/* * Copyright (c) 2018 naehrwert * Copyright (c) 2018-2024 CTCaer * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "di.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "di.inl" extern volatile nyx_storage_t *nyx_str; static u32 _display_id = 0; static u32 _dsi_bl = -1; static bool _nx_aula = false; static void _display_panel_and_hw_end(bool no_panel_deinit); void display_enable_interrupt(u32 intr) { DISPLAY_A(_DIREG(DC_CMD_INT_ENABLE)) |= intr; } void display_disable_interrupt(u32 intr) { DISPLAY_A(_DIREG(DC_CMD_INT_ENABLE)) &= ~intr; DISPLAY_A(_DIREG(DC_CMD_INT_STATUS)) = intr; } void display_wait_interrupt(u32 intr) { DISPLAY_A(_DIREG(DC_CMD_INT_STATUS)) = intr; // Interrupts are masked. Poll status register for checking if fired. while (!(DISPLAY_A(_DIREG(DC_CMD_INT_STATUS)) & intr)) ; } static void _display_dsi_wait(u32 timeout, u32 off, u32 mask) { u32 end = get_tmr_us() + timeout; while (get_tmr_us() < end && DSI(off) & mask) ; usleep(5); } static void _display_dsi_send_cmd(u8 cmd, u32 param, u32 wait) { DSI(_DSIREG(DSI_WR_DATA)) = (param << 8) | cmd; DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST; if (wait) usleep(wait); } static void _display_dsi_wait_vblank(bool enable) { if (enable) { // Enable vblank interrupt. display_enable_interrupt(DC_CMD_INT_FRAME_END_INT); // Use the 4th line to transmit the host cmd packet. DSI(_DSIREG(DSI_VIDEO_MODE_CONTROL)) = DSI_CMD_PKT_VID_ENABLE | DSI_DSI_LINE_TYPE(4); // Wait for vblank before starting the transfer. display_wait_interrupt(DC_CMD_INT_FRAME_END_INT); } else { // Wait for vblank before resetting sync points. display_wait_interrupt(DC_CMD_INT_FRAME_END_INT); usleep(14); // Reset all states of syncpt block. DSI(_DSIREG(DSI_INCR_SYNCPT_CNTRL)) = DSI_INCR_SYNCPT_SOFT_RESET; usleep(300); // Stabilization delay. // Clear syncpt block reset. DSI(_DSIREG(DSI_INCR_SYNCPT_CNTRL)) = 0; usleep(300); // Stabilization delay. // Restore video mode and host control. DSI(_DSIREG(DSI_VIDEO_MODE_CONTROL)) = 0; // Disable and clear vblank interrupt. display_disable_interrupt(DC_CMD_INT_FRAME_END_INT); } } static void _display_dsi_read_rx_fifo(u32 *data) { u32 fifo_count = DSI(_DSIREG(DSI_STATUS)) & DSI_STATUS_RX_FIFO_SIZE; if (fifo_count) DSI(_DSIREG(DSI_TRIGGER)) = 0; for (u32 i = 0; i < fifo_count; i++) { // Read or Drain RX FIFO. if (data) data[i] = DSI(_DSIREG(DSI_RD_DATA)); else (void)DSI(_DSIREG(DSI_RD_DATA)); } } int display_dsi_read(u8 cmd, u32 len, void *data) { int res = 0; u32 fifo[DSI_STATUS_RX_FIFO_SIZE] = {0}; // Drain RX FIFO. _display_dsi_read_rx_fifo(NULL); // Set reply size. _display_dsi_send_cmd(MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, len, 0); _display_dsi_wait(250000, _DSIREG(DSI_TRIGGER), DSI_TRIGGER_HOST | DSI_TRIGGER_VIDEO); // Request register read. _display_dsi_send_cmd(MIPI_DSI_DCS_READ, cmd, 0); _display_dsi_wait(250000, _DSIREG(DSI_TRIGGER), DSI_TRIGGER_HOST | DSI_TRIGGER_VIDEO); // Transfer bus control to device for transmitting the reply. DSI(_DSIREG(DSI_HOST_CONTROL)) |= DSI_HOST_CONTROL_IMM_BTA; // Wait for reply to complete. DSI_HOST_CONTROL_IMM_BTA bit acts as a DSI host read busy. _display_dsi_wait(150000, _DSIREG(DSI_HOST_CONTROL), DSI_HOST_CONTROL_IMM_BTA); // Wait a bit for the reply. usleep(5000); // Read RX FIFO. _display_dsi_read_rx_fifo(fifo); // Parse packet and copy over the data. if ((fifo[0] & 0xFF) == DSI_ESCAPE_CMD) { // Act based on reply type. switch (fifo[1] & 0xFF) { case GEN_LONG_RD_RES: case DCS_LONG_RD_RES: memcpy(data, &fifo[2], MIN((fifo[1] >> 8) & 0xFFFF, len)); break; case GEN_1_BYTE_SHORT_RD_RES: case DCS_1_BYTE_SHORT_RD_RES: memcpy(data, &fifo[2], 1); break; case GEN_2_BYTE_SHORT_RD_RES: case DCS_2_BYTE_SHORT_RD_RES: memcpy(data, &fifo[2], 2); break; case ACK_ERROR_RES: default: res = 1; break; } } else res = 1; return res; } int display_dsi_vblank_read(u8 cmd, u32 len, void *data) { int res = 0; u32 host_control = 0; u32 fifo[DSI_STATUS_RX_FIFO_SIZE] = {0}; // Drain