1
0
Fork 0
mirror of https://github.com/Ryujinx/Ryujinx.git synced 2024-11-11 08:36:40 +00:00
Ryujinx/Ryujinx.HLE/HOS/Kernel/Process/KProcess.cs
riperiperi 54ea2285f0
POWER - Performance Optimizations With Extensive Ramifications (#2286)
* Refactoring of KMemoryManager class

* Replace some trivial uses of DRAM address with VA

* Get rid of GetDramAddressFromVa

* Abstracting more operations on derived page table class

* Run auto-format on KPageTableBase

* Managed to make TryConvertVaToPa private, few uses remains now

* Implement guest physical pages ref counting, remove manual freeing

* Make DoMmuOperation private and call new abstract methods only from the base class

* Pass pages count rather than size on Map/UnmapMemory

* Change memory managers to take host pointers

* Fix a guest memory leak and simplify KPageTable

* Expose new methods for host range query and mapping

* Some refactoring of MapPagesFromClientProcess to allow proper page ref counting and mapping without KPageLists

* Remove more uses of AddVaRangeToPageList, now only one remains (shared memory page checking)

* Add a SharedMemoryStorage class, will be useful for host mapping

* Sayonara AddVaRangeToPageList, you served us well

* Start to implement host memory mapping (WIP)

* Support memory tracking through host exception handling

* Fix some access violations from HLE service guest memory access and CPU

* Fix memory tracking

* Fix mapping list bugs, including a race and a error adding mapping ranges

* Simple page table for memory tracking

* Simple "volatile" region handle mode

* Update UBOs directly (experimental, rough)

* Fix the overlap check

* Only set non-modified buffers as volatile

* Fix some memory tracking issues

* Fix possible race in MapBufferFromClientProcess (block list updates were not locked)

* Write uniform update to memory immediately, only defer the buffer set.

* Fix some memory tracking issues

* Pass correct pages count on shared memory unmap

* Armeilleure Signal Handler v1 + Unix changes

Unix currently behaves like windows, rather than remapping physical

* Actually check if the host platform is unix

* Fix decommit on linux.

* Implement windows 10 placeholder shared memory, fix a buffer issue.

* Make PTC version something that will never match with master

* Remove testing variable for block count

* Add reference count for memory manager, fix dispose

Can still deadlock with OpenAL

* Add address validation, use page table for mapped check, add docs

Might clean up the page table traversing routines.

* Implement batched mapping/tracking.

* Move documentation, fix tests.

* Cleanup uniform buffer update stuff.

* Remove unnecessary assignment.

* Add unsafe host mapped memory switch

On by default. Would be good to turn this off for untrusted code (homebrew, exefs mods) and give the user the option to turn it on manually, though that requires some UI work.

* Remove C# exception handlers

They have issues due to current .NET limitations, so the meilleure one fully replaces them for now.

* Fix MapPhysicalMemory on the software MemoryManager.

* Null check for GetHostAddress, docs

* Add configuration for setting memory manager mode (not in UI yet)

* Add config to UI

* Fix type mismatch on Unix signal handler code emit

* Fix 6GB DRAM mode.

The size can be greater than `uint.MaxValue` when the DRAM is >4GB.

* Address some feedback.

* More detailed error if backing memory cannot be mapped.

* SetLastError on all OS functions for consistency

* Force pages dirty with UBO update instead of setting them directly.

Seems to be much faster across a few games. Need retesting.

* Rebase, configuration rework, fix mem tracking regression

* Fix race in FreePages

* Set memory managers null after decrementing ref count

* Remove readonly keyword, as this is now modified.

* Use a local variable for the signal handler rather than a register.

* Fix bug with buffer resize, and index/uniform buffer binding.

Should fix flickering in games.

* Add InvalidAccessHandler to MemoryTracking

Doesn't do anything yet

* Call invalid access handler on unmapped read/write.

Same rules as the regular memory manager.

* Make unsafe mapped memory its own MemoryManagerType

* Move FlushUboDirty into UpdateState.

* Buffer dirty cache, rather than ubo cache

Much cleaner, may be reusable for Inline2Memory updates.

* This doesn't return anything anymore.

* Add sigaction remove methods, correct a few function signatures.

* Return empty list of physical regions for size 0.

* Also on AddressSpaceManager

Co-authored-by: gdkchan <gab.dark.100@gmail.com>
2021-05-24 22:52:44 +02:00

1091 lines
No EOL
34 KiB
C#

using ARMeilleure.State;
using Ryujinx.Common;
using Ryujinx.Common.Logging;
using Ryujinx.Cpu;
using Ryujinx.HLE.Exceptions;
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Memory;
using Ryujinx.HLE.HOS.Kernel.Threading;
using Ryujinx.Memory;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
namespace Ryujinx.HLE.HOS.Kernel.Process
{
class KProcess : KSynchronizationObject
{
public const int KernelVersionMajor = 10;
public const int KernelVersionMinor = 4;
public const int KernelVersionRevision = 0;
public const int KernelVersionPacked =
(KernelVersionMajor << 19) |
(KernelVersionMinor << 15) |
(KernelVersionRevision << 0);
public KPageTableBase MemoryManager { get; private set; }
private SortedDictionary<ulong, KTlsPageInfo> _fullTlsPages;
private SortedDictionary<ulong, KTlsPageInfo> _freeTlsPages;
public int DefaultCpuCore { get; set; }
public bool Debug { get; private set; }
public KResourceLimit ResourceLimit { get; private set; }
public ulong PersonalMmHeapPagesCount { get; private set; }
public ProcessState State { get; private set; }
private object _processLock;
private object _threadingLock;
public KAddressArbiter AddressArbiter { get; private set; }
public long[] RandomEntropy { get; private set; }
private bool _signaled;
public string Name { get; private set; }
private int _threadCount;
public ProcessCreationFlags Flags { get; private set; }
private MemoryRegion _memRegion;
public KProcessCapabilities Capabilities { get; private set; }
public ulong TitleId { get; private set; }
public long Pid { get; private set; }
private long _creationTimestamp;
private ulong _entrypoint;
private ThreadStart _customThreadStart;
private ulong _imageSize;
private ulong _mainThreadStackSize;
private ulong _memoryUsageCapacity;
private int _version;
public KHandleTable HandleTable { get; private set; }
public ulong UserExceptionContextAddress { get; private set; }
private LinkedList<KThread> _threads;
public bool IsPaused { get; private set; }
private long _totalTimeRunning;
public long TotalTimeRunning => _totalTimeRunning;
private IProcessContextFactory _contextFactory;
public IProcessContext Context { get; private set; }
public IVirtualMemoryManager CpuMemory => Context.AddressSpace;
public HleProcessDebugger Debugger { get; private set; }
public KProcess(KernelContext context) : base(context)
{
_processLock = new object();
_threadingLock = new object();
AddressArbiter = new KAddressArbiter(context);
_fullTlsPages = new SortedDictionary<ulong, KTlsPageInfo>();
_freeTlsPages = new SortedDictionary<ulong, KTlsPageInfo>();
Capabilities = new KProcessCapabilities();
RandomEntropy = new long[KScheduler.CpuCoresCount];
// TODO: Remove once we no longer need to initialize it externally.
HandleTable = new KHandleTable(context);
_threads = new LinkedList<KThread>();
Debugger = new HleProcessDebugger(this);
}
public KernelResult InitializeKip(
ProcessCreationInfo creationInfo,
ReadOnlySpan<int> capabilities,
KPageList pageList,
KResourceLimit resourceLimit,
