1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-11-11 23:36:40 +00:00
Ryujinx/Ryujinx.HLE/HOS/Services/Time/IStaticService.cs
gdkchan a731ab3a2a Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project

* Refactoring around the old IRAdapter, now renamed to PreAllocator

* Optimize the LowestBitSet method

* Add CLZ support and fix CLS implementation

* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks

* Implement the ByteSwap IR instruction, and some refactoring on the assembler

* Implement the DivideUI IR instruction and fix 64-bits IDIV

* Correct constant operand type on CSINC

* Move division instructions implementation to InstEmitDiv

* Fix destination type for the ConditionalSelect IR instruction

* Implement UMULH and SMULH, with new IR instructions

* Fix some issues with shift instructions

* Fix constant types for BFM instructions

* Fix up new tests using the new V128 struct

* Update tests

* Move DIV tests to a separate file

* Add support for calls, and some instructions that depends on them

* Start adding support for SIMD & FP types, along with some of the related ARM instructions

* Fix some typos and the divide instruction with FP operands

* Fix wrong method call on Clz_V

* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes

* Implement SIMD logical instructions and more misc. fixes

* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations

* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes

* Implement SIMD shift instruction and fix Dup_V

* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table

* Fix check with tolerance on tester

* Implement FP & SIMD comparison instructions, and some fixes

* Update FCVT (Scalar) encoding on the table to support the Half-float variants

* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes

* Use old memory access methods, made a start on SIMD memory insts support, some fixes

* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes

* Fix arguments count with struct return values, other fixes

* More instructions

* Misc. fixes and integrate LDj3SNuD fixes

* Update tests

* Add a faster linear scan allocator, unwinding support on windows, and other changes

* Update Ryujinx.HLE

* Update Ryujinx.Graphics

* Fix V128 return pointer passing, RCX is clobbered

* Update Ryujinx.Tests

* Update ITimeZoneService

* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks

* Use generic GetFunctionPointerForDelegate method and other tweaks

* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics

* Remove some unused code on the assembler

* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler

* Add hardware capability detection

* Fix regression on Sha1h and revert Fcm** changes

* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator

* Fix silly mistake introduced on last commit on CpuId

* Generate inline stack probes when the stack allocation is too large

* Initial support for the System-V ABI

* Support multiple destination operands

* Fix SSE2 VectorInsert8 path, and other fixes

* Change placement of XMM callee save and restore code to match other compilers

* Rename Dest to Destination and Inst to Instruction

* Fix a regression related to calls and the V128 type

* Add an extra space on comments to match code style

* Some refactoring

* Fix vector insert FP32 SSE2 path

* Port over the ARM32 instructions

* Avoid memory protection races on JIT Cache

* Another fix on VectorInsert FP32 (thanks to LDj3SNuD

* Float operands don't need to use the same register when VEX is supported

* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks

* Some nits, small improvements on the pre allocator

* CpuThreadState is gone

* Allow changing CPU emulators with a config entry

* Add runtime identifiers on the ARMeilleure project

* Allow switching between CPUs through a config entry (pt. 2)

* Change win10-x64 to win-x64 on projects

* Update the Ryujinx project to use ARMeilleure

* Ensure that the selected register is valid on the hybrid allocator

* Allow exiting on returns to 0 (should fix test regression)

