1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-11-19 22:06:39 +00:00
Ryujinx/Ryujinx.Graphics.Gpu/Shader/ShaderCache.cs
gdkchan 111534a74e
Remove GPU MemoryAccessor (#1423)
* Remove GPU MemoryAccessor

* Update outdated XML doc

* Update more outdated stuff
2020-07-25 16:39:45 +10:00

404 lines
No EOL
15 KiB
C#

using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.State;
using Ryujinx.Graphics.Shader;
using Ryujinx.Graphics.Shader.Translation;
using System;
using System.Collections.Generic;
namespace Ryujinx.Graphics.Gpu.Shader
{
/// <summary>
/// Memory cache of shader code.
/// </summary>
class ShaderCache : IDisposable
{
private const TranslationFlags DefaultFlags = TranslationFlags.DebugMode;
private readonly GpuContext _context;
private readonly ShaderDumper _dumper;
private readonly Dictionary<ulong, List<ShaderBundle>> _cpPrograms;
private readonly Dictionary<ShaderAddresses, List<ShaderBundle>> _gpPrograms;
/// <summary>
/// Creates a new instance of the shader cache.
/// </summary>
/// <param name="context">GPU context that the shader cache belongs to</param>
public ShaderCache(GpuContext context)
{
_context = context;
_dumper = new ShaderDumper();
_cpPrograms = new Dictionary<ulong, List<ShaderBundle>>();
_gpPrograms = new Dictionary<ShaderAddresses, List<ShaderBundle>>();
}
/// <summary>
/// Gets a compute shader from the cache.
/// </summary>
/// <remarks>
/// This automatically translates, compiles and adds the code to the cache if not present.
/// </remarks>
/// <param name="state">Current GPU state</param>
/// <param name="gpuVa">GPU virtual address of the binary shader code</param>
/// <param name="localSizeX">Local group size X of the computer shader</param>
/// <param name="localSizeY">Local group size Y of the computer shader</param>
/// <param name="localSizeZ">Local group size Z of the computer shader</param>
/// <param name="localMemorySize">Local memory size of the compute shader</param>
/// <param name="sharedMemorySize">Shared memory size of the compute shader</param>
/// <returns>Compiled compute shader code</returns>
public ShaderBundle GetComputeShader(
GpuState state,
ulong gpuVa,
int localSizeX,
int localSizeY,
int localSizeZ,
int localMemorySize,
int sharedMemorySize)
{
bool isCached = _cpPrograms.TryGetValue(gpuVa, out List<ShaderBundle> list);
if (isCached)
{
foreach (ShaderBundle cachedCpShader in list)
{
if (IsShaderEqual(cachedCpShader, gpuVa))
{
return cachedCpShader;
}
}
}
ShaderCodeHolder shader = TranslateComputeShader(
state,
gpuVa,
localSizeX,
localSizeY,
localSizeZ,
localMemorySize,
sharedMemorySize);
shader.HostShader = _context.Renderer.CompileShader(shader.Program);
IProgram hostProgram = _context.Renderer.CreateProgram(new IShader[] { shader.HostShader }, null);
ShaderBundle cpShader = new ShaderBundle(hostProgram, shader);
if (!isCached)
{
list = new List<ShaderBundle>();
_cpPrograms.Add(gpuVa, list);
}
list.Add(cpShader);
return cpShader;
}
/// <summary>
/// Gets a graphics shader program from the shader cache.
/// This includes all the specified shader stages.
/// </summary>
/// <remarks>
/// This automatically translates, compiles and adds the code to the cache if not present.