MemoryRegion memRegion,
IProcessContextFactory contextFactory,
ThreadStart customThreadStart = null)
{
ResourceLimit = resourceLimit;
_memRegion = memRegion;
_contextFactory = contextFactory ?? new ProcessContextFactory();
_customThreadStart = customThreadStart;
AddressSpaceType addrSpaceType = (AddressSpaceType)((int)(creationInfo.Flags & ProcessCreationFlags.AddressSpaceMask) >> (int)ProcessCreationFlags.AddressSpaceShift);
InitializeMemoryManager(creationInfo.Flags);
bool aslrEnabled = creationInfo.Flags.HasFlag(ProcessCreationFlags.EnableAslr);
ulong codeAddress = creationInfo.CodeAddress;
ulong codeSize = (ulong)creationInfo.CodePagesCount * KPageTableBase.PageSize;
KMemoryBlockSlabManager slabManager = creationInfo.Flags.HasFlag(ProcessCreationFlags.IsApplication)
? KernelContext.LargeMemoryBlockSlabManager
: KernelContext.SmallMemoryBlockSlabManager;
KernelResult result = MemoryManager.InitializeForProcess(
addrSpaceType,
aslrEnabled,
!aslrEnabled,
memRegion,
codeAddress,
codeSize,
slabManager);
if (result != KernelResult.Success)
{
return result;
}
if (!MemoryManager.CanContain(codeAddress, codeSize, MemoryState.CodeStatic))
{
return KernelResult.InvalidMemRange;
}
result = MemoryManager.MapPages(codeAddress, pageList, MemoryState.CodeStatic, KMemoryPermission.None);
if (result != KernelResult.Success)
{
return result;
}
result = Capabilities.InitializeForKernel(capabilities, MemoryManager);
if (result != KernelResult.Success)
{
return result;
}
Pid = KernelContext.NewKipId();
if (Pid == 0 || (ulong)Pid >= KernelConstants.InitialProcessId)
{
throw new InvalidOperationException($"Invalid KIP Id {Pid}.");
}
return ParseProcessInfo(creationInfo);
}
public KernelResult Initialize(
ProcessCreationInfo creationInfo,
ReadOnlySpan<int> capabilities,
KResourceLimit resourceLimit,
MemoryRegion memRegion,
IProcessContextFactory contextFactory,
ThreadStart customThreadStart = null)
{
ResourceLimit = resourceLimit;
_memRegion = memRegion;
_contextFactory = contextFactory ?? new ProcessContextFactory();
_customThreadStart = customThreadStart;
ulong personalMmHeapSize = GetPersonalMmHeapSize((ulong)creationInfo.SystemResourcePagesCount, memRegion);
ulong codePagesCount = (ulong)creationInfo.CodePagesCount;
ulong neededSizeForProcess = personalMmHeapSize + codePagesCount * KPageTableBase.PageSize;
if (neededSizeForProcess != 0 && resourceLimit != null)
{
if (!resourceLimit.Reserve(LimitableResource.Memory, neededSizeForProcess))
{
return KernelResult.ResLimitExceeded;
}
}
void CleanUpForError()
{
if (neededSizeForProcess != 0 && resourceLimit != null)
{
resourceLimit.Release(LimitableResource.Memory, neededSizeForProcess);
}
}
PersonalMmHeapPagesCount = (ulong)creationInfo.SystemResourcePagesCount;
KMemoryBlockSlabManager slabManager;
if (PersonalMmHeapPagesCount != 0)
{
slabManager = new KMemoryBlockSlabManager(PersonalMmHeapPagesCount * KPageTableBase.PageSize);
}
else
{
slabManager = creationInfo.Flags.HasFlag(ProcessCreationFlags.IsApplication)
? KernelContext.LargeMemoryBlockSlabManager
: KernelContext.SmallMemoryBlockSlabManager;
}
AddressSpaceType addrSpaceType = (AddressSpaceType)((int)(creationInfo.Flags & ProcessCreationFlags.AddressSpaceMask) >> (int)ProcessCreationFlags.AddressSpaceShift);
InitializeMemoryManager(creationInfo.Flags);
bool aslrEnabled = creationInfo.Flags.HasFlag(ProcessCreationFlags.EnableAslr);
