1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-11-10 19:36:40 +00:00
Ryujinx/ChocolArm64/Instructions/SoftFallback.cs
Alex Barney 9cb57fb4bb Adjust naming conventions for Ryujinx and ChocolArm64 projects (#484)
* Change naming convention for Ryujinx project

* Change naming convention for ChocolArm64 project

* Fix NaN

* Remove unneeded this. from Ryujinx project

* Adjust naming from new PRs

* Name changes based on feedback

* How did this get removed?

* Rebasing fix

* Change FP enum case

* Remove prefix from ChocolArm64 classes - Part 1

* Remove prefix from ChocolArm64 classes - Part 2

* Fix alignment from last commit's renaming

* Rename namespaces

* Rename stragglers

* Fix alignment

* Rename OpCode class

* Missed a few

* Adjust alignment
2018-10-30 22:43:02 -03:00

922 lines
28 KiB
C#

using ChocolArm64.State;
using ChocolArm64.Translation;
using System;
using System.Runtime.CompilerServices;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
namespace ChocolArm64.Instructions
{
using static VectorHelper;
static class SoftFallback
{
public static void EmitCall(ILEmitterCtx context, string mthdName)
{
context.EmitCall(typeof(SoftFallback), mthdName);
}
#region "ShrImm_64"
public static long SignedShrImm_64(long value, long roundConst, int shift)
{
if (roundConst == 0L)
{
if (shift <= 63)
{
return value >> shift;
}
else /* if (Shift == 64) */
{
if (value < 0L)
{
return -1L;
}
else
{
return 0L;
}
}
}
else /* if (RoundConst == 1L << (Shift - 1)) */
{
if (shift <= 63)
{
long add = value + roundConst;
if ((~value & (value ^ add)) < 0L)
{
return (long)((ulong)add >> shift);
}
else
{
return add >> shift;
}
}
else /* if (Shift == 64) */
{
return 0L;
}
}
}
public static ulong UnsignedShrImm_64(ulong value, long roundConst, int shift)
{
if (roundConst == 0L)
{
if (shift <= 63)
{
return value >> shift;
}
else /* if (Shift == 64) */
{
return 0UL;
}
}
else /* if (RoundConst == 1L << (Shift - 1)) */
{
ulong add = value + (ulong)roundConst;
if ((add < value) && (add < (ulong)roundConst))
{
if (shift <= 63)
{
return (add >> shift) | (0x8000000000000000UL >> (shift - 1));
}
else /* if (Shift == 64) */
{
return 1UL;
}
}
else
{
if (shift <= 63)
{
return add >> shift;
}
else /* if (Shift == 64) */
{
return 0UL;
}
}
}
}
#endregion
#region "Saturating"
public static long SignedSrcSignedDstSatQ(long op, int size, CpuThreadState state)
{
int eSize = 8 << size;
long tMaxValue = (1L << (eSize - 1)) - 1L;
long tMinValue = -(1L << (eSize - 1));
if (op > tMaxValue)
{
state.SetFpsrFlag(Fpsr.Qc);
return tMaxValue;
}
else if (op < tMinValue)
{
state.SetFpsrFlag(Fpsr.Qc);
return tMinValue;
}
else
{
return op;
}
}
public static ulong SignedSrcUnsignedDstSatQ(long op, int size, CpuThreadState state)
{
int eSize = 8 << size;
ulong tMaxValue = (1UL << eSize) - 1UL;
ulong tMinValue = 0UL;
if (op > (long)tMaxValue)
{
state.SetFpsrFlag(Fpsr.Qc);
return tMaxValue;
}
else if (op < (long)tMinValue)
{
state.SetFpsrFlag(Fpsr.Qc);
return tMinValue;
}
else
{
return (ulong)op;
}
}
public static long UnsignedSrcSignedDstSatQ(ulong op, int size, CpuThreadState state)
{
int eSize = 8 << size;
long tMaxValue = (1L << (eSize - 1)) - 1L;
if (op > (ulong)tMaxValue)
{
state.SetFpsrFlag(Fpsr.Qc);
return tMaxValue;
}
else
{
return (long)op;
}
}
public static ulong UnsignedSrcUnsignedDstSatQ(ulong op, int size, CpuThreadState state)
{
int eSize = 8 << size;
ulong tMaxValue = (1UL << eSize) - 1UL;
if (op > tMaxValue)
{
state.SetFpsrFlag(Fpsr.Qc);
return tMaxValue;
}
else
{
return op;
}
}
public static long UnarySignedSatQAbsOrNeg(long op, CpuThreadState state)
{
if (op == long.MinValue)
{
state.SetFpsrFlag(Fpsr.Qc);
return long.MaxValue;
}
else
{
return op;
}
}
public static long BinarySignedSatQAdd(long op1, long op2, CpuThreadState state)
{
long add = op1 + op2;
if ((~(op1 ^ op2) & (op1 ^ add)) < 0L)
{
state.SetFpsrFlag(Fpsr.Qc);
if (op1 < 0L)
{
return long.MinValue;
}
else
{
return long.MaxValue;
}
}
else
{
return add;
}
}
public static ulong BinaryUnsignedSatQAdd(ulong op1, ulong op2, CpuThreadState state)
{
ulong add = op1 + op2;
if ((add < op1) && (add < op2))
{
state.SetFpsrFlag(Fpsr.Qc);
return ulong.MaxValue;
}
else
{
return add;
}
}
public static long BinarySignedSatQSub(long op1, long op2, CpuThreadState state)
{
long sub = op1 - op2;
if (((op1 ^ op2) & (op1 ^ sub)) < 0L)
{
state.SetFpsrFlag(Fpsr.Qc);
if (op1 < 0L)
{
return long.MinValue;
}
else
{
return long.MaxValue;
}
}
else
{
return sub;
}
}
public static ulong BinaryUnsignedSatQSub(ulong op1, ulong op2, CpuThreadState state)
{
ulong sub = op1 - op2;
if (op1 < op2)
{
state.SetFpsrFlag(Fpsr.Qc);
return ulong.MinValue;
}
else
{
return sub;
}
}
public static long BinarySignedSatQAcc(ulong op1, long op2, CpuThreadState state)
{
if (op1 <= (ulong)long.MaxValue)
{
// Op1 from ulong.MinValue to (ulong)long.MaxValue
// Op2 from long.MinValue to long.MaxValue
long add = (long)op1 + op2;
if ((~op2 & add) < 0L)
{
state.SetFpsrFlag(Fpsr.Qc);
return long.MaxValue;
}
else
{
return add;
}
}
else if (op2 >= 0L)
{
// Op1 from (ulong)long.MaxValue + 1UL to ulong.MaxValue
// Op2 from (long)ulong.MinValue to long.MaxValue
state.SetFpsrFlag(Fpsr.Qc);
return long.MaxValue;
}
else
{
// Op1 from (ulong)long.MaxValue + 1UL to ulong.MaxValue
// Op2 from long.MinValue to (long)ulong.MinValue - 1L
ulong add = op1 + (ulong)op2;
if (add > (ulong)long.MaxValue)
{
state.SetFpsrFlag(Fpsr.Qc);
return long.MaxValue;
}
else
{
return (long)add;
}
}
}
public static ulong BinaryUnsignedSatQAcc(long op1, ulong op2, CpuThreadState state)
{
if (op1 >= 0L)
{
// Op1 from (long)ulong.MinValue to long.MaxValue
// Op2 from ulong.MinValue to ulong.MaxValue
ulong add = (ulong)op1 + op2;
if ((add < (ulong)op1) && (add < op2))
{
state.SetFpsrFlag(Fpsr.Qc);
return ulong.MaxValue;
}
else
{
return add;
}
}
else if (op2 > (ulong)long.MaxValue)
{
// Op1 from long.MinValue to (long)ulong.MinValue - 1L
// Op2 from (ulong)long.MaxValue + 1UL to ulong.MaxValue
return (ulong)op1 + op2;
}
else
{
// Op1 from long.MinValue to (long)ulong.MinValue - 1L
// Op2 from ulong.MinValue to (ulong)long.MaxValue
long add = op1 + (long)op2;
if (add < (long)ulong.MinValue)
{
state.SetFpsrFlag(Fpsr.Qc);
return ulong.MinValue;
}
else
{
return (ulong)add;
}
}
}
#endregion
#region "Count"
public static ulong CountLeadingSigns(ulong value, int size) // Size is 8, 16, 32 or 64 (SIMD&FP or Base Inst.).
{
value ^= value >> 1;
int highBit = size - 2;
for (int bit = highBit; bit >= 0; bit--)
{
if (((value >> bit) & 0b1) != 0)
{
return (ulong)(highBit - bit);
}
}
return (ulong)(size - 1);
}
private static readonly byte[] ClzNibbleTbl = { 4, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 };
public static ulong CountLeadingZeros(ulong value, int size) // Size is 8, 16, 32 or 64 (SIMD&FP or Base Inst.).
{
if (value == 0ul)
{
return (ulong)size;
}
int nibbleIdx = size;
int preCount, count = 0;
do
{
nibbleIdx -= 4;
preCount = ClzNibbleTbl[(value >> nibbleIdx) & 0b1111];
count += preCount;
}
while (preCount == 4);
return (ulong)count;
}
public static ulong CountSetBits8(ulong value) // "Size" is 8 (SIMD&FP Inst.).
{
if (value == 0xfful)
{
return 8ul;
}
value = ((value >> 1) & 0x55ul) + (value & 0x55ul);
value = ((value >> 2) & 0x33ul) + (value & 0x33ul);
return (value >> 4) + (value & 0x0ful);
}
#endregion
#region "Crc32"
private const uint Crc32RevPoly = 0xedb88320;
private const uint Crc32CRevPoly = 0x82f63b78;
public static uint Crc32B(uint crc, byte val) => Crc32 (crc, Crc32RevPoly, val);
public static uint Crc32H(uint crc, ushort val) => Crc32H(crc, Crc32RevPoly, val);
public static uint Crc32W(uint crc, uint val) => Crc32W(crc, Crc32RevPoly, val);
public static uint Crc32X(uint crc, ulong val) => Crc32X(crc, Crc32RevPoly, val);
public static uint Crc32Cb(uint crc, byte val) => Crc32 (crc, Crc32CRevPoly, val);
public static uint Crc32Ch(uint crc, ushort val) => Crc32H(crc, Crc32CRevPoly, val);
public static uint Crc32Cw(uint crc, uint val) => Crc32W(crc, Crc32CRevPoly, val);
public static uint Crc32Cx(uint crc, ulong val) => Crc32X(crc, Crc32CRevPoly, val);
private static uint Crc32H(uint crc, uint poly, ushort val)
{
crc = Crc32(crc, poly, (byte)(val >> 0));
crc = Crc32(crc, poly, (byte)(val >> 8));
return crc;
}
private static uint Crc32W(uint crc, uint poly, uint val)
{
crc = Crc32(crc, poly, (byte)(val >> 0 ));
crc = Crc32(crc, poly, (byte)(val >> 8 ));
crc = Crc32(crc, poly, (byte)(val >> 16));
crc = Crc32(crc, poly, (byte)(val >> 24));
return crc;
}
private static uint Crc32X(uint crc, uint poly, ulong val)
{
crc = Crc32(crc, poly, (byte)(val >> 0 ));
crc = Crc32(crc, poly, (byte)(val >> 8 ));
crc = Crc32(crc, poly, (byte)(val >> 16));
crc = Crc32(crc, poly, (byte)(val >> 24));
