1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-11-14 17:56:42 +00:00
Ryujinx/Ryujinx.HLE/HOS/Kernel/KernelContext.cs
gdkchan 0c87bf9ea4
Refactor CPU interface to allow the implementation of other CPU emulators (#3362)
* Refactor CPU interface

* Use IExecutionContext interface on SVC handler, change how CPU interrupts invokes the handlers

* Make CpuEngine take a ITickSource rather than returning one

The previous implementation had the scenario where the CPU engine had to implement the tick source in mind, like for example, when we have a hypervisor and the game can read CNTPCT on the host directly. However given that we need to do conversion due to different frequencies anyway, it's not worth it. It's better to just let the user pass the tick source and redirect any reads to CNTPCT to the user tick source

* XML docs for the public interfaces

* PPTC invalidation due to NativeInterface function name changes

* Fix build of the CPU tests

* PR feedback
2022-05-31 16:29:35 -03:00

149 lines
4.7 KiB
C#

using Ryujinx.Cpu;
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Memory;
using Ryujinx.HLE.HOS.Kernel.Process;
using Ryujinx.HLE.HOS.Kernel.SupervisorCall;
using Ryujinx.HLE.HOS.Kernel.Threading;
using Ryujinx.Memory;
using System;
using System.Collections.Concurrent;
using System.Threading;
namespace Ryujinx.HLE.HOS.Kernel
{
class KernelContext : IDisposable
{
public long PrivilegedProcessLowestId { get; set; } = 1;
public long PrivilegedProcessHighestId { get; set; } = 8;
public bool EnableVersionChecks { get; set; }
public bool KernelInitialized { get; }
public bool Running { get; private set; }
public Switch Device { get; }
public MemoryBlock Memory { get; }
public ITickSource TickSource { get; }
public Syscall Syscall { get; }
public SyscallHandler SyscallHandler { get; }
public KResourceLimit ResourceLimit { get; }
public KMemoryManager MemoryManager { get; }
public KMemoryBlockSlabManager LargeMemoryBlockSlabManager { get; }
public KMemoryBlockSlabManager SmallMemoryBlockSlabManager { get; }
public KSlabHeap UserSlabHeapPages { get; }
public KCriticalSection CriticalSection { get; }
public KScheduler[] Schedulers { get; }
public KPriorityQueue PriorityQueue { get; }
public KTimeManager TimeManager { get; }
public KSynchronization Synchronization { get; }
public KContextIdManager ContextIdManager { get; }
public ConcurrentDictionary<ulong, KProcess> Processes { get; }
public ConcurrentDictionary<string, KAutoObject> AutoObjectNames { get; }
public bool ThreadReselectionRequested { get; set; }
private ulong _kipId;
private ulong _processId;
private ulong _threadUid;
public KernelContext(
ITickSource tickSource,
Switch device,
MemoryBlock memory,
MemorySize memorySize,
MemoryArrange memoryArrange)
{
TickSource = tickSource;
Device = device;
Memory = memory;
Running = true;
Syscall = new Syscall(this);
SyscallHandler = new SyscallHandler(this);
ResourceLimit = new KResourceLimit(this);
KernelInit.InitializeResourceLimit(ResourceLimit, memorySize);
MemoryManager = new KMemoryManager(memorySize, memoryArrange);
LargeMemoryBlockSlabManager = new KMemoryBlockSlabManager(KernelConstants.MemoryBlockAllocatorSize * 2);
SmallMemoryBlockSlabManager = new KMemoryBlockSlabManager(KernelConstants.MemoryBlockAllocatorSize);
UserSlabHeapPages = new KSlabHeap(
KernelConstants.UserSlabHeapBase,
KernelConstants.UserSlabHeapItemSize,
KernelConstants.UserSlabHeapSize);
memory.Commit(KernelConstants.UserSlabHeapBase - DramMemoryMap.DramBase, KernelConstants.UserSlabHeapSize);
CriticalSection = new KCriticalSection(this);
Schedulers = new KScheduler[KScheduler.CpuCoresCount];
PriorityQueue = new KPriorityQueue();
TimeManager = new KTimeManager(this);
Synchronization = new KSynchronization(this);
ContextIdManager = new KContextIdManager();
for (int core = 0; core < KScheduler.CpuCoresCount; core++)
{
Schedulers[core] = new KScheduler(this, core);
}
StartPreemptionThread();
KernelInitialized = true;
Processes = new ConcurrentDictionary<ulong, KProcess>();
AutoObjectNames = new ConcurrentDictionary<string, KAutoObject>();
_kipId = KernelConstants.InitialKipId;
_processId = KernelConstants.InitialProcessId;
}
private void StartPreemptionThread()
{
void PreemptionThreadStart()
{
KScheduler.PreemptionThreadLoop(this);
}
new Thread(PreemptionThreadStart) { Name = "HLE.PreemptionThread" }.Start();
}
public ulong NewThreadUid()
{
return Interlocked.Increment(ref _threadUid) - 1;
}
public ulong NewKipId()
{
return Interlocked.Increment(ref _kipId) - 1;
}
public ulong NewProcessId()
{
return Interlocked.Increment(ref _processId) - 1;
}
public void Dispose()
{
Running = false;
for (int i = 0; i < KScheduler.CpuCoresCount; i++)
{
Schedulers[i].Dispose();
}
TimeManager.Dispose();
}
}
}