* Remove register assignments for most used variables on the hybrid allocator

* Do not use fixed registers as spill temp

* Add missing namespace and remove unneeded using

* Address PR feedback

* Fix types, etc

* Enable AssumeStrictAbiCompliance by default

* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 21:56:22 +03:00

332 lines
No EOL
14 KiB
C#

using Ryujinx.Common;
using Ryujinx.HLE.HOS.Ipc;
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Threading;
using Ryujinx.HLE.HOS.Services.Time.Clock;
using Ryujinx.HLE.HOS.Services.Time.TimeZone;
using System;
using System.Diagnostics;
using System.IO;
using System.Runtime.InteropServices;
namespace Ryujinx.HLE.HOS.Services.Time
{
[Service("time:a", TimePermissions.Applet)]
[Service("time:s", TimePermissions.System)]
[Service("time:u", TimePermissions.User)]
class IStaticService : IpcService
{
private TimePermissions _permissions;
private int _timeSharedMemoryNativeHandle = 0;
private static readonly DateTime StartupDate = DateTime.UtcNow;
public IStaticService(ServiceCtx context, TimePermissions permissions)
{
_permissions = permissions;
}
[Command(0)]
// GetStandardUserSystemClock() -> object<nn::timesrv::detail::service::ISystemClock>
public ResultCode GetStandardUserSystemClock(ServiceCtx context)
{
MakeObject(context, new ISystemClock(StandardUserSystemClockCore.Instance, (_permissions & TimePermissions.UserSystemClockWritableMask) != 0));
return ResultCode.Success;
}
[Command(1)]
// GetStandardNetworkSystemClock() -> object<nn::timesrv::detail::service::ISystemClock>
public ResultCode GetStandardNetworkSystemClock(ServiceCtx context)
{
MakeObject(context, new ISystemClock(StandardNetworkSystemClockCore.Instance, (_permissions & TimePermissions.NetworkSystemClockWritableMask) != 0));
return ResultCode.Success;
}
[Command(2)]
// GetStandardSteadyClock() -> object<nn::timesrv::detail::service::ISteadyClock>
public ResultCode GetStandardSteadyClock(ServiceCtx context)
{
MakeObject(context, new ISteadyClock());
return ResultCode.Success;
}
[Command(3)]
// GetTimeZoneService() -> object<nn::timesrv::detail::service::ITimeZoneService>
public ResultCode GetTimeZoneService(ServiceCtx context)
{
MakeObject(context, new ITimeZoneService());
return ResultCode.Success;
}
[Command(4)]
// GetStandardLocalSystemClock() -> object<nn::timesrv::detail::service::ISystemClock>
public ResultCode GetStandardLocalSystemClock(ServiceCtx context)
{
MakeObject(context, new ISystemClock(StandardLocalSystemClockCore.Instance, (_permissions & TimePermissions.LocalSystemClockWritableMask) != 0));
return ResultCode.Success;
}
[Command(5)] // 4.0.0+
// GetEphemeralNetworkSystemClock() -> object<nn::timesrv::detail::service::ISystemClock>
public ResultCode GetEphemeralNetworkSystemClock(ServiceCtx context)
{
MakeObject(context, new ISystemClock(StandardNetworkSystemClockCore.Instance, false));
return ResultCode.Success;
}
[Command(20)] // 6.0.0+
// GetSharedMemoryNativeHandle() -> handle<copy>
public ResultCode GetSharedMemoryNativeHandle(ServiceCtx context)
{
if (_timeSharedMemoryNativeHandle == 0)
{
if (context.Process.HandleTable.GenerateHandle(context.Device.System.TimeSharedMem, out _timeSharedMemoryNativeHandle) != KernelResult.Success)
{
throw new InvalidOperationException("Out of handles!");
}
}
context.Response.HandleDesc = IpcHandleDesc.MakeCopy(_timeSharedMemoryNativeHandle);
return ResultCode.Success;
}
[Command(100)]
// IsStandardUserSystemClockAutomaticCorrectionEnabled() -> bool
public ResultCode IsStandardUserSystemClockAutomaticCorrectionEnabled(ServiceCtx context)
{
context.ResponseData.Write(StandardUserSystemClockCore.Instance.IsAutomaticCorrectionEnabled());
return ResultCode.Success;
}
[Command(101)]
// SetStandardUserSystemClockAutomaticCorrectionEnabled(b8)