crc = Crc32(crc, poly, (byte)(val >> 32));
crc = Crc32(crc, poly, (byte)(val >> 40));
crc = Crc32(crc, poly, (byte)(val >> 48));
crc = Crc32(crc, poly, (byte)(val >> 56));
return crc;
}
private static uint Crc32(uint crc, uint poly, byte val)
{
crc ^= val;
for (int bit = 7; bit >= 0; bit--)
{
uint mask = (uint)(-(int)(crc & 1));
crc = (crc >> 1) ^ (poly & mask);
}
return crc;
}
#endregion
#region "Aes"
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector128<float> Decrypt(Vector128<float> value, Vector128<float> roundKey)
{
if (!Sse.IsSupported)
{
throw new PlatformNotSupportedException();
}
return CryptoHelper.AesInvSubBytes(CryptoHelper.AesInvShiftRows(Sse.Xor(value, roundKey)));
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector128<float> Encrypt(Vector128<float> value, Vector128<float> roundKey)
{
if (!Sse.IsSupported)
{
throw new PlatformNotSupportedException();
}
return CryptoHelper.AesSubBytes(CryptoHelper.AesShiftRows(Sse.Xor(value, roundKey)));
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector128<float> InverseMixColumns(Vector128<float> value)
{
return CryptoHelper.AesInvMixColumns(value);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector128<float> MixColumns(Vector128<float> value)
{
return CryptoHelper.AesMixColumns(value);
}
#endregion
#region "Sha1"
public static Vector128<float> HashChoose(Vector128<float> hashAbcd, uint hashE, Vector128<float> wk)
{
for (int e = 0; e <= 3; e++)
{
uint t = ShaChoose((uint)VectorExtractIntZx(hashAbcd, (byte)1, 2),
(uint)VectorExtractIntZx(hashAbcd, (byte)2, 2),
(uint)VectorExtractIntZx(hashAbcd, (byte)3, 2));
hashE += Rol((uint)VectorExtractIntZx(hashAbcd, (byte)0, 2), 5) + t;
hashE += (uint)VectorExtractIntZx(wk, (byte)e, 2);
t = Rol((uint)VectorExtractIntZx(hashAbcd, (byte)1, 2), 30);
hashAbcd = VectorInsertInt((ulong)t, hashAbcd, (byte)1, 2);
Rol32_160(ref hashE, ref hashAbcd);
}
return hashAbcd;
}
public static uint FixedRotate(uint hashE)
{
return hashE.Rol(30);
}
public static Vector128<float> HashMajority(Vector128<float> hashAbcd, uint hashE, Vector128<float> wk)
{
for (int e = 0; e <= 3; e++)
{
uint t = ShaMajority((uint)VectorExtractIntZx(hashAbcd, (byte)1, 2),
(uint)VectorExtractIntZx(hashAbcd, (byte)2, 2),
(uint)VectorExtractIntZx(hashAbcd, (byte)3, 2));
hashE += Rol((uint)VectorExtractIntZx(hashAbcd, (byte)0, 2), 5) + t;
hashE += (uint)VectorExtractIntZx(wk, (byte)e, 2);
t = Rol((uint)VectorExtractIntZx(hashAbcd, (byte)1, 2), 30);
hashAbcd = VectorInsertInt((ulong)t, hashAbcd, (byte)1, 2);
Rol32_160(ref hashE, ref hashAbcd);
}
return hashAbcd;
}
public static Vector128<float> HashParity(Vector128<float> hashAbcd, uint hashE, Vector128<float> wk)
{
for (int e = 0; e <= 3; e++)
{
uint t = ShaParity((uint)VectorExtractIntZx(hashAbcd, (byte)1, 2),
(uint)VectorExtractIntZx(hashAbcd, (byte)2, 2),
(uint)VectorExtractIntZx(hashAbcd, (byte)3, 2));