/// </remarks>
/// <param name="state">Current GPU state</param>
/// <param name="addresses">Addresses of the shaders for each stage</param>
/// <returns>Compiled graphics shader code</returns>
public ShaderBundle GetGraphicsShader(GpuState state, ShaderAddresses addresses)
{
bool isCached = _gpPrograms.TryGetValue(addresses, out List<ShaderBundle> list);
if (isCached)
{
foreach (ShaderBundle cachedGpShaders in list)
{
if (IsShaderEqual(cachedGpShaders, addresses))
{
return cachedGpShaders;
}
}
}
ShaderCodeHolder[] shaders = new ShaderCodeHolder[Constants.ShaderStages];
if (addresses.VertexA != 0)
{
shaders[0] = TranslateGraphicsShader(state, ShaderStage.Vertex, addresses.Vertex, addresses.VertexA);
}
else
{
shaders[0] = TranslateGraphicsShader(state, ShaderStage.Vertex, addresses.Vertex);
}
shaders[1] = TranslateGraphicsShader(state, ShaderStage.TessellationControl, addresses.TessControl);
shaders[2] = TranslateGraphicsShader(state, ShaderStage.TessellationEvaluation, addresses.TessEvaluation);
shaders[3] = TranslateGraphicsShader(state, ShaderStage.Geometry, addresses.Geometry);
shaders[4] = TranslateGraphicsShader(state, ShaderStage.Fragment, addresses.Fragment);
List<IShader> hostShaders = new List<IShader>();
for (int stage = 0; stage < Constants.ShaderStages; stage++)
{
ShaderProgram program = shaders[stage]?.Program;
if (program == null)
{
continue;
}
var tfd = GetTransformFeedbackDescriptors(state);
IShader hostShader = _context.Renderer.CompileShader(program);
shaders[stage].HostShader = hostShader;
hostShaders.Add(hostShader);
}
IProgram hostProgram = _context.Renderer.CreateProgram(hostShaders.ToArray(), GetTransformFeedbackDescriptors(state));
ShaderBundle gpShaders = new ShaderBundle(hostProgram, shaders);
if (!isCached)
{
list = new List<ShaderBundle>();
_gpPrograms.Add(addresses, list);
}
list.Add(gpShaders);
return gpShaders;
}
/// <summary>
/// Gets transform feedback state from the current GPU state.
/// </summary>
/// <param name="state">Current GPU state</param>
/// <returns>Four transform feedback descriptors for the enabled TFBs, or null if TFB is disabled</returns>
private TransformFeedbackDescriptor[] GetTransformFeedbackDescriptors(GpuState state)
{
bool tfEnable = state.Get<Boolean32>(MethodOffset.TfEnable);
if (!tfEnable)
{
return null;
}
TransformFeedbackDescriptor[] descs = new TransformFeedbackDescriptor[Constants.TotalTransformFeedbackBuffers];
for (int i = 0; i < Constants.TotalTransformFeedbackBuffers; i++)
{
var tf = state.Get<TfState>(MethodOffset.TfState, i);
int length = (int)Math.Min((uint)tf.VaryingsCount, 0x80);
var varyingLocations = state.GetSpan(MethodOffset.TfVaryingLocations + i * 0x80, length).ToArray();
descs[i] = new TransformFeedbackDescriptor(tf.BufferIndex, tf.Stride, varyingLocations);
}
return descs;
}
/// <summary>
/// Checks if compute shader code in memory is equal to the cached shader.
/// </summary>
/// <param name="cpShader">Cached compute shader</param>
/// <param name="gpuVa">GPU virtual address of the shader code in memory</param>
/// <returns>True if the code is different, false otherwise</returns>
private bool IsShaderEqual(ShaderBundle cpShader, ulong gpuVa)
{
return IsShaderEqual(cpShader.Shaders[0], gpuVa);
}
/// <summary>
/// Checks if graphics shader code from all stages in memory are equal to the cached shaders.
/// </summary>
/// <param name="gpShaders">Cached graphics shaders</param>
/// <param name="addresses">GPU virtual addresses of all enabled shader stages</param>
/// <returns>True if the code is different, false otherwise</returns>
private bool IsShaderEqual(ShaderBundle gpShaders, ShaderAddresses addresses)
{
for (int stage = 0; stage < gpShaders.Shaders.Length; stage++)
{
ShaderCodeHolder shader = gpShaders.Shaders[stage];
ulong gpuVa = 0;
switch (stage)
{
case 0: gpuVa = addresses.Vertex; break;
case 1: gpuVa = addresses.TessControl; break;
case 2: gpuVa = addresses.TessEvaluation; break;
case 3: gpuVa = addresses.Geometry; break;
case 4: gpuVa = addresses.Fragment; break;
}
if (!IsShaderEqual(shader, gpuVa, addresses.VertexA))
{
return false;
}
}
return true;
}
/// <summary>
/// Checks if the code of the specified cached shader is different from the code in memory.
/// </summary>
/// <param name="shader">Cached shader to compare with</param>
/// <param name="gpuVa">GPU virtual address of the binary shader code</param>
/// <param name="gpuVaA">Optional GPU virtual address of the "Vertex A" binary shader code</param>
/// <returns>True if the code is different, false otherwise</returns>
private bool IsShaderEqual(ShaderCodeHolder shader, ulong gpuVa, ulong gpuVaA = 0)
{
if (shader == null)
{
return true;
}
ReadOnlySpan<byte> memoryCode = _context.MemoryManager.GetSpan(gpuVa, shader.Code.Length);
bool equals = memoryCode.SequenceEqual(shader.Code);
if (equals && shader.Code2 != null)
{
memoryCode = _context.MemoryManager.GetSpan(gpuVaA, shader.Code2.Length);
equals = memoryCode.SequenceEqual(shader.Code2);
}
return equals;
}
/// <summary>
/// Translates the binary Maxwell shader code to something that the host API accepts.