public ResultCode SetStandardUserSystemClockAutomaticCorrectionEnabled(ServiceCtx context)
{
if ((_permissions & TimePermissions.UserSystemClockWritableMask) == 0)
{
return ResultCode.PermissionDenied;
}
bool autoCorrectionEnabled = context.RequestData.ReadBoolean();
return StandardUserSystemClockCore.Instance.SetAutomaticCorrectionEnabled(context.Thread, autoCorrectionEnabled);
}
[Command(200)] // 3.0.0+
// IsStandardNetworkSystemClockAccuracySufficient() -> bool
public ResultCode IsStandardNetworkSystemClockAccuracySufficient(ServiceCtx context)
{
context.ResponseData.Write(StandardNetworkSystemClockCore.Instance.IsStandardNetworkSystemClockAccuracySufficient(context.Thread));
return ResultCode.Success;
}
[Command(300)] // 4.0.0+
// CalculateMonotonicSystemClockBaseTimePoint(nn::time::SystemClockContext) -> s64
public ResultCode CalculateMonotonicSystemClockBaseTimePoint(ServiceCtx context)
{
SystemClockContext otherContext = context.RequestData.ReadStruct<SystemClockContext>();
SteadyClockTimePoint currentTimePoint = StandardSteadyClockCore.Instance.GetCurrentTimePoint(context.Thread);
ResultCode result = ResultCode.TimeMismatch;
if (currentTimePoint.ClockSourceId == otherContext.SteadyTimePoint.ClockSourceId)
{
TimeSpanType ticksTimeSpan = TimeSpanType.FromTicks(context.Thread.Context.CntpctEl0, context.Thread.Context.CntfrqEl0);
long baseTimePoint = otherContext.Offset + currentTimePoint.TimePoint - ticksTimeSpan.ToSeconds();
context.ResponseData.Write(baseTimePoint);
result = 0;
}
return result;
}
[Command(400)] // 4.0.0+
// GetClockSnapshot(u8) -> buffer<nn::time::sf::ClockSnapshot, 0x1a>
public ResultCode GetClockSnapshot(ServiceCtx context)
{
byte type = context.RequestData.ReadByte();
ResultCode result = StandardUserSystemClockCore.Instance.GetSystemClockContext(context.Thread, out SystemClockContext userContext);
if (result == ResultCode.Success)
{
result = StandardNetworkSystemClockCore.Instance.GetSystemClockContext(context.Thread, out SystemClockContext networkContext);
if (result == ResultCode.Success)
{
result = GetClockSnapshotFromSystemClockContextInternal(context.Thread, userContext, networkContext, type, out ClockSnapshot clockSnapshot);
if (result == ResultCode.Success)
{
WriteClockSnapshotFromBuffer(context, context.Request.RecvListBuff[0], clockSnapshot);
}
}
}
return result;
}
[Command(401)] // 4.0.0+
// GetClockSnapshotFromSystemClockContext(u8, nn::time::SystemClockContext, nn::time::SystemClockContext) -> buffer<nn::time::sf::ClockSnapshot, 0x1a>
public ResultCode GetClockSnapshotFromSystemClockContext(ServiceCtx context)
{
byte type = context.RequestData.ReadByte();
context.RequestData.BaseStream.Position += 7;
SystemClockContext userContext = context.RequestData.ReadStruct<SystemClockContext>();
SystemClockContext networkContext = context.RequestData.ReadStruct<SystemClockContext>();
ResultCode result = GetClockSnapshotFromSystemClockContextInternal(context.Thread, userContext, networkContext, type, out ClockSnapshot clockSnapshot);
if (result == ResultCode.Success)
{
WriteClockSnapshotFromBuffer(context, context.Request.RecvListBuff[0], clockSnapshot);
}
return result;
}
[Command(500)] // 4.0.0+
// CalculateStandardUserSystemClockDifferenceByUser(buffer<nn::time::sf::ClockSnapshot, 0x19>, buffer<nn::time::sf::ClockSnapshot, 0x19>) -> nn::TimeSpanType
public ResultCode CalculateStandardUserSystemClockDifferenceByUser(ServiceCtx context)
{
ClockSnapshot clockSnapshotA = ReadClockSnapshotFromBuffer(context, context.Request.ExchangeBuff[0]);
ClockSnapshot clockSnapshotB = ReadClockSnapshotFromBuffer(context, context.Request.ExchangeBuff[1]);
TimeSpanType difference = TimeSpanType.FromSeconds(clockSnapshotB.UserContext.Offset - clockSnapshotA.UserContext.Offset);
if (clockSnapshotB.UserContext.SteadyTimePoint.ClockSourceId != clockSnapshotA.UserContext.SteadyTimePoint.ClockSourceId || (clockSnapshotB.IsAutomaticCorrectionEnabled && clockSnapshotA.IsAutomaticCorrectionEnabled))