hashE += Rol((uint)VectorExtractIntZx(hashAbcd, (byte)0, 2), 5) + t;
hashE += (uint)VectorExtractIntZx(wk, (byte)e, 2);
t = Rol((uint)VectorExtractIntZx(hashAbcd, (byte)1, 2), 30);
hashAbcd = VectorInsertInt((ulong)t, hashAbcd, (byte)1, 2);
Rol32_160(ref hashE, ref hashAbcd);
}
return hashAbcd;
}
public static Vector128<float> Sha1SchedulePart1(Vector128<float> w03, Vector128<float> w47, Vector128<float> w811)
{
if (!Sse.IsSupported)
{
throw new PlatformNotSupportedException();
}
Vector128<float> result = new Vector128<float>();
ulong t2 = VectorExtractIntZx(w47, (byte)0, 3);
ulong t1 = VectorExtractIntZx(w03, (byte)1, 3);
result = VectorInsertInt((ulong)t1, result, (byte)0, 3);
result = VectorInsertInt((ulong)t2, result, (byte)1, 3);
return Sse.Xor(result, Sse.Xor(w03, w811));
}
public static Vector128<float> Sha1SchedulePart2(Vector128<float> tw03, Vector128<float> w1215)
{
if (!Sse2.IsSupported)
{
throw new PlatformNotSupportedException();
}
Vector128<float> result = new Vector128<float>();
Vector128<float> t = Sse.Xor(tw03, Sse.StaticCast<uint, float>(
Sse2.ShiftRightLogical128BitLane(Sse.StaticCast<float, uint>(w1215), (byte)4)));
uint tE0 = (uint)VectorExtractIntZx(t, (byte)0, 2);
uint tE1 = (uint)VectorExtractIntZx(t, (byte)1, 2);
uint tE2 = (uint)VectorExtractIntZx(t, (byte)2, 2);
uint tE3 = (uint)VectorExtractIntZx(t, (byte)3, 2);
result = VectorInsertInt((ulong)tE0.Rol(1), result, (byte)0, 2);
result = VectorInsertInt((ulong)tE1.Rol(1), result, (byte)1, 2);
result = VectorInsertInt((ulong)tE2.Rol(1), result, (byte)2, 2);
return VectorInsertInt((ulong)(tE3.Rol(1) ^ tE0.Rol(2)), result, (byte)3, 2);
}
private static void Rol32_160(ref uint y, ref Vector128<float> x)
{
if (!Sse2.IsSupported)
{
throw new PlatformNotSupportedException();
}
uint xE3 = (uint)VectorExtractIntZx(x, (byte)3, 2);
x = Sse.StaticCast<uint, float>(Sse2.ShiftLeftLogical128BitLane(Sse.StaticCast<float, uint>(x), (byte)4));
x = VectorInsertInt((ulong)y, x, (byte)0, 2);
y = xE3;
}
private static uint ShaChoose(uint x, uint y, uint z)
{
return ((y ^ z) & x) ^ z;
}
private static uint ShaMajority(uint x, uint y, uint z)
{
return (x & y) | ((x | y) & z);
}
private static uint ShaParity(uint x, uint y, uint z)
{
return x ^ y ^ z;
}
private static uint Rol(this uint value, int count)
{
return (value << count) | (value >> (32 - count));
}
#endregion
#region "Sha256"
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector128<float> HashLower(Vector128<float> hashAbcd, Vector128<float> hashEfgh, Vector128<float> wk)
{
return Sha256Hash(hashAbcd, hashEfgh, wk, true);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Vector128<float> HashUpper(Vector128<float> hashEfgh, Vector128<float> hashAbcd, Vector128<float> wk)
{
return Sha256Hash(hashAbcd, hashEfgh, wk, false);
}
public static Vector128<float> Sha256SchedulePart1(Vector128<float> w03, Vector128<float> w47)
{