RX FIFO. _display_dsi_read_rx_fifo(NULL); // Save host control and enable host cmd packets during video. host_control = DSI(_DSIREG(DSI_HOST_CONTROL)); _display_dsi_wait_vblank(true); // Set reply size. _display_dsi_send_cmd(MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, len, 0); _display_dsi_wait(0, _DSIREG(DSI_TRIGGER), DSI_TRIGGER_HOST | DSI_TRIGGER_VIDEO); // Request register read. _display_dsi_send_cmd(MIPI_DSI_DCS_READ, cmd, 0); _display_dsi_wait(0, _DSIREG(DSI_TRIGGER), DSI_TRIGGER_HOST | DSI_TRIGGER_VIDEO); _display_dsi_wait_vblank(false); // Transfer bus control to device for transmitting the reply. DSI(_DSIREG(DSI_HOST_CONTROL)) |= DSI_HOST_CONTROL_IMM_BTA; // Wait for reply to complete. DSI_HOST_CONTROL_IMM_BTA bit acts as a DSI host read busy. _display_dsi_wait(150000, _DSIREG(DSI_HOST_CONTROL), DSI_HOST_CONTROL_IMM_BTA); // Wait a bit for the reply. usleep(5000); // Read RX FIFO. _display_dsi_read_rx_fifo(fifo); // Parse packet and copy over the data. if ((fifo[0] & 0xFF) == DSI_ESCAPE_CMD) { // Act based on reply type. switch (fifo[1] & 0xFF) { case GEN_LONG_RD_RES: case DCS_LONG_RD_RES: memcpy(data, &fifo[2], MIN((fifo[1] >> 8) & 0xFFFF, len)); break; case GEN_1_BYTE_SHORT_RD_RES: case DCS_1_BYTE_SHORT_RD_RES: memcpy(data, &fifo[2], 1); break; case GEN_2_BYTE_SHORT_RD_RES: case DCS_2_BYTE_SHORT_RD_RES: memcpy(data, &fifo[2], 2); break; case ACK_ERROR_RES: default: res = 1; break; } } else res = 1; // Restore host control. DSI(_DSIREG(DSI_HOST_CONTROL)) = host_control; return res; } void display_dsi_write(u8 cmd, u32 len, void *data) { static u8 *fifo8 = NULL; static u32 *fifo32 = NULL; u32 host_control; // Allocate fifo buffer. if (!fifo32) { fifo32 = malloc(DSI_STATUS_RX_FIFO_SIZE * 8 * sizeof(u32)); fifo8 = (u8 *)fifo32; } // Prepare data for long write. if (len >= 2) { memcpy(&fifo8[5], data, len); memset(&fifo8[5] + len, 0, len % sizeof(u32)); len++; // Increase length by CMD. } // Save host control. host_control = DSI(_DSIREG(DSI_HOST_CONTROL)); // Enable host transfer trigger. DSI(_DSIREG(DSI_HOST_CONTROL)) = (host_control & ~(DSI_HOST_CONTROL_TX_TRIG_MASK)) | DSI_HOST_CONTROL_TX_TRIG_HOST; switch (len) { case 0: _display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE, cmd, 0); break; case 1: _display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE_PARAM, cmd | (*(u8 *)data << 8), 0); break; default: fifo32[0] = (len << 8) | MIPI_DSI_DCS_LONG_WRITE; fifo8[4] = cmd; len += sizeof(u32); // Increase length by length word and DCS CMD. for (u32 i = 0; i < (ALIGN(len, sizeof(u32)) / sizeof(u32)); i++) DSI(_DSIREG(DSI_WR_DATA)) = fifo32[i]; DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST; break; } // Wait for the write to happen. _display_dsi_wait(250000, _DSIREG(DSI_TRIGGER), DSI_TRIGGER_HOST); // Restore host control. DSI(_DSIREG(DSI_HOST_CONTROL)) = host_control; } void display_dsi_vblank_write(u8 cmd, u32 len, void *data) { static u8 *fifo8 = NULL; static u32 *fifo32 = NULL; // Allocate fifo buffer. if (!fifo32) { fifo32 = malloc(DSI_STATUS_RX_FIFO_SIZE * 8 * sizeof(u32)); fifo8 = (u8 *)fifo32; } // Prepare data for long write. if (len >= 2) { memcpy(&fifo8[5], data, len); memset(&fifo8[5] + len, 0, len % sizeof(u32)); len++; // Increase length by CMD. } _display_dsi_wait_vblank(true); switch (len) { case 0: DSI(_DSIREG(DSI_WR_DATA)) = (cmd << 8) | MIPI_DSI_DCS_SHORT_WRITE; break; case 1: DSI(_DSIREG(DSI_WR_DATA)) = ((cmd | (*(u8 *)data << 8)) << 8) | MIPI_DSI_DCS_SHORT_WRITE_PARAM; break; default: fifo32[0] = (len << 8) | MIPI_DSI_DCS_LONG_WRITE; fifo8[4] = cmd; len += sizeof(u32); // Increase length by length word and DCS CMD. for (u32 i = 0; i < (ALIGN(len, sizeof(u32)) / sizeof(u32)); i++) DSI(_DSIREG(DSI_WR_DATA)) = fifo32[i]; break; } _display_dsi_wait_vblank(false); } void display_init() { // Get Hardware type, as it's used in various DI functions. _nx_aula = fuse_read_hw_type() == FUSE_NX_HW_TYPE_AULA; // Check if display is already initialized. if (CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_L) & BIT(CLK_L_DISP1)) _display_panel_and_hw_end(true); // Get Chip ID. bool tegra_t210 = hw_get_chip_id() == GP_HIDREV_MAJOR_T210; // Enable DSI AVDD. max7762x_regulator_set_voltage(REGULATOR_LDO0, 1200000); max7762x_regulator_enable(REGULATOR_LDO0, true); // Enable Display Interface specific clocks. CLOCK(CLK_RST_CONTROLLER_RST_DEV_H_CLR) = BIT(CLK_H_MIPI_CAL) | BIT(CLK_H_DSI); CLOCK(CLK_RST_CONTROLLER_CLK_ENB_H_SET) = BIT(CLK_H_MIPI_CAL) | BIT(CLK_H_DSI); CLOCK(CLK_RST_CONTROLLER_RST_DEV_L_CLR) = BIT(CLK_L_DISP1); CLOCK(CLK_RST_CONTROLLER_CLK_ENB_L_SET) = BIT(CLK_L_DISP1); CLOCK(CLK_RST_CONTROLLER_CLK_ENB_X_SET) = BIT(CLK_X_UART_FST_MIPI_CAL); CLOCK(CLK_RST_CONTROLLER_CLK_SOURCE_UART_FST_MIPI_CAL) = CLK_SRC_DIV(6); // Set PLLP_OUT3 and div 6 (17MHz). CLOCK(CLK_RST_CONTROLLER_CLK_ENB_W_SET) = BIT(CLK_W_DSIA_LP); CLOCK(CLK_RST_CONTROLLER_CLK_SOURCE_DSIA_LP) = CLK_SRC_DIV(6); // Set PLLP_OUT and div 6 (68MHz). // Bring every IO rail out of deep power down. PMC(APBDEV_PMC_IO_DPD_REQ) = PMC_IO_DPD_REQ_DPD_OFF; PMC(APBDEV_PMC_IO_DPD2_REQ) = PMC_IO_DPD_REQ_DPD_OFF; // Configure LCD/BL pins. if (!_nx_aula) { // Configure LCD pins. PINMUX_AUX(PINMUX_AUX_NFC_EN) = PINMUX_PULL_DOWN; PINMUX_AUX(PINMUX_AUX_NFC_INT) = PINMUX_PULL_DOWN; // Configure Backlight pins. PINMUX_AUX(PINMUX_AUX_LCD_BL_PWM) = PINMUX_PULL_DOWN; PINMUX_AUX(PINMUX_AUX_LCD_BL_EN) = PINMUX_PULL_DOWN; // Enable LCD AVDD. gpio_direction_output(GPIO_PORT_I, GPIO_PIN_0 | GPIO_PIN_1, GPIO_HIGH); usleep(10000); // Wait minimum 4.2ms to stabilize. // Configure Backlight PWM/EN pins (BL PWM, BL EN). gpio_direction_output(GPIO_PORT_V, GPIO_PIN_0 | GPIO_PIN_1, GPIO_LOW); // Enable Backlight power. gpio_write(GPIO_PORT_V, GPIO_PIN_1, GPIO_HIGH); } // Configure LCD RST pin. PINMUX_AUX(PINMUX_AUX_LCD_RST) = PINMUX_PULL_DOWN; gpio_direction_output(GPIO_PORT_V, GPIO_PIN_2, GPIO_LOW); // Power up supply regulator for display interface. MIPI_CAL(_DSIREG(MIPI_CAL_MIPI_BIAS_PAD_CFG2)) = 0; if (!tegra_t210) { MIPI_CAL(_DSIREG(MIPI_CAL_MIPI_BIAS_PAD_CFG0)) = 0; APB_MISC(APB_MISC_GP_DSI_PAD_CONTROL) = 0; } // Set DISP1 clock source, parent clock and DSI/PCLK to low power mode. // T210: DIVM: 1, DIVN: 20, DIVP: 3. PLLD_OUT: 100.0 MHz, PLLD_OUT0 (DSI-PCLK): 50.0 MHz. (PCLK: 16.66 MHz) // T210B01: DIVM: 1, DIVN: 20, DIVP: 3. PLLD_OUT: 97.8 MHz, PLLD_OUT0 (DSI-PCLK): 48.9 MHz. (PCLK: 16.30 MHz) clock_enable_plld(3, 20, true, tegra_t210); // Setup Display Interface initial window configuration. reg_write_array((u32 *)DISPLAY_A_BASE, _di_dc_setup_win_config, ARRAY_SIZE(_di_dc_setup_win_config)); // Setup dsi init sequence packets. reg_write_array((u32 *)DSI_BASE, _di_dsi_init_config0, ARRAY_SIZE(_di_dsi_init_config0)); DSI(_DSIREG(tegra_t210 ? DSI_INIT_SEQ_DATA_15 : DSI_INIT_SEQ_DATA_15_B01)) = 0; reg_write_array((u32 *)DSI_BASE, _di_dsi_init_config1, ARRAY_SIZE(_di_dsi_init_config1)); // Reset pad trimmers for T210B01. if (!tegra_t210) reg_write_array((u32 *)DSI_BASE, _di_dsi_init_pads_t210b01, ARRAY_SIZE(_di_dsi_init_pads_t210b01)); // Setup init sequence packets, timings and power on DSI. reg_write_array((u32 *)DSI_BASE, _di_dsi_init_config2, ARRAY_SIZE(_di_dsi_init_config2)); usleep(10000); // Enable LCD Reset. gpio_write(GPIO_PORT_V, GPIO_PIN_2, GPIO_HIGH); usleep(60000); // Setup DSI device takeover timeout. DSI(_DSIREG(DSI_BTA_TIMING)) = _nx_aula ? 