
SetContext(r0, r1, r2, r3, sp, v0, v1, v2, v3, v4, v5, v14, v15, overflow, carry, zero, negative, fpscr);
|
|
ExecuteOpcodes(runUnicorn);
|
|
|
|
return GetContext();
|
|
}
|
|
|
|
protected void SetWorkingMemory(byte[] data)
|
|
{
|
|
_memory.Write(0x2000, data);
|
|
|
|
if (_unicornAvailable)
|
|
{
|
|
_unicornEmu.MemoryWrite((ulong)(0x2000), data);
|
|
}
|
|
|
|
usingMemory = true; // When true, CompareAgainstUnicorn checks the working memory for equality too.
|
|
}
|
|
|
|
/// <summary>Rounding Mode control field.</summary>
|
|
public enum RMode
|
|
{
|
|
/// <summary>Round to Nearest mode.</summary>
|
|
Rn,
|
|
/// <summary>Round towards Plus Infinity mode.</summary>
|
|
Rp,
|
|
/// <summary>Round towards Minus Infinity mode.</summary>
|
|
Rm,
|
|
/// <summary>Round towards Zero mode.</summary>
|
|
Rz
|
|
};
|
|
|
|
/// <summary>Floating-point Control Register.</summary>
|
|
protected enum Fpcr
|
|
{
|
|
/// <summary>Rounding Mode control field.</summary>
|
|
RMode = 22,
|
|
/// <summary>Flush-to-zero mode control bit.</summary>
|
|
Fz = 24,
|
|
/// <summary>Default NaN mode control bit.</summary>
|
|
Dn = 25,
|
|
/// <summary>Alternative half-precision control bit.</summary>
|
|
Ahp = 26
|
|
}
|
|
|
|
/// <summary>Floating-point Status Register.</summary>
|
|
[Flags]
|
|
protected enum Fpsr
|
|
{
|
|
None = 0,
|
|
|
|
/// <summary>Invalid Operation cumulative floating-point exception bit.</summary>
|
|
Ioc = 1 << 0,
|
|
/// <summary>Divide by Zero cumulative floating-point exception bit.</summary>
|
|
Dzc = 1 << 1,
|
|
/// <summary>Overflow cumulative floating-point exception bit.</summary>
|
|
Ofc = 1 << 2,
|
|
/// <summary>Underflow cumulative floating-point exception bit.</summary>
|
|
Ufc = 1 << 3,
|
|
/// <summary>Inexact cumulative floating-point exception bit.</summary>
|
|
Ixc = 1 << 4,
|
|
/// <summary>Input Denormal cumulative floating-point exception bit.</summary>
|
|
Idc = 1 << 7,
|
|
|
|
/// <summary>Cumulative saturation bit.</summary>
|
|
Qc = 1 << 27,
|
|
|
|
/// <summary>NZCV flags</summary>
|
|
Nzcv = (1 << 28) | (1 << 29) | (1 << 30) | (1 << 31)
|
|
}
|
|
|
|
[Flags]
|
|
protected enum FpSkips
|
|
{
|
|
None = 0,
|
|
|
|
IfNaNS = 1,
|
|
IfNaND = 2,
|
|
|
|
IfUnderflow = 4,
|
|
IfOverflow = 8
|
|
}
|
|
|
|
protected enum FpTolerances
|
|
{
|
|
None,
|
|
|
|
UpToOneUlpsS,
|
|
UpToOneUlpsD
|
|
}
|
|
|
|
protected void CompareAgainstUnicorn(
|
|
Fpsr fpsrMask = Fpsr.None,
|
|
FpSkips fpSkips = FpSkips.None,
|
|
FpTolerances fpTolerances = FpTolerances.None)
|
|
{
|
|
if (!_unicornAvailable)
|
|
{
|
|
return;
|
|
}
|
|