/// </summary>
/// <param name="state">Current GPU state</param>
/// <param name="gpuVa">GPU virtual address of the binary shader code</param>
/// <param name="localSizeX">Local group size X of the computer shader</param>
/// <param name="localSizeY">Local group size Y of the computer shader</param>
/// <param name="localSizeZ">Local group size Z of the computer shader</param>
/// <param name="localMemorySize">Local memory size of the compute shader</param>
/// <param name="sharedMemorySize">Shared memory size of the compute shader</param>
/// <returns>Compiled compute shader code</returns>
private ShaderCodeHolder TranslateComputeShader(
GpuState state,
ulong gpuVa,
int localSizeX,
int localSizeY,
int localSizeZ,
int localMemorySize,
int sharedMemorySize)
{
if (gpuVa == 0)
{
return null;
}
GpuAccessor gpuAccessor = new GpuAccessor(_context, state, localSizeX, localSizeY, localSizeZ, localMemorySize, sharedMemorySize);
ShaderProgram program;
program = Translator.Translate(gpuVa, gpuAccessor, DefaultFlags | TranslationFlags.Compute);
byte[] code = _context.MemoryManager.GetSpan(gpuVa, program.Size).ToArray();
_dumper.Dump(code, compute: true, out string fullPath, out string codePath);
if (fullPath != null && codePath != null)
{
program.Prepend("// " + codePath);
program.Prepend("// " + fullPath);
}
return new ShaderCodeHolder(program, code);
}
/// <summary>
/// Translates the binary Maxwell shader code to something that the host API accepts.
/// </summary>
/// <remarks>
/// This will combine the "Vertex A" and "Vertex B" shader stages, if specified, into one shader.
/// </remarks>
/// <param name="state">Current GPU state</param>
/// <param name="stage">Shader stage</param>
/// <param name="gpuVa">GPU virtual address of the shader code</param>
/// <param name="gpuVaA">Optional GPU virtual address of the "Vertex A" shader code</param>
/// <returns>Compiled graphics shader code</returns>
private ShaderCodeHolder TranslateGraphicsShader(GpuState state, ShaderStage stage, ulong gpuVa, ulong gpuVaA = 0)
{
if (gpuVa == 0)
{
return null;
}
GpuAccessor gpuAccessor = new GpuAccessor(_context, state, (int)stage - 1);
if (gpuVaA != 0)
{
ShaderProgram program = Translator.Translate(gpuVaA, gpuVa, gpuAccessor, DefaultFlags);
byte[] codeA = _context.MemoryManager.GetSpan(gpuVaA, program.SizeA).ToArray();
byte[] codeB = _context.MemoryManager.GetSpan(gpuVa, program.Size).ToArray();
_dumper.Dump(codeA, compute: false, out string fullPathA, out string codePathA);
_dumper.Dump(codeB, compute: false, out string fullPathB, out string codePathB);
if (fullPathA != null && fullPathB != null && codePathA != null && codePathB != null)
{
program.Prepend("// " + codePathB);
program.Prepend("// " + fullPathB);
program.Prepend("// " + codePathA);
program.Prepend("// " + fullPathA);
}
return new ShaderCodeHolder(program, codeB, codeA);
}
else
{
ShaderProgram program = Translator.Translate(gpuVa, gpuAccessor, DefaultFlags);
byte[] code = _context.MemoryManager.GetSpan(gpuVa, program.Size).ToArray();
_dumper.Dump(code, compute: false, out string fullPath, out string codePath);
if (fullPath != null && codePath != null)
{
program.Prepend("// " + codePath);
program.Prepend("// " + fullPath);
}
return new ShaderCodeHolder(program, code);
}
}
/// <summary>
/// Disposes the shader cache, deleting all the cached shaders.
/// It's an error to use the shader cache after disposal.
/// </summary>
public void Dispose()
{
foreach (List<ShaderBundle> list in _cpPrograms.Values)
{
foreach (ShaderBundle bundle in list)
{
bundle.Dispose();
}
}
foreach (List<ShaderBundle> list in _gpPrograms.Values)
{
foreach (ShaderBundle bundle in list)
{
bundle.Dispose();
}
}
}
}
}