Vector128<float> result = new Vector128<float>();
for (int e = 0; e <= 3; e++)
{
uint elt = (uint)VectorExtractIntZx(e <= 2 ? w03 : w47, (byte)(e <= 2 ? e + 1 : 0), 2);
elt = elt.Ror(7) ^ elt.Ror(18) ^ elt.Lsr(3);
elt += (uint)VectorExtractIntZx(w03, (byte)e, 2);
result = VectorInsertInt((ulong)elt, result, (byte)e, 2);
}
return result;
}
public static Vector128<float> Sha256SchedulePart2(Vector128<float> w03, Vector128<float> w811, Vector128<float> w1215)
{
Vector128<float> result = new Vector128<float>();
ulong t1 = VectorExtractIntZx(w1215, (byte)1, 3);
for (int e = 0; e <= 1; e++)
{
uint elt = t1.ULongPart(e);
elt = elt.Ror(17) ^ elt.Ror(19) ^ elt.Lsr(10);
elt += (uint)VectorExtractIntZx(w03, (byte)e, 2);
elt += (uint)VectorExtractIntZx(w811, (byte)(e + 1), 2);
result = VectorInsertInt((ulong)elt, result, (byte)e, 2);
}
t1 = VectorExtractIntZx(result, (byte)0, 3);
for (int e = 2; e <= 3; e++)
{
uint elt = t1.ULongPart(e - 2);
elt = elt.Ror(17) ^ elt.Ror(19) ^ elt.Lsr(10);
elt += (uint)VectorExtractIntZx(w03, (byte)e, 2);
elt += (uint)VectorExtractIntZx(e == 2 ? w811 : w1215, (byte)(e == 2 ? 3 : 0), 2);
result = VectorInsertInt((ulong)elt, result, (byte)e, 2);
}
return result;
}
private static Vector128<float> Sha256Hash(Vector128<float> x, Vector128<float> y, Vector128<float> w, bool part1)
{
for (int e = 0; e <= 3; e++)
{
uint chs = ShaChoose((uint)VectorExtractIntZx(y, (byte)0, 2),
(uint)VectorExtractIntZx(y, (byte)1, 2),
(uint)VectorExtractIntZx(y, (byte)2, 2));
uint maj = ShaMajority((uint)VectorExtractIntZx(x, (byte)0, 2),
(uint)VectorExtractIntZx(x, (byte)1, 2),
(uint)VectorExtractIntZx(x, (byte)2, 2));
uint t1 = (uint)VectorExtractIntZx(y, (byte)3, 2);
t1 += ShaHashSigma1((uint)VectorExtractIntZx(y, (byte)0, 2)) + chs;
t1 += (uint)VectorExtractIntZx(w, (byte)e, 2);
uint t2 = t1 + (uint)VectorExtractIntZx(x, (byte)3, 2);
x = VectorInsertInt((ulong)t2, x, (byte)3, 2);
t2 = t1 + ShaHashSigma0((uint)VectorExtractIntZx(x, (byte)0, 2)) + maj;
y = VectorInsertInt((ulong)t2, y, (byte)3, 2);
Rol32_256(ref y, ref x);
}
return part1 ? x : y;
}
private static void Rol32_256(ref Vector128<float> y, ref Vector128<float> x)
{
if (!Sse2.IsSupported)
{
throw new PlatformNotSupportedException();
}
uint yE3 = (uint)VectorExtractIntZx(y, (byte)3, 2);
uint xE3 = (uint)VectorExtractIntZx(x, (byte)3, 2);
y = Sse.StaticCast<uint, float>(Sse2.ShiftLeftLogical128BitLane(Sse.StaticCast<float, uint>(y), (byte)4));
x = Sse.StaticCast<uint, float>(Sse2.ShiftLeftLogical128BitLane(Sse.StaticCast<float, uint>(x), (byte)4));
y = VectorInsertInt((ulong)xE3, y, (byte)0, 2);
x = VectorInsertInt((ulong)yE3, x, (byte)0, 2);
}
private static uint ShaHashSigma0(uint x)
{
return x.Ror(2) ^ x.Ror(13) ^ x.Ror(22);
}
private static uint ShaHashSigma1(uint x)
{
return x.Ror(6) ^ x.Ror(11) ^ x.Ror(25);
}
private static uint Ror(this uint value, int count)
{
return (value >> count) | (value << (32 - count));
}
private static uint Lsr(this uint value, int count)
{
return value >> count;
}
private static uint ULongPart(this ulong value, int part)
{
return part == 0
? (uint)(value & 0xFFFFFFFFUL)
: (uint)(value >> 32);
}
#endregion
#region "Reverse"
public static uint ReverseBits8(uint value)
{
value = ((value & 0xaa) >> 1) | ((value & 0x55) << 1);
value = ((value & 0xcc) >> 2) | ((value & 0x33) << 2);
return (value >> 4) | ((value & 0x0f) << 4);
}
public static uint ReverseBits32(uint value)
{
value = ((value & 0xaaaaaaaa) >> 1) | ((value & 0x55555555) << 1);
value = ((value & 0xcccccccc) >> 2) | ((value & 0x33333333) << 2);
value = ((value & 0xf0f0f0f0) >> 4) | ((value & 0x0f0f0f0f) << 4);
value = ((value & 0xff00ff00) >> 8) | ((value & 0x00ff00ff) << 8);
return (value >> 16) | (value << 16);
}
public static ulong ReverseBits64(ulong value)
{
value = ((value & 0xaaaaaaaaaaaaaaaa) >> 1 ) | ((value & 0x5555555555555555) << 1 );
value = ((value & 0xcccccccccccccccc) >> 2 ) | ((value & 0x3333333333333333) << 2 );
value = ((value & 0xf0f0f0f0f0f0f0f0) >> 4 ) | ((value & 0x0f0f0f0f0f0f0f0f) << 4 );
value = ((value & 0xff00ff00ff00ff00) >> 8 ) | ((value & 0x00ff00ff00ff00ff) << 8 );
value = ((value & 0xffff0000ffff0000) >> 16) | ((value & 0x0000ffff0000ffff) << 16);
return (value >> 32) | (value << 32);
}
public static uint ReverseBytes16_32(uint value) => (uint)ReverseBytes16_64(value);
public static uint ReverseBytes32_32(uint value) => (uint)ReverseBytes32_64(value);
public static ulong ReverseBytes16_64(ulong value) => ReverseBytes(value, RevSize.Rev16);
public static ulong ReverseBytes32_64(ulong value) => ReverseBytes(value, RevSize.Rev32);
public static ulong ReverseBytes64(ulong value) => ReverseBytes(value, RevSize.Rev64);
private enum RevSize
{
Rev16,
Rev32,
Rev64
}
private static ulong ReverseBytes(ulong value, RevSize size)
{
value = ((value & 0xff00ff00ff00ff00) >> 8) | ((value & 0x00ff00ff00ff00ff) << 8);
if (size == RevSize.Rev16)
{
return value;
}
value = ((value & 0xffff0000ffff0000) >> 16) | ((value & 0x0000ffff0000ffff) << 16);
if (size == RevSize.Rev32)
{
return value;
}
value = ((value & 0xffffffff00000000) >> 32) | ((value & 0x00000000ffffffff) << 32);
if (size == RevSize.Rev64)
{
return value;
}
throw new ArgumentException(nameof(size));
}
#endregion
#region "MultiplyHigh"
public static long SMulHi128(long left, long right)
{
long result = (long)UMulHi128((ulong)left, (ulong)right);
if (left < 0)
{
result -= right;
}
if (right < 0)
{
result -= left;
}
return result;
}
public static ulong UMulHi128(ulong left, ulong right)
{
ulong lHigh = left >> 32;
ulong lLow = left & 0xFFFFFFFF;
ulong rHigh = right >> 32;
ulong rLow = right & 0xFFFFFFFF;
ulong z2 = lLow * rLow;
ulong t = lHigh * rLow + (z2 >> 32);
ulong z1 = t & 0xFFFFFFFF;
ulong z0 = t >> 32;
z1 += lLow * rHigh;
return lHigh * rHigh + z0 + (z1 >> 32);
}
#endregion
}
}