0x40103 : 0x50204; // Get Display ID. _display_id = 0xCCCCCC; for (u32 i = 0; i < 3; i++) { if (!display_dsi_read(MIPI_DCS_GET_DISPLAY_ID, 3, &_display_id)) break; usleep(10000); } // Save raw Display ID to Nyx storage. nyx_str->info.disp_id = _display_id; // Decode Display ID. _display_id = ((_display_id >> 8) & 0xFF00) | (_display_id & 0xFF); if ((_display_id & 0xFF) == PANEL_JDI_XXX062M) _display_id = PANEL_JDI_XXX062M; // For Aula ensure that we have a compatible panel id. if (_nx_aula && _display_id == 0xCCCC) _display_id = PANEL_SAM_AMS699VC01; // Initialize display panel. switch (_display_id) { case PANEL_SAM_AMS699VC01: _display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE, MIPI_DCS_EXIT_SLEEP_MODE, 180000); // Set color mode to basic (natural). Stock is Saturated (0x00). (Reset value is 0x20). _display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE_PARAM, MIPI_DCS_PRIV_SM_SET_COLOR_MODE | (DCS_SM_COLOR_MODE_BASIC << 8), 0); // Enable backlight and smooth PWM. _display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE_PARAM, MIPI_DCS_SET_CONTROL_DISPLAY | ((DCS_CONTROL_DISPLAY_BRIGHTNESS_CTRL | DCS_CONTROL_DISPLAY_DIMMING_CTRL) << 8), 0); // Unlock Level 2 registers. DSI(_DSIREG(DSI_WR_DATA)) = 0x539; // MIPI_DSI_DCS_LONG_WRITE: 5 bytes. DSI(_DSIREG(DSI_WR_DATA)) = 0x5A5A5AE2; // MIPI_DCS_PRIV_SM_SET_REGS_LOCK: Unlock Level 2 registers. DSI(_DSIREG(DSI_WR_DATA)) = 0x5A; DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST; // Set registers offset and set PWM transition to 6 frames (100ms). _display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE_PARAM, MIPI_DCS_PRIV_SM_SET_REG_OFFSET | (7 << 8), 0); _display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE_PARAM, MIPI_DCS_PRIV_SM_SET_ELVSS | (6 << 8), 0); // Relock Level 2 registers. DSI(_DSIREG(DSI_WR_DATA)) = 0x539; // MIPI_DSI_DCS_LONG_WRITE: 5 bytes. DSI(_DSIREG(DSI_WR_DATA)) = 0xA55A5AE2; // MIPI_DCS_PRIV_SM_SET_REGS_LOCK: Lock Level 2 registers. DSI(_DSIREG(DSI_WR_DATA)) = 0xA5; DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST; // Set backlight to 0%. DSI(_DSIREG(DSI_WR_DATA)) = 0x339; // MIPI_DSI_DCS_LONG_WRITE: 3 bytes. DSI(_DSIREG(DSI_WR_DATA)) = 0x000051; // MIPI_DCS_SET_BRIGHTNESS 0000: 0%. FF07: 100%. DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST; usleep(5000); _dsi_bl = 0; break; case PANEL_JDI_XXX062M: reg_write_array((u32 *)DSI_BASE, _di_dsi_panel_init_config_jdi, ARRAY_SIZE(_di_dsi_panel_init_config_jdi)); _display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE, MIPI_DCS_EXIT_SLEEP_MODE, 180000); break; case PANEL_INL_P062CCA_AZ1: case PANEL_AUO_A062TAN01: _display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE, MIPI_DCS_EXIT_SLEEP_MODE, 180000); // Unlock extension cmds. DSI(_DSIREG(DSI_WR_DATA)) = 0x439; // MIPI_DSI_DCS_LONG_WRITE: 4 bytes. DSI(_DSIREG(DSI_WR_DATA)) = 0x9483FFB9; // MIPI_DCS_PRIV_SET_EXTC. (Pass: FF 83 94). DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST; usleep(5000); // Set Power control. DSI(_DSIREG(DSI_WR_DATA)) = 0x739; // MIPI_DSI_DCS_LONG_WRITE: 7 bytes. if (_display_id == PANEL_INL_P062CCA_AZ1) DSI(_DSIREG(DSI_WR_DATA)) = 0x751548B1; // MIPI_DCS_PRIV_SET_POWER_CONTROL. (Not deep standby, BT5 / XDK, VRH gamma volt adj 53 / x40). else // PANEL_AUO_A062TAN01. DSI(_DSIREG(DSI_WR_DATA)) = 0x711148B1; // MIPI_DCS_PRIV_SET_POWER_CONTROL. (Not deep standby, BT1 / XDK, VRH gamma volt adj 49 / x40). DSI(_DSIREG(DSI_WR_DATA)) = 0x143209; // (NVRH gamma volt adj 9, Amplifier current small / x30, FS0 freq Fosc/80 / FS1 freq Fosc/32). DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST; usleep(5000); break; case PANEL_INL_2J055IA_27A: case PANEL_AUO_A055TAN01: case PANEL_SHP_LQ055T1SW10: default: // Allow spare part displays to work. _display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE, MIPI_DCS_EXIT_SLEEP_MODE, 120000); break; } // Unblank display. _display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE, MIPI_DCS_SET_DISPLAY_ON, 20000); // Setup final dsi clock. // DIVM: 1, DIVN: 24, DIVP: 1. PLLD_OUT: 468.0 MHz, PLLD_OUT0 (DSI): 234.0 MHz. clock_enable_plld(1, 24, false, tegra_t210); // Finalize DSI init packet sequence configuration. reg_write_array((u32 *)DSI_BASE, _di_dsi_init_seq_pkt_final_config, ARRAY_SIZE(_di_dsi_init_seq_pkt_final_config)); // Set 1-by-1 pixel/clock and pixel clock to 234 / 3 = 78 MHz. For 60 Hz refresh rate. DISPLAY_A(_DIREG(DC_DISP_DISP_CLOCK_CONTROL)) = PIXEL_CLK_DIVIDER_PCD1 | SHIFT_CLK_DIVIDER(4); // 4: div3. // Set DSI mode. reg_write_array((u32 *)DSI_BASE, _di_dsi_mode_config, ARRAY_SIZE(_di_dsi_mode_config)); usleep(10000); /* * Calibrate display communication pads. * When switching to the 16ff pad brick, the clock lane termination control * is separated from data lane termination. This change of the mipi cal * brings in a bug that the DSI pad clock termination code can't be loaded * in one time calibration. Trigger calibration twice. */ reg_write_array((u32 *)MIPI_CAL_BASE, _di_mipi_pad_cal_config, ARRAY_SIZE(_di_mipi_pad_cal_config)); for (u32 i = 0; i < 2; i++) { // Set MIPI bias pad config. MIPI_CAL(_DSIREG(MIPI_CAL_MIPI_BIAS_PAD_CFG2)) = 0x10010; MIPI_CAL(_DSIREG(MIPI_CAL_MIPI_BIAS_PAD_CFG1)) = tegra_t210 ? 0x300 : 0; // Set pad trimmers and set MIPI DSI cal offsets. if (tegra_t210) { reg_write_array((u32 *)DSI_BASE, _di_dsi_pad_cal_config_t210, ARRAY_SIZE(_di_dsi_pad_cal_config_t210)); reg_write_array((u32 *)MIPI_CAL_BASE, _di_mipi_dsi_cal_prod_config_t210, ARRAY_SIZE(_di_mipi_dsi_cal_prod_config_t210)); } else { reg_write_array((u32 *)DSI_BASE, _di_dsi_pad_cal_config_t210b01, ARRAY_SIZE(_di_dsi_pad_cal_config_t210b01)); reg_write_array((u32 *)MIPI_CAL_BASE, _di_mipi_dsi_cal_prod_config_t210b01, ARRAY_SIZE(_di_mipi_dsi_cal_prod_config_t210b01)); } // Reset all unused MIPI cal offsets. reg_write_array((u32 *)MIPI_CAL_BASE, _di_mipi_dsi_cal_unused_config, ARRAY_SIZE(_di_mipi_dsi_cal_unused_config)); // Set Prescale/filter and start calibration. MIPI_CAL(_DSIREG(MIPI_CAL_MIPI_CAL_CTRL)) = 0x2A000001; } usleep(10000); // Enable video display controller. reg_write_array((u32 *)DISPLAY_A_BASE, _di_dc_video_enable_config, ARRAY_SIZE(_di_dc_video_enable_config)); } void display_backlight_pwm_init() { if (_display_id == PANEL_SAM_AMS699VC01) return; // Enable PWM clock. clock_enable_pwm(); // Enable PWM and set it to 25KHz PFM. 29.5KHz is stock. PWM(PWM_CONTROLLER_PWM_CSR_0) = PWM_CSR_EN; PINMUX_AUX(PINMUX_AUX_LCD_BL_PWM) = (PINMUX_AUX(PINMUX_AUX_LCD_BL_PWM) & ~PINMUX_FUNC_MASK) | 1; // Set PWM0 mode. usleep(2); gpio_config(GPIO_PORT_V, GPIO_PIN_0, GPIO_MODE_SPIO); // Backlight power mode. } void display_backlight(bool enable) { // Backlight PWM GPIO. gpio_write(GPIO_PORT_V, GPIO_PIN_0, enable ? GPIO_HIGH : GPIO_LOW); } static void _display_dsi_backlight_brightness(u32 duty) { if (_dsi_bl == duty) return; // Convert duty to candela. u32 candela = duty * PANEL_SM_BL_CANDELA_MAX / 255; u16 bl_ctrl = byte_swap_16((u16)candela); display_dsi_vblank_write(MIPI_DCS_SET_BRIGHTNESS, 2, &bl_ctrl); // Wait for backlight to completely turn off. 6 frames. if (!duty) usleep(100000); _dsi_bl = duty; } static void _display_pwm_backlight_brightness(u32 duty, u32 step_delay) { u32 old_value = (PWM(PWM_CONTROLLER_PWM_CSR_0) >> 16) & 0xFF; if (duty == old_value) return; if (old_value < duty) { for (u32 i = old_value; i < duty + 1; i++) { PWM(PWM_CONTROLLER_PWM_CSR_0) = PWM_CSR_EN | (i << 16); usleep(step_delay); } } else { for (u32 i = old_value; i > duty; i--) { PWM(PWM_CONTROLLER_PWM_CSR_0) = PWM_CSR_EN | (i << 16); usleep(step_delay); } } if (!duty) PWM(PWM_CONTROLLER_PWM_CSR_0) = 0; } void display_backlight_brightness(u32 brightness, u32 step_delay) { if (brightness > 255) brightness = 255; if (_display_id != PANEL_SAM_AMS699VC01) _display_pwm_backlight_brightness(brightness, step_delay); else _display_dsi_backlight_brightness(brightness); } u32 display_get_backlight_brightness() { if (_display_id != PANEL_SAM_AMS699VC01) return ((PWM(PWM_CONTROLLER_PWM_CSR_0) >> 16) & 0xFF); else return _dsi_bl; } static void _display_panel_and_hw_end(bool no_panel_deinit) { if (no_panel_deinit) goto skip_panel_deinit; display_backlight_brightness(0, 1000); // Enable host cmd packets during video. DSI(_DSIREG(DSI_VIDEO_MODE_CONTROL)) = DSI_CMD_PKT_VID_ENABLE; // Blank display. DSI(_DSIREG(DSI_WR_DATA)) = (MIPI_DCS_SET_DISPLAY_OFF << 8) | MIPI_DSI_DCS_SHORT_WRITE; // Wait for 5 frames (HOST1X_CH0_SYNC_SYNCPT_9). // Not here. Wait for 1 frame manually. usleep(20000); // Propagate changes to all register buffers and disable host cmd packets during video. DISPLAY_A(_DIREG(DC_CMD_STATE_ACCESS)) = READ_MUX_ACTIVE | WRITE_MUX_ACTIVE; DSI(_DSIREG(DSI_VIDEO_MODE_CONTROL)) = 0; // De-initialize video controller. reg_write_array((u32 *)DISPLAY_A_BASE, _di_dc_video_disable_config, ARRAY_SIZE(_di_dc_video_disable_config)); // Set DISP1 clock source, parent clock and DSI/PCLK to low power mode. // T210: DIVM: 1, DIVN: 20, DIVP: 3. PLLD_OUT: 100.0 MHz, PLLD_OUT0 (DSI-PCLK): 50.0 MHz. (PCLK: 16.66 MHz) // T210B01: DIVM: 1, DIVN: 20, DIVP: 3. PLLD_OUT: 97.8 MHz, PLLD_OUT0 (DSI-PCLK): 48.9 MHz. (PCLK: 16.30 MHz) clock_enable_plld(3, 20, true, hw_get_chip_id() == GP_HIDREV_MAJOR_T210); // Set timings for lowpower clocks. reg_write_array((u32 *)DSI_BASE, _di_dsi_timing_deinit_config, ARRAY_SIZE(_di_dsi_timing_deinit_config)); if (_display_id != PANEL_SAM_AMS699VC01) usleep(10000); // De-initialize display panel. switch (_display_id) { case PANEL_JDI_XXX062M: reg_write_array((u32 *)DSI_BASE, _di_dsi_panel_deinit_config_jdi, ARRAY_SIZE(_di_dsi_panel_deinit_config_jdi)); break; case PANEL_AUO_A062TAN01: reg_write_array((u32 *)DSI_BASE, _di_dsi_panel_deinit_config_auo, ARRAY_SIZE(_di_dsi_panel_deinit_config_auo)); break; case PANEL_INL_2J055IA_27A: case PANEL_AUO_A055TAN01: case PANEL_SHP_LQ055T1SW10: // Unlock extension cmds. DSI(_DSIREG(DSI_WR_DATA)) = 0x439; // MIPI_DSI_DCS_LONG_WRITE: 4 bytes. DSI(_DSIREG(DSI_WR_DATA)) = 0x9483FFB9; // MIPI_DCS_PRIV_SET_EXTC. (Pass: FF 83 94). DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST; usleep(5000); // Set Power control. DSI(_DSIREG(DSI_WR_DATA)) = 0xB39; // MIPI_DSI_DCS_LONG_WRITE: 11 bytes. if (_display_id == PANEL_INL_2J055IA_27A) DSI(_DSIREG(DSI_WR_DATA)) = 0x751548B1; // MIPI_DCS_PRIV_SET_POWER_CONTROL. (Not deep standby, BT5 / XDK, VRH gamma volt adj 53 / x40). else if (_display_id == PANEL_AUO_A055TAN01) DSI(_DSIREG(DSI_WR_DATA)) = 0x711148B1; // MIPI_DCS_PRIV_SET_POWER_CONTROL. (Not deep standby, BT1 / XDK, VRH gamma volt adj 49 / x40). else // PANEL_SHP_LQ055T1SW10. DSI(_DSIREG(DSI_WR_DATA)) = 0x731348B1; // MIPI_DCS_PRIV_SET_POWER_CONTROL. (Not deep standby, BT3 / XDK, VRH gamma volt adj 51 / x40). if (_display_id == PANEL_INL_2J055IA_27A || _display_id == PANEL_AUO_A055TAN01) { // (NVRH gamma volt adj 9, Amplifier current small / x30, FS0 freq Fosc/80 / FS1 freq Fosc/32, Enter standby / PON / VCOMG). DSI(_DSIREG(DSI_WR_DATA)) = 0x71143209; DSI(_DSIREG(DSI_WR_DATA)) = 0x114D31; // (Unknown). } else // PANEL_SHP_LQ055T1SW10. { // (NVRH gamma volt adj 9, Amplifier current small / x30, FS0 freq Fosc/80 / FS1 freq Fosc/48, Enter standby / PON / VCOMG). DSI(_DSIREG(DSI_WR_DATA)) = 0x71243209; DSI(_DSIREG(DSI_WR_DATA)) = 0x004C31; // (Unknown). } DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST; usleep(5000); break; case PANEL_INL_P062CCA_AZ1: case PANEL_SAM_AMS699VC01: default: break; } // Blank - powerdown. _display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE, MIPI_DCS_ENTER_SLEEP_MODE, (_display_id == PANEL_SAM_AMS699VC01) ? 120000 : 50000); skip_panel_deinit: // Disable LCD power pins. gpio_write(GPIO_PORT_V, GPIO_PIN_2, GPIO_LOW); // LCD Reset disable. usleep(10000); if (!_nx_aula) // HOS uses panel id. { gpio_write(GPIO_PORT_I, GPIO_PIN_1, GPIO_LOW); // LCD AVDD -5.4V disable. gpio_write(GPIO_PORT_I, GPIO_PIN_0, GPIO_LOW); // LCD AVDD +5.4V disable. // Make sure LCD PWM backlight pin is in PWM0 mode. gpio_config(GPIO_PORT_V, GPIO_PIN_0, GPIO_MODE_SPIO); // Backlight PWM. PINMUX_AUX(PINMUX_AUX_LCD_BL_PWM) = PINMUX_TRISTATE | PINMUX_PULL_DOWN | 1; // Set PWM0 mode. } usleep(10000); // Disable Display Interface specific clocks. CLOCK(CLK_RST_CONTROLLER_RST_DEV_H_SET) = BIT(CLK_H_MIPI_CAL) | BIT(CLK_H_DSI); CLOCK(CLK_RST_CONTROLLER_CLK_ENB_H_CLR) = BIT(CLK_H_MIPI_CAL) | BIT(CLK_H_DSI); CLOCK(CLK_RST_CONTROLLER_RST_DEV_L_SET) = BIT(CLK_L_DISP1); CLOCK(CLK_RST_CONTROLLER_CLK_ENB_L_CLR) = BIT(CLK_L_DISP1); // Power