|
|
if (fpSkips != FpSkips.None)
|
|
{
|
|
ManageFpSkips(fpSkips);
|
|
}
|
|
|
|
Assert.That(_context.GetX(0), Is.EqualTo(_unicornEmu.R[0]));
|
|
Assert.That(_context.GetX(1), Is.EqualTo(_unicornEmu.R[1]));
|
|
Assert.That(_context.GetX(2), Is.EqualTo(_unicornEmu.R[2]));
|
|
Assert.That(_context.GetX(3), Is.EqualTo(_unicornEmu.R[3]));
|
|
Assert.That(_context.GetX(4), Is.EqualTo(_unicornEmu.R[4]));
|
|
Assert.That(_context.GetX(5), Is.EqualTo(_unicornEmu.R[5]));
|
|
Assert.That(_context.GetX(6), Is.EqualTo(_unicornEmu.R[6]));
|
|
Assert.That(_context.GetX(7), Is.EqualTo(_unicornEmu.R[7]));
|
|
Assert.That(_context.GetX(8), Is.EqualTo(_unicornEmu.R[8]));
|
|
Assert.That(_context.GetX(9), Is.EqualTo(_unicornEmu.R[9]));
|
|
Assert.That(_context.GetX(10), Is.EqualTo(_unicornEmu.R[10]));
|
|
Assert.That(_context.GetX(11), Is.EqualTo(_unicornEmu.R[11]));
|
|
Assert.That(_context.GetX(12), Is.EqualTo(_unicornEmu.R[12]));
|
|
Assert.That(_context.GetX(13), Is.EqualTo(_unicornEmu.R[13]));
|
|
Assert.That(_context.GetX(14), Is.EqualTo(_unicornEmu.R[14]));
|
|
|
|
if (fpTolerances == FpTolerances.None)
|
|
{
|
|
Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0]));
|
|
}
|
|
else
|
|
{
|
|
ManageFpTolerances(fpTolerances);
|
|
}
|
|
Assert.That(V128ToSimdValue(_context.GetV(1)), Is.EqualTo(_unicornEmu.Q[1]));
|
|
Assert.That(V128ToSimdValue(_context.GetV(2)), Is.EqualTo(_unicornEmu.Q[2]));
|
|
Assert.That(V128ToSimdValue(_context.GetV(3)), Is.EqualTo(_unicornEmu.Q[3]));
|
|
Assert.That(V128ToSimdValue(_context.GetV(4)), Is.EqualTo(_unicornEmu.Q[4]));
|
|
Assert.That(V128ToSimdValue(_context.GetV(5)), Is.EqualTo(_unicornEmu.Q[5]));
|
|
Assert.That(V128ToSimdValue(_context.GetV(6)), Is.EqualTo(_unicornEmu.Q[6]));
|
|
Assert.That(V128ToSimdValue(_context.GetV(7)), Is.EqualTo(_unicornEmu.Q[7]));
|
|
Assert.That(V128ToSimdValue(_context.GetV(8)), Is.EqualTo(_unicornEmu.Q[8]));
|
|
Assert.That(V128ToSimdValue(_context.GetV(9)), Is.EqualTo(_unicornEmu.Q[9]));
|
|
Assert.That(V128ToSimdValue(_context.GetV(10)), Is.EqualTo(_unicornEmu.Q[10]));
|
|
Assert.That(V128ToSimdValue(_context.GetV(11)), Is.EqualTo(_unicornEmu.Q[11]));
|
|
Assert.That(V128ToSimdValue(_context.GetV(12)), Is.EqualTo(_unicornEmu.Q[12]));
|
|
Assert.That(V128ToSimdValue(_context.GetV(13)), Is.EqualTo(_unicornEmu.Q[13]));
|
|
Assert.That(V128ToSimdValue(_context.GetV(14)), Is.EqualTo(_unicornEmu.Q[14]));
|
|
Assert.That(V128ToSimdValue(_context.GetV(15)), Is.EqualTo(_unicornEmu.Q[15]));
|
|
|
|
Assert.That((int)_context.Fpcr | ((int)_context.Fpsr & (int)fpsrMask), Is.EqualTo(_unicornEmu.Fpscr));