ulong codeAddress = creationInfo.CodeAddress;
ulong codeSize = codePagesCount * KPageTableBase.PageSize;
KernelResult result = MemoryManager.InitializeForProcess(
addrSpaceType,
aslrEnabled,
!aslrEnabled,
memRegion,
codeAddress,
codeSize,
slabManager);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
if (!MemoryManager.CanContain(codeAddress, codeSize, MemoryState.CodeStatic))
{
CleanUpForError();
return KernelResult.InvalidMemRange;
}
result = MemoryManager.MapPages(
codeAddress,
codePagesCount,
MemoryState.CodeStatic,
KMemoryPermission.None);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
result = Capabilities.InitializeForUser(capabilities, MemoryManager);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
Pid = KernelContext.NewProcessId();
if (Pid == -1 || (ulong)Pid < KernelConstants.InitialProcessId)
{
throw new InvalidOperationException($"Invalid Process Id {Pid}.");
}
result = ParseProcessInfo(creationInfo);
if (result != KernelResult.Success)
{
CleanUpForError();
}
return result;
}
private KernelResult ParseProcessInfo(ProcessCreationInfo creationInfo)
{
// Ensure that the current kernel version is equal or above to the minimum required.
uint requiredKernelVersionMajor = (uint)Capabilities.KernelReleaseVersion >> 19;
uint requiredKernelVersionMinor = ((uint)Capabilities.KernelReleaseVersion >> 15) & 0xf;
if (KernelContext.EnableVersionChecks)
{
if (requiredKernelVersionMajor > KernelVersionMajor)
{
return KernelResult.InvalidCombination;
}
if (requiredKernelVersionMajor != KernelVersionMajor && requiredKernelVersionMajor < 3)
{
return KernelResult.InvalidCombination;
}
if (requiredKernelVersionMinor > KernelVersionMinor)
{
return KernelResult.InvalidCombination;
}
}
KernelResult result = AllocateThreadLocalStorage(out ulong userExceptionContextAddress);
if (result != KernelResult.Success)
{
return result;
}
UserExceptionContextAddress = userExceptionContextAddress;
MemoryHelper.FillWithZeros(CpuMemory, userExceptionContextAddress, KTlsPageInfo.TlsEntrySize);
Name = creationInfo.Name;
State = ProcessState.Created;
_creationTimestamp = PerformanceCounter.ElapsedMilliseconds;
Flags = creationInfo.Flags;
_version = creationInfo.Version;
TitleId = creationInfo.TitleId;
_entrypoint = creationInfo.CodeAddress;
_imageSize = (ulong)creationInfo.CodePagesCount * KPageTableBase.PageSize;
switch (Flags & ProcessCreationFlags.AddressSpaceMask)
{
case ProcessCreationFlags.AddressSpace32Bit:
case ProcessCreationFlags.AddressSpace64BitDeprecated:
case ProcessCreationFlags.AddressSpace64Bit:
_memoryUsageCapacity = MemoryManager.HeapRegionEnd -
MemoryManager.HeapRegionStart;
break;
case ProcessCreationFlags.AddressSpace32BitWithoutAlias:
_memoryUsageCapacity = MemoryManager.HeapRegionEnd -
MemoryManager.HeapRegionStart +
MemoryManager.AliasRegionEnd -
MemoryManager.AliasRegionStart;
break;
default: throw new InvalidOperationException($"Invalid MMU flags value 0x{Flags:x2}.");
}
GenerateRandomEntropy();
return KernelResult.Success;
}
public KernelResult AllocateThreadLocalStorage(out ulong address)
{
KernelContext.CriticalSection.Enter();
KernelResult result;
if (_freeTlsPages.Count > 0)
{
// If we have free TLS pages available, just use the first one.
KTlsPageInfo pageInfo = _freeTlsPages.Values.First();
if (!pageInfo.TryGetFreePage(out address))
{
throw new InvalidOperationException("Unexpected failure getting free TLS page!");
}
if (pageInfo.IsFull())
{
_freeTlsPages.Remove(pageInfo.PageVirtualAddress);
_fullTlsPages.Add(pageInfo.PageVirtualAddress, pageInfo);
}
result = KernelResult.Success;
}
else
{
// Otherwise, we need to create a new one.
result = AllocateTlsPage(out KTlsPageInfo pageInfo);
if (result == KernelResult.Success)
{
if (!pageInfo.TryGetFreePage(out address))
{
throw new InvalidOperationException("Unexpected failure getting free TLS page!");
}
_freeTlsPages.Add(pageInfo.PageVirtualAddress, pageInfo);
}
else
{
address = 0;
}
}
KernelContext.CriticalSection.Leave();
return result;
}
private KernelResult AllocateTlsPage(out KTlsPageInfo pageInfo)
{
pageInfo = default;
if (!KernelContext.UserSlabHeapPages.TryGetItem(out ulong tlsPagePa))
{
return KernelResult.OutOfMemory;
}
ulong regionStart = MemoryManager.TlsIoRegionStart;
ulong regionSize = MemoryManager.TlsIoRegionEnd - regionStart;
ulong regionPagesCount = regionSize / KPageTableBase.PageSize;
KernelResult result = MemoryManager.MapPages(
1,
KPageTableBase.PageSize,
tlsPagePa,
true,
regionStart,
regionPagesCount,
MemoryState.ThreadLocal,
KMemoryPermission.ReadAndWrite,
out ulong tlsPageVa);
if (result != KernelResult.Success)
{
KernelContext.UserSlabHeapPages.Free(tlsPagePa);
}
else
{
pageInfo = new KTlsPageInfo(tlsPageVa, tlsPagePa);
MemoryHelper.FillWithZeros(CpuMemory, tlsPageVa, KPageTableBase.PageSize);
}
return result;
}
public KernelResult FreeThreadLocalStorage(ulong tlsSlotAddr)
{
ulong tlsPageAddr = BitUtils.AlignDown(tlsSlotAddr, KPageTableBase.PageSize);
KernelContext.CriticalSection.Enter();
KernelResult result = KernelResult.Success;
KTlsPageInfo pageInfo;
if (_fullTlsPages.TryGetValue(tlsPageAddr, out pageInfo))
{
// TLS page was full, free slot and move to free pages tree.
_fullTlsPages.Remove(tlsPageAddr);
_freeTlsPages.Add(tlsPageAddr, pageInfo);
}
else if (!_freeTlsPages.TryGetValue(tlsPageAddr, out pageInfo))
{
result = KernelResult.InvalidAddress;
}
if (pageInfo != null)
{
pageInfo.FreeTlsSlot(tlsSlotAddr);
if (pageInfo.IsEmpty())
{
// TLS page is now empty, we should ensure it is removed
// from all trees, and free the memory it was using.
_freeTlsPages.Remove(tlsPageAddr);
KernelContext.CriticalSection.Leave();
FreeTlsPage(pageInfo);
return KernelResult.Success;
}
}
KernelContext.CriticalSection.Leave();
return result;
}
private KernelResult FreeTlsPage(KTlsPageInfo pageInfo)
{
KernelResult result = MemoryManager.UnmapForKernel(pageInfo.PageVirtualAddress, 1, MemoryState.ThreadLocal);
if (result == KernelResult.Success)
{
KernelContext.UserSlabHeapPages.Free(pageInfo.PagePhysicalAddress);
}
return result;
}
private void GenerateRandomEntropy()
{
// TODO.
}
public KernelResult Start(int mainThreadPriority, ulong stackSize)
{
lock (_processLock)
{
if (State > ProcessState.CreatedAttached)
{
return KernelResult.InvalidState;
}
if (ResourceLimit != null && !ResourceLimit.Reserve(LimitableResource.Thread, 1))
{
return KernelResult.ResLimitExceeded;
}
KResourceLimit threadResourceLimit = ResourceLimit;
KResourceLimit memoryResourceLimit = null;
if (_mainThreadStackSize != 0)
{
throw new InvalidOperationException("Trying to start a process with a invalid state!");
}
ulong stackSizeRounded = BitUtils.AlignUp(stackSize, KPageTableBase.PageSize);
ulong neededSize = stackSizeRounded + _imageSize;
// Check if the needed size for the code and the stack will fit on the
// memory usage capacity of this Process. Also check for possible overflow
// on the above addition.
if (neededSize > _memoryUsageCapacity || neededSize < stackSizeRounded)
{
threadResourceLimit?.Release(LimitableResource.Thread, 1);
return KernelResult.OutOfMemory;
}
if (stackSizeRounded != 0 && ResourceLimit != null)
{
memoryResourceLimit = ResourceLimit;
if (!memoryResourceLimit.Reserve(LimitableResource.Memory, stackSizeRounded))
{
threadResourceLimit?.Release(LimitableResource.Thread, 1);
return KernelResult.ResLimitExceeded;
}
}
KernelResult result;
KThread mainThread = null;
ulong stackTop = 0;
void CleanUpForError()
{
HandleTable.Destroy();
mainThread?.DecrementReferenceCount();
if (_mainThreadStackSize != 0)
{
ulong stackBottom = stackTop - _mainThreadStackSize;
ulong stackPagesCount = _mainThreadStackSize / KPageTableBase.PageSize;
MemoryManager.UnmapForKernel(stackBottom, stackPagesCount, MemoryState.Stack);
_mainThreadStackSize = 0;
}
memoryResourceLimit?.Release(LimitableResource.Memory, stackSizeRounded);
threadResourceLimit?.Release(LimitableResource.Thread, 1);
}
if (stackSizeRounded != 0)
{
ulong stackPagesCount = stackSizeRounded / KPageTableBase.PageSize;
ulong regionStart = MemoryManager.StackRegionStart;
ulong regionSize = MemoryManager.StackRegionEnd - regionStart;
ulong regionPagesCount = regionSize / KPageTableBase.PageSize;
result = MemoryManager.MapPages(
stackPagesCount,
KPageTableBase.PageSize,
0,
false,
regionStart,
regionPagesCount,
MemoryState.Stack,
KMemoryPermission.ReadAndWrite,
out ulong stackBottom);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
_mainThreadStackSize += stackSizeRounded;
stackTop = stackBottom + stackSizeRounded;
}
ulong heapCapacity = _memoryUsageCapacity - _mainThreadStackSize - _imageSize;
result = MemoryManager.SetHeapCapacity(heapCapacity);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
HandleTable = new KHandleTable(KernelContext);
result = HandleTable.Initialize(Capabilities.HandleTableSize);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
mainThread = new KThread(KernelContext);
result = mainThread.Initialize(
_entrypoint,
0,
stackTop,
mainThreadPriority,
DefaultCpuCore,
this,
ThreadType.User,
_customThreadStart);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
result = HandleTable.GenerateHandle(mainThread, out int mainThreadHandle);
if (result != KernelResult.Success)
{
CleanUpForError();
return result;
}
mainThread.SetEntryArguments(0, mainThreadHandle);
ProcessState oldState = State;
ProcessState newState = State != ProcessState.Created
? ProcessState.Attached
: ProcessState.Started;
SetState(newState);
result = mainThread.Start();
if (result != KernelResult.Success)
{
SetState(oldState);
CleanUpForError();
}
if (result == KernelResult.Success)
{
mainThread.IncrementReferenceCount();
}
mainThread.DecrementReferenceCount();
return result;
}
}
private void SetState(ProcessState newState)
{
if (State != newState)
{
State = newState;
_signaled = true;
Signal();
}
}
public KernelResult InitializeThread(
KThread thread,
ulong entrypoint,
ulong argsPtr,
ulong stackTop,
int priority,
int cpuCore)
{
lock (_processLock)
{
return thread.Initialize(entrypoint, argsPtr, stackTop, priority, cpuCore, this, ThreadType.User, null);
}
}
public void SubscribeThreadEventHandlers(ARMeilleure.State.ExecutionContext context)
{
context.Interrupt += InterruptHandler;
context.SupervisorCall += KernelContext.SyscallHandler.SvcCall;
context.Undefined += UndefinedInstructionHandler;
}
private void InterruptHandler(object sender, EventArgs e)
{
KThread currentThread = KernelStatic.GetCurrentThread();
if (currentThread.IsSchedulable)
{
KernelContext.Schedulers[currentThread.CurrentCore].Schedule();
}
currentThread.HandlePostSyscall();
}
public void IncrementThreadCount()
{
Interlocked.Increment(ref _threadCount);
}
public void DecrementThreadCountAndTerminateIfZero()
{
if (Interlocked.Decrement(ref _threadCount) == 0)
{
Terminate();
}
}
public void DecrementToZeroWhileTerminatingCurrent()
{
while (Interlocked.Decrement(ref _threadCount) != 0)
{
Destroy();
TerminateCurrentProcess();
}
// Nintendo panic here because if it reaches this point, the current thread should be already dead.
// As we handle the death of the thread in the post SVC handler and inside the CPU emulator, we don't panic here.
}
public ulong GetMemoryCapacity()
{
ulong totalCapacity = (ulong)ResourceLimit.GetRemainingValue(LimitableResource.Memory);
totalCapacity += MemoryManager.GetTotalHeapSize();
totalCapacity += GetPersonalMmHeapSize();
totalCapacity += _imageSize + _mainThreadStackSize;
if (totalCapacity <= _memoryUsageCapacity)
{
return totalCapacity;
}
return _memoryUsageCapacity;
}
public ulong GetMemoryUsage()
{
return _imageSize + _mainThreadStackSize + MemoryManager.GetTotalHeapSize() + GetPersonalMmHeapSize();
}
public ulong GetMemoryCapacityWithoutPersonalMmHeap()
{
return GetMemoryCapacity() - GetPersonalMmHeapSize();
}
public ulong GetMemoryUsageWithoutPersonalMmHeap()
{
return GetMemoryUsage() - GetPersonalMmHeapSize();
}
private ulong GetPersonalMmHeapSize()
{
return GetPersonalMmHeapSize(PersonalMmHeapPagesCount, _memRegion);
}
private static ulong GetPersonalMmHeapSize(ulong personalMmHeapPagesCount, MemoryRegion memRegion)
{
if (memRegion == MemoryRegion.Applet)
{
return 0;
}
return personalMmHeapPagesCount * KPageTableBase.PageSize;
}
public void AddCpuTime(long ticks)
{
Interlocked.Add(ref _totalTimeRunning, ticks);
}
public void AddThread(KThread thread)
{
lock (_threadingLock)
{
thread.ProcessListNode = _threads.AddLast(thread);
}
}
public void RemoveThread(KThread thread)
{
lock (_threadingLock)
{
_threads.Remove(thread.ProcessListNode);
}
}
public bool IsCpuCoreAllowed(int core)
{
return (Capabilities.AllowedCpuCoresMask & (1L << core)) != 0;
}
public bool IsPriorityAllowed(int priority)
{
return (Capabilities.AllowedThreadPriosMask & (1L << priority)) != 0;
}
public override bool IsSignaled()
{
return _signaled;
}
public KernelResult Terminate()
{
KernelResult result;
bool shallTerminate = false;
KernelContext.CriticalSection.Enter();
lock (_processLock)
{
if (State >= ProcessState.Started)
{
if (State == ProcessState.Started ||
State == ProcessState.Crashed ||
State == ProcessState.Attached ||
State == ProcessState.DebugSuspended)
{
SetState(ProcessState.Exiting);
shallTerminate = true;
}
result = KernelResult.Success;
}
else
{
result = KernelResult.InvalidState;
}
}
KernelContext.CriticalSection.Leave();
if (shallTerminate)
{
UnpauseAndTerminateAllThreadsExcept(KernelStatic.GetCurrentThread());
HandleTable.Destroy();
SignalExitToDebugTerminated();
SignalExit();
}
return result;
}
public void TerminateCurrentProcess()
{
bool shallTerminate = false;
KernelContext.CriticalSection.Enter();
lock (_processLock)
{
if (State >= ProcessState.Started)
{
if (State == ProcessState.Started ||
State == ProcessState.Attached ||
State == ProcessState.DebugSuspended)
{
SetState(ProcessState.Exiting);
shallTerminate = true;
}
}
}
KernelContext.CriticalSection.Leave();
if (shallTerminate)
{
UnpauseAndTerminateAllThreadsExcept(KernelStatic.GetCurrentThread());
HandleTable.Destroy();
// NOTE: this is supposed to be called in receiving of the mailbox.
SignalExitToDebugExited();
SignalExit();
}
}
private void UnpauseAndTerminateAllThreadsExcept(KThread currentThread)
{
lock (_threadingLock)
{
KernelContext.CriticalSection.Enter();
foreach (KThread thread in _threads)
{
if ((thread.SchedFlags & ThreadSchedState.LowMask) != ThreadSchedState.TerminationPending)
{
thread.PrepareForTermination();
}
}
KernelContext.CriticalSection.Leave();
}
while (true)
{
KThread blockedThread = null;
lock (_threadingLock)
{
foreach (KThread thread in _threads)
{
if (thread != currentThread && (thread.SchedFlags & ThreadSchedState.LowMask) != ThreadSchedState.TerminationPending)
{
thread.IncrementReferenceCount();
blockedThread = thread;
break;
}
}
}
if (blockedThread == null)
{
break;
}
blockedThread.Terminate();
blockedThread.DecrementReferenceCount();
}
}
private void SignalExitToDebugTerminated()
{
// TODO: Debug events.
}
private void SignalExitToDebugExited()
{
// TODO: Debug events.
}
private void SignalExit()
{
if (ResourceLimit != null)
{
ResourceLimit.Release(LimitableResource.Memory, GetMemoryUsage());
}
KernelContext.CriticalSection.Enter();
SetState(ProcessState.Exited);
KernelContext.CriticalSection.Leave();
}
public KernelResult ClearIfNotExited()
{
KernelResult result;
KernelContext.CriticalSection.Enter();
lock (_processLock)
{
if (State != ProcessState.Exited && _signaled)
{
_signaled = false;
result = KernelResult.Success;
}
else
{
result = KernelResult.InvalidState;
}
}
KernelContext.CriticalSection.Leave();
return result;
}
private void InitializeMemoryManager(ProcessCreationFlags flags)
{
int addrSpaceBits = (flags & ProcessCreationFlags.AddressSpaceMask) switch
{
ProcessCreationFlags.AddressSpace32Bit => 32,
ProcessCreationFlags.AddressSpace64BitDeprecated => 36,
ProcessCreationFlags.AddressSpace32BitWithoutAlias => 32,
ProcessCreationFlags.AddressSpace64Bit => 39,
_ => 39
};
Context = _contextFactory.Create(KernelContext, 1UL << addrSpaceBits, InvalidAccessHandler);
// TODO: This should eventually be removed.
// The GPU shouldn't depend on the CPU memory manager at all.
if (flags.HasFlag(ProcessCreationFlags.IsApplication))
{
KernelContext.Device.Gpu.SetVmm((IVirtualMemoryManagerTracked)CpuMemory);
}
if (Context.AddressSpace is MemoryManagerHostMapped)
{
MemoryManager = new KPageTableHostMapped(KernelContext, CpuMemory);
}
else
{
MemoryManager = new KPageTable(KernelContext, CpuMemory);
}
}
private bool InvalidAccessHandler(ulong va)
{
KernelStatic.GetCurrentThread()?.PrintGuestStackTrace();
KernelStatic.GetCurrentThread()?.PrintGuestRegisterPrintout();
Logger.Error?.Print(LogClass.Cpu, $"Invalid memory access at virtual address 0x{va:X16}.");
return false;
}
private void UndefinedInstructionHandler(object sender, InstUndefinedEventArgs e)
{
KernelStatic.GetCurrentThread().PrintGuestStackTrace();
KernelStatic.GetCurrentThread()?.PrintGuestRegisterPrintout();
throw new UndefinedInstructionException(e.Address, e.OpCode);
}
protected override void Destroy() => Context.Dispose();
}
}