down pads. DSI(_DSIREG(DSI_PAD_CONTROL_0)) = DSI_PAD_CONTROL_VS1_PULLDN_CLK | DSI_PAD_CONTROL_VS1_PULLDN(0xF) | DSI_PAD_CONTROL_VS1_PDIO_CLK | DSI_PAD_CONTROL_VS1_PDIO(0xF); DSI(_DSIREG(DSI_POWER_CONTROL)) = 0; // Disable DSI AVDD. max7762x_regulator_enable(REGULATOR_LDO0, false); } void display_end() { _display_panel_and_hw_end(false); }; u16 display_get_decoded_panel_id() { return _display_id; } void display_set_decoded_panel_id(u32 id) { // Get Hardware type, as it's used in various DI functions. _nx_aula = fuse_read_hw_type() == FUSE_NX_HW_TYPE_AULA; // Decode Display ID. _display_id = ((id >> 8) & 0xFF00) | (id & 0xFF); if ((_display_id & 0xFF) == PANEL_JDI_XXX062M) _display_id = PANEL_JDI_XXX062M; // For Aula ensure that we have a compatible panel id. if (_nx_aula && _display_id == 0xCCCC) _display_id = PANEL_SAM_AMS699VC01; } void display_color_screen(u32 color) { // Disable all windows. reg_write_array((u32 *)DISPLAY_A_BASE, _di_win_one_color, ARRAY_SIZE(_di_win_one_color)); // Configure display to show single color. DISPLAY_A(_DIREG(DC_DISP_BLEND_BACKGROUND_COLOR)) = color; // Arm and activate changes. DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | WIN_A_UPDATE | WIN_B_UPDATE | WIN_C_UPDATE | WIN_D_UPDATE; DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | WIN_A_ACT_REQ | WIN_B_ACT_REQ | WIN_C_ACT_REQ | WIN_D_ACT_REQ; usleep(35000); // Wait 2 frames. No need on Aula. if (_display_id != PANEL_SAM_AMS699VC01) display_backlight(true); else display_backlight_brightness(150, 0); } u32 *display_init_window_a_pitch() { // Sanitize framebuffer area. memset((u32 *)IPL_FB_ADDRESS, 0, IPL_FB_SZ); // This configures the framebuffer @ IPL_FB_ADDRESS with a resolution of 720x1280 (line stride 720). reg_write_array((u32 *)DISPLAY_A_BASE, _di_winA_pitch, ARRAY_SIZE(_di_winA_pitch)); //usleep(35000); // Wait 2 frames. No need on Aula. return (u32 *)DISPLAY_A(_DIREG(DC_WINBUF_START_ADDR)); } u32 *display_init_window_a_pitch_vic() { // This configures the framebuffer @ NYX_FB_ADDRESS with a resolution of 720x1280 (line stride 720). if (_display_id != PANEL_SAM_AMS699VC01) usleep(8000); // Wait half frame for PWM to apply. reg_write_array((u32 *)DISPLAY_A_BASE, _di_winA_pitch_vic, ARRAY_SIZE(_di_winA_pitch_vic)); if (_display_id != PANEL_SAM_AMS699VC01) usleep(35000); // Wait 2 frames. return (u32 *)DISPLAY_A(_DIREG(DC_WINBUF_START_ADDR)); } u32 *display_init_window_a_pitch_inv() { // This configures the framebuffer @ NYX_FB_ADDRESS with a resolution of 720x1280 (line stride 720). reg_write_array((u32 *)DISPLAY_A_BASE, _di_winA_pitch_inv, ARRAY_SIZE(_di_winA_pitch_inv)); usleep(35000); // Wait 2 frames. No need on Aula. return (u32 *)DISPLAY_A(_DIREG(DC_WINBUF_START_ADDR)); } u32 *display_init_window_a_block() { // This configures the framebuffer @ NYX_FB_ADDRESS with a resolution of 720x1280. reg_write_array((u32 *)DISPLAY_A_BASE, _di_winA_block, ARRAY_SIZE(_di_winA_block)); usleep(35000); // Wait 2 frames. No need on Aula. return (u32 *)DISPLAY_A(_DIREG(DC_WINBUF_START_ADDR)); } u32 *display_init_window_d_console() { // This configures the framebuffer @ LOG_FB_ADDRESS with a resolution of 1280x720 (line stride 720). reg_write_array((u32 *)DISPLAY_A_BASE, _di_winD_log, ARRAY_SIZE(_di_winD_log)); return (u32 *)DISPLAY_A(_DIREG(DC_WINBUF_START_ADDR)); } void display_window_disable(u32 window) { // Select window C. DISPLAY_A(_DIREG(DC_CMD_DISPLAY_WINDOW_HEADER)) = BIT(WINDOW_SELECT + window); // Disable window C. DISPLAY_A(_DIREG(DC_WIN_WIN_OPTIONS)) = 0; // Arm and activate changes. DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | BIT(WIN_UPDATE + window); DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | BIT(WIN_ACT_REQ + window); } void display_set_framebuffer(u32 window, void *fb) { // Select window. DISPLAY_A(_DIREG(DC_CMD_DISPLAY_WINDOW_HEADER)) = BIT(WINDOW_SELECT + window); // Set new fb address. DISPLAY_A(_DIREG(DC_WINBUF_START_ADDR)) = (u32)fb; // Arm and activate changes. DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | BIT(WIN_UPDATE + window); DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | BIT(WIN_ACT_REQ + window); } void display_move_framebuffer(u32 window, void *fb) { // Select window. DISPLAY_A(_DIREG(DC_CMD_DISPLAY_WINDOW_HEADER)) = BIT(WINDOW_SELECT + window); // Get current framebuffer address. void *fb_curr = (void *)DISPLAY_A(_DIREG(DC_WINBUF_START_ADDR)); u32 win_size = DISPLAY_A(_DIREG(DC_WIN_PRESCALED_SIZE)); win_size = (win_size & 0x7FFF) * ((win_size >> 16) & 0x1FFF); // Copy fb over. memcpy(fb, fb_curr, win_size); // Set new fb address. DISPLAY_A(_DIREG(DC_WINBUF_START_ADDR)) = (u32)fb; // Arm and activate changes. DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | BIT(WIN_UPDATE + window); DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | BIT(WIN_ACT_REQ + window); } void display_window_d_console_enable() { // Only update active registers on vsync. DISPLAY_A(_DIREG(DC_CMD_REG_ACT_CONTROL)) = DISPLAY_A(_DIREG(DC_CMD_REG_ACT_CONTROL)) & ~WIN_D_ACT_HCNTR_SEL; // Select window D. DISPLAY_A(_DIREG(DC_CMD_DISPLAY_WINDOW_HEADER)) = WINDOW_D_SELECT; // Enable and setup window D. DISPLAY_A(_DIREG(DC_WIN_WIN_OPTIONS)) = WIN_ENABLE; DISPLAY_A(_DIREG(DC_WIN_POSITION)) = 0xFF80; // X: -128. // Arm and activate changes. DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | WIN_D_UPDATE; DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | WIN_D_ACT_REQ; // Pull-down effect. for (u32 i = 0xFF80; i < 0x10000; i++) { // Set window position. DISPLAY_A(_DIREG(DC_WIN_POSITION)) = i & 0xFFFF; // Arm and activate changes. DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | WIN_D_UPDATE; DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | WIN_D_ACT_REQ; usleep(1000); } DISPLAY_A(_DIREG(DC_WIN_POSITION)) = 0; // Arm and activate changes. DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | WIN_D_UPDATE; DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | WIN_D_ACT_REQ; } void display_window_d_console_disable() { // Select window D. DISPLAY_A(_DIREG(DC_CMD_DISPLAY_WINDOW_HEADER)) = WINDOW_D_SELECT; // Pull-up effect. for (u32 i = 0xFFFF; i > 0xFF7F; i--) { // Set window position. DISPLAY_A(_DIREG(DC_WIN_POSITION)) = i & 0xFFFF; // Arm and activate changes. DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | WIN_D_UPDATE; DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | WIN_D_ACT_REQ; usleep(500); } // Disable window D. DISPLAY_A(_DIREG(DC_WIN_POSITION)) = 0; DISPLAY_A(_DIREG(DC_WIN_WIN_OPTIONS)) = 0; // Arm and activate changes. DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | WIN_D_UPDATE; DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | WIN_D_ACT_REQ; } void display_cursor_init(void *crs_fb, u32 size) { // Setup cursor. DISPLAY_A(_DIREG(DC_DISP_CURSOR_START_ADDR)) = CURSOR_CLIPPING(CURSOR_CLIP_WIN_A) | size | ((u32)crs_fb >> 10); DISPLAY_A(_DIREG(DC_DISP_BLEND_CURSOR_CONTROL)) = CURSOR_BLEND_R8G8B8A8 | CURSOR_BLEND_DST_FACTOR(CURSOR_BLEND_K1) | CURSOR_BLEND_SRC_FACTOR(CURSOR_BLEND_K1) | 0xFF; // Enable cursor window. DISPLAY_A(_DIREG(DC_DISP_DISP_WIN_OPTIONS)) |= CURSOR_ENABLE; // Arm and activate changes. DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | CURSOR_UPDATE; DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | CURSOR_ACT_REQ; } void display_cursor_set_pos(u32 x, u32 y) { // Set cursor position. DISPLAY_A(_DIREG(DC_DISP_CURSOR_POSITION)) = x | (y << 16); // Arm and activate changes. DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | CURSOR_UPDATE; DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | CURSOR_ACT_REQ; } void display_cursor_deinit() { DISPLAY_A(_DIREG(DC_DISP_BLEND_CURSOR_CONTROL)) = 0; DISPLAY_A(_DIREG(DC_DISP_DISP_WIN_OPTIONS)) &= ~CURSOR_ENABLE; DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | CURSOR_UPDATE; DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | CURSOR_ACT_REQ; }