|
|
|
|
Assert.That(_context.GetPstateFlag(PState.QFlag), Is.EqualTo(_unicornEmu.QFlag));
|
|
Assert.That(_context.GetPstateFlag(PState.VFlag), Is.EqualTo(_unicornEmu.OverflowFlag));
|
|
Assert.That(_context.GetPstateFlag(PState.CFlag), Is.EqualTo(_unicornEmu.CarryFlag));
|
|
Assert.That(_context.GetPstateFlag(PState.ZFlag), Is.EqualTo(_unicornEmu.ZeroFlag));
|
|
Assert.That(_context.GetPstateFlag(PState.NFlag), Is.EqualTo(_unicornEmu.NegativeFlag));
|
|
|
|
if (usingMemory)
|
|
{
|
|
ReadOnlySpan<byte> meilleureMem = _memory.GetSpan(0x2000, (int)_size);
|
|
byte[] unicornMem = _unicornEmu.MemoryRead(0x2000, _size);
|
|
|
|
for (int i = 0; i < (int)_size; i++)
|
|
{
|
|
Assert.AreEqual(meilleureMem[i], unicornMem[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
private void ManageFpSkips(FpSkips fpSkips)
|
|
{
|
|
if (fpSkips.HasFlag(FpSkips.IfNaNS))
|
|
{
|
|
if (float.IsNaN(_unicornEmu.Q[0].AsFloat()))
|
|
{
|
|
Assert.Ignore("NaN test.");
|
|
}
|
|
}
|
|
else if (fpSkips.HasFlag(FpSkips.IfNaND))
|
|
{
|
|
if (double.IsNaN(_unicornEmu.Q[0].AsDouble()))
|
|
{
|
|
Assert.Ignore("NaN test.");
|
|
}
|
|
}
|
|
|
|
if (fpSkips.HasFlag(FpSkips.IfUnderflow))
|
|
{
|
|
if ((_unicornEmu.Fpscr & (int)Fpsr.Ufc) != 0)
|
|
{
|
|
Assert.Ignore("Underflow test.");
|
|
}
|
|
}
|
|
|
|
if (fpSkips.HasFlag(FpSkips.IfOverflow))
|
|
{
|
|
if ((_unicornEmu.Fpscr & (int)Fpsr.Ofc) != 0)
|
|
{
|
|
Assert.Ignore("Overflow test.");
|
|
}
|
|
}
|
|
}
|
|
|
|
private void ManageFpTolerances(FpTolerances fpTolerances)
|
|
{
|
|
bool IsNormalOrSubnormalS(float f) => float.IsNormal(f) || float.IsSubnormal(f);
|
|
bool IsNormalOrSubnormalD(double d) => double.IsNormal(d) || double.IsSubnormal(d);
|
|
|
|
if (!Is.EqualTo(_unicornEmu.Q[0]).ApplyTo(V128ToSimdValue(_context.GetV(0))).IsSuccess)
|
|
{
|
|
if (fpTolerances == FpTolerances.UpToOneUlpsS)
|
|
{
|
|
if (IsNormalOrSubnormalS(_unicornEmu.Q[0].AsFloat()) &&
|
|
IsNormalOrSubnormalS(_context.GetV(0).As<float>()))
|
|
{
|
|
Assert.That(_context.GetV(0).Extract<float>(0),
|
|
Is.EqualTo(_unicornEmu.Q[0].GetFloat(0)).Within(1).Ulps);
|
|
Assert.That(_context.GetV(0).Extract<float>(1),
|
|
Is.EqualTo(_unicornEmu.Q[0].GetFloat(1)).Within(1).Ulps);
|
|
Assert.That(_context.GetV(0).Extract<float>(2),
|
|
Is.EqualTo(_unicornEmu.Q[0].GetFloat(2)).Within(1).Ulps);
|
|
Assert.That(_context.GetV(0).Extract<float>(3),
|
|
Is.EqualTo(_unicornEmu.Q[0].GetFloat(3)).Within(1).Ulps);
|
|
|
|
Console.WriteLine(fpTolerances);
|
|
}
|
|
else
|
|
{
|
|
Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0]));
|
|
}
|
|
}
|
|
|
|
if (fpTolerances == FpTolerances.UpToOneUlpsD)
|
|
{
|
|
if (IsNormalOrSubnormalD(_unicornEmu.Q[0].AsDouble()) &&
|
|
IsNormalOrSubnormalD(_context.GetV(0).As<double>()))
|
|
{
|
|
Assert.That(_context.GetV(0).Extract<double>(0),
|
|
Is.EqualTo(_unicornEmu.Q[0].GetDouble(0)).Within(1).Ulps);
|
|
Assert.That(_context.GetV(0).Extract<double>(1),
|
|
Is.EqualTo(_unicornEmu.Q[0].GetDouble(1)).Within(1).Ulps);
|
|
|
|
Console.WriteLine(fpTolerances);
|
|
}
|
|
else
|
|
{
|
|
Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private static SimdValue V128ToSimdValue(V128 value)
|
|
{
|
|
return new SimdValue(value.Extract<ulong>(0), value.Extract<ulong>(1));
|
|
}
|
|
|
|
protected static V128 MakeVectorScalar(float value) => new V128(value);
|
|
protected static V128 MakeVectorScalar(double value) => new V128(value);
|
|
|
|
protected static V128 MakeVectorE0(ulong e0) => new V128(e0, 0);
|
|
protected static V128 MakeVectorE1(ulong e1) => new V128(0, e1);
|
|
|
|
protected static V128 MakeVectorE0E1(ulong e0, ulong e1) => new V128(e0, e1);
|
|
|
|
protected static ulong GetVectorE0(V128 vector) => vector.Extract<ulong>(0);
|
|
protected static ulong GetVectorE1(V128 vector) => vector.Extract<ulong>(1);
|
|
|
|
protected static ushort GenNormalH()
|
|
{
|
|
uint rnd;
|
|
|
|
do rnd = TestContext.CurrentContext.Random.NextUShort();
|
|
while ((rnd & 0x7C00u) == 0u ||
|
|
(~rnd & 0x7C00u) == 0u);
|
|
|
|
return (ushort)rnd;
|
|
}
|
|
|
|
protected static ushort GenSubnormalH()
|
|
{
|
|
uint rnd;
|
|
|
|
do rnd = TestContext.CurrentContext.Random.NextUShort();
|
|
while ((rnd & 0x03FFu) == 0u);
|
|
|
|
return (ushort)(rnd & 0x83FFu);
|
|
}
|
|
|
|
protected static uint GenNormalS()
|
|
{
|
|
uint rnd;
|
|
|
|
do rnd = TestContext.CurrentContext.Random.NextUInt();
|
|
while ((rnd & 0x7F800000u) == 0u ||
|
|
(~rnd & 0x7F800000u) == 0u);
|
|
|
|
return rnd;
|
|
}
|
|
|
|
protected static uint GenSubnormalS()
|
|
{
|
|
uint rnd;
|
|
|
|
do rnd = TestContext.CurrentContext.Random.NextUInt();
|
|
while ((rnd & 0x007FFFFFu) == 0u);
|
|
|
|
return rnd & 0x807FFFFFu;
|
|
}
|
|
|
|
protected static ulong GenNormalD()
|
|
{
|
|
ulong rnd;
|
|
|
|
do rnd = TestContext.CurrentContext.Random.NextULong();
|
|
while ((rnd & 0x7FF0000000000000ul) == 0ul ||
|
|
(~rnd & 0x7FF0000000000000ul) == 0ul);
|
|
|
|
return rnd;
|
|
}
|
|
|
|
protected static ulong GenSubnormalD()
|
|
{
|
|
ulong rnd;
|
|
|
|
do rnd = TestContext.CurrentContext.Random.NextULong();
|
|
while ((rnd & 0x000FFFFFFFFFFFFFul) == 0ul);
|
|
|
|
return rnd & 0x800FFFFFFFFFFFFFul;
|
|
}
|
|
}
|
|
}
|