{
difference = new TimeSpanType(0);
}
context.ResponseData.Write(difference.NanoSeconds);
return ResultCode.Success;
}
[Command(501)] // 4.0.0+
// CalculateSpanBetween(buffer<nn::time::sf::ClockSnapshot, 0x19>, buffer<nn::time::sf::ClockSnapshot, 0x19>) -> nn::TimeSpanType
public ResultCode CalculateSpanBetween(ServiceCtx context)
{
ClockSnapshot clockSnapshotA = ReadClockSnapshotFromBuffer(context, context.Request.ExchangeBuff[0]);
ClockSnapshot clockSnapshotB = ReadClockSnapshotFromBuffer(context, context.Request.ExchangeBuff[1]);
TimeSpanType result;
ResultCode resultCode = clockSnapshotA.SteadyClockTimePoint.GetSpanBetween(clockSnapshotB.SteadyClockTimePoint, out long timeSpan);
if (resultCode != ResultCode.Success)
{
resultCode = ResultCode.TimeNotFound;
if (clockSnapshotA.NetworkTime != 0 && clockSnapshotB.NetworkTime != 0)
{
result = TimeSpanType.FromSeconds(clockSnapshotB.NetworkTime - clockSnapshotA.NetworkTime);
resultCode = ResultCode.Success;
}
else
{
return resultCode;
}
}
else
{
result = TimeSpanType.FromSeconds(timeSpan);
}
context.ResponseData.Write(result.NanoSeconds);
return resultCode;
}
private ResultCode GetClockSnapshotFromSystemClockContextInternal(KThread thread, SystemClockContext userContext, SystemClockContext networkContext, byte type, out ClockSnapshot clockSnapshot)
{
clockSnapshot = new ClockSnapshot();
SteadyClockCore steadyClockCore = StandardSteadyClockCore.Instance;
SteadyClockTimePoint currentTimePoint = steadyClockCore.GetCurrentTimePoint(thread);
clockSnapshot.IsAutomaticCorrectionEnabled = StandardUserSystemClockCore.Instance.IsAutomaticCorrectionEnabled();
clockSnapshot.UserContext = userContext;
clockSnapshot.NetworkContext = networkContext;
char[] tzName = TimeZoneManager.Instance.GetDeviceLocationName().ToCharArray();
char[] locationName = new char[0x24];
Array.Copy(tzName, locationName, tzName.Length);
clockSnapshot.LocationName = locationName;
ResultCode result = ClockSnapshot.GetCurrentTime(out clockSnapshot.UserTime, currentTimePoint, clockSnapshot.UserContext);
if (result == ResultCode.Success)
{
result = TimeZoneManager.Instance.ToCalendarTimeWithMyRules(clockSnapshot.UserTime, out CalendarInfo userCalendarInfo);
if (result == ResultCode.Success)
{
clockSnapshot.UserCalendarTime = userCalendarInfo.Time;
clockSnapshot.UserCalendarAdditionalTime = userCalendarInfo.AdditionalInfo;
if (ClockSnapshot.GetCurrentTime(out clockSnapshot.NetworkTime, currentTimePoint, clockSnapshot.NetworkContext) != ResultCode.Success)
{
clockSnapshot.NetworkTime = 0;
}
result = TimeZoneManager.Instance.ToCalendarTimeWithMyRules(clockSnapshot.NetworkTime, out CalendarInfo networkCalendarInfo);
if (result == ResultCode.Success)
{
clockSnapshot.NetworkCalendarTime = networkCalendarInfo.Time;
clockSnapshot.NetworkCalendarAdditionalTime = networkCalendarInfo.AdditionalInfo;
clockSnapshot.Type = type;
// Probably a version field?
clockSnapshot.Unknown = 0;
}
}
}
return result;
}
private ClockSnapshot ReadClockSnapshotFromBuffer(ServiceCtx context, IpcBuffDesc ipcDesc)
{
Debug.Assert(ipcDesc.Size == Marshal.SizeOf<ClockSnapshot>());
using (BinaryReader bufferReader = new BinaryReader(new MemoryStream(context.Memory.ReadBytes(ipcDesc.Position, ipcDesc.Size))))
{
return bufferReader.ReadStruct<ClockSnapshot>();
}
}
private void WriteClockSnapshotFromBuffer(ServiceCtx context, IpcRecvListBuffDesc ipcDesc, ClockSnapshot clockSnapshot)
{
Debug.Assert(ipcDesc.Size == Marshal.SizeOf<ClockSnapshot>());
MemoryStream memory = new MemoryStream((int)ipcDesc.Size);
using (BinaryWriter bufferWriter = new BinaryWriter(memory))
{
bufferWriter.WriteStruct(clockSnapshot);
}
context.Memory.WriteBytes(ipcDesc.Position, memory.ToArray());
memory.Dispose();
}
}
}