/* * Copyright (c) 2018 naehrwert * * Copyright (c) 2018 Rajko Stojadinovic * Copyright (c) 2018 CTCaer * Copyright (c) 2018 Reisyukaku * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include "clock.h" #include "uart.h" #include "i2c.h" #include "sdram.h" #include "di.h" #include "mc.h" #include "t210.h" #include "pmc.h" #include "pinmux.h" #include "fuse.h" #include "util.h" #include "gfx.h" #include "btn.h" #include "tsec.h" #include "kfuse.h" #include "max77620.h" #include "max7762x.h" #include "gpio.h" #include "sdmmc.h" #include "ff.h" #include "hekate_logos.h" #include "tui.h" #include "heap.h" #include "list.h" #include "nx_emmc.h" #include "se.h" #include "se_t210.h" #include "hos.h" #include "pkg1.h" #include "mmc.h" //TODO: ugly. gfx_ctxt_t gfx_ctxt; gfx_con_t gfx_con; //TODO: Create more macros (info, header, debug, etc) with different colors and utilize them for consistency. #define EPRINTF(text) gfx_printf(&gfx_con, "%k"text"%k\n", 0xFFFF0000, 0xFFCCCCCC) #define EPRINTFARGS(text, args...) gfx_printf(&gfx_con, "%k"text"%k\n", 0xFFFF0000, args, 0xFFCCCCCC) //TODO: ugly. sdmmc_t sd_sdmmc; sdmmc_storage_t sd_storage; FATFS sd_fs; int sd_mounted; #ifdef MENU_LOGO_ENABLE u8 *Kc_MENU_LOGO; #endif //MENU_LOGO_ENABLE int sd_mount() { if (sd_mounted) return 1; if (!sdmmc_storage_init_sd(&sd_storage, &sd_sdmmc, SDMMC_1, SDMMC_BUS_WIDTH_4, 11)) { EPRINTF("Failed to init SD card.\nMake sure that it is inserted."); } else { int res = 0; res = f_mount(&sd_fs, "", 1); if (res == FR_OK) { sd_mounted = 1; return 1; } else { EPRINTFARGS("Failed to mount SD card (FatFS Error %d).\n(make sure that a FAT type partition exists)", res); } } return 0; } void sd_unmount() { if (sd_mounted) { f_mount(NULL, "", 1); sdmmc_storage_end(&sd_storage); sd_mounted = 0; } } void *sd_file_read(char *path) { FIL fp; if (f_open(&fp, path, FA_READ) != FR_OK) return NULL; u32 size = f_size(&fp); void *buf = malloc(size); u8 *ptr = buf; while (size > 0) { u32 rsize = MIN(size, 512 * 512); if (f_read(&fp, ptr, rsize, NULL) != FR_OK) { free(buf); return NULL; } ptr += rsize; size -= rsize; } f_close(&fp); return buf; } int sd_save_to_file(void * buf, u32 size, const char * filename) { FIL fp; if (f_open(&fp, filename, FA_CREATE_ALWAYS | FA_WRITE) != FR_OK) { return 1; } f_sync(&fp); f_write(&fp, buf, size, NULL); f_close(&fp); return 0; } void panic(u32 val) { // Set panic code. PMC(APBDEV_PMC_SCRATCH200) = val; //PMC(APBDEV_PMC_CRYPTO_OP) = 1; // Disable SE. TMR(0x18C) = 0xC45A; TMR(0x80) = 0xC0000000; TMR(0x180) = 0x8019; TMR(0x188) = 1; while (1) ; } void config_oscillators() { CLOCK(CLK_RST_CONTROLLER_SPARE_REG0) = (CLOCK(CLK_RST_CONTROLLER_SPARE_REG0) & 0xFFFFFFF3) | 4; SYSCTR0(SYSCTR0_CNTFID0) = 19200000; TMR(0x14) = 0x45F; CLOCK(CLK_RST_CONTROLLER_OSC_CTRL) = 0x50000071; PMC(APBDEV_PMC_OSC_EDPD_OVER) = (PMC(APBDEV_PMC_OSC_EDPD_OVER) & 0xFFFFFF81) | 0xE; PMC(APBDEV_PMC_OSC_EDPD_OVER) = (PMC(APBDEV_PMC_OSC_EDPD_OVER) & 0xFFBFFFFF) | 0x400000; PMC(APBDEV_PMC_CNTRL2) = (PMC(APBDEV_PMC_CNTRL2) & 0xFFFFEFFF) | 0x1000; PMC(APBDEV_PMC_SCRATCH188) = (PMC(APBDEV_PMC_SCRATCH188) & 0xFCFFFFFF) | 0x2000000; CLOCK(CLK_RST_CONTROLLER_CLK_SYSTEM_RATE) = 0x10; CLOCK(CLK_RST_CONTROLLER_PLLMB_BASE) &= 0xBFFFFFFF; PMC(APBDEV_PMC_TSC_MULT) = (PMC(APBDEV_PMC_TSC_MULT) & 0xFFFF0000) | 0x249F; //0x249F = 19200000 * (16 / 32.768 kHz) CLOCK(CLK_RST_CONTROLLER_SCLK_BURST_POLICY) = 0x20004444; CLOCK(CLK_RST_CONTROLLER_SUPER_SCLK_DIVIDER) = 0x80000000; CLOCK(CLK_RST_CONTROLLER_CLK_SYSTEM_RATE) = 2; } void config_gpios() { PINMUX_AUX(PINMUX_AUX_UART2_TX) = 0; PINMUX_AUX(PINMUX_AUX_UART3_TX) = 0; PINMUX_AUX(PINMUX_AUX_GPIO_PE6) = PINMUX_INPUT_ENABLE; PINMUX_AUX(PINMUX_AUX_GPIO_PH6) = PINMUX_INPUT_ENABLE; gpio_config(GPIO_PORT_G, GPIO_PIN_0, GPIO_MODE_GPIO); gpio_config(GPIO_PORT_D, GPIO_PIN_1, GPIO_MODE_GPIO); gpio_config(GPIO_PORT_E, GPIO_PIN_6, GPIO_MODE_GPIO); gpio_config(GPIO_PORT_H, GPIO_PIN_6, GPIO_MODE_GPIO); gpio_output_enable(GPIO_PORT_G, GPIO_PIN_0, GPIO_OUTPUT_DISABLE); gpio_output_enable(GPIO_PORT_D, GPIO_PIN_1, GPIO_OUTPUT_DISABLE); gpio_output_enable(GPIO_PORT_E, GPIO_PIN_6, GPIO_OUTPUT_DISABLE); gpio_output_enable(GPIO_PORT_H, GPIO_PIN_6, GPIO_OUTPUT_DISABLE); pinmux_config_i2c(I2C_1); pinmux_config_i2c(I2C_5); pinmux_config_uart(UART_A); // Configure volume up/down as inputs. gpio_config(GPIO_PORT_X, GPIO_PIN_6, GPIO_MODE_GPIO); gpio_config(GPIO_PORT_X, GPIO_PIN_7, GPIO_MODE_GPIO); gpio_output_enable(GPIO_PORT_X, GPIO_PIN_6, GPIO_OUTPUT_DISABLE); gpio_output_enable(GPIO_PORT_X, GPIO_PIN_7, GPIO_OUTPUT_DISABLE); } void config_pmc_scratch() { PMC(APBDEV_PMC_SCRATCH20) &= 0xFFF3FFFF; PMC(APBDEV_PMC_SCRATCH190) &= 0xFFFFFFFE; PMC(APBDEV_PMC_SECURE_SCRATCH21) |= 0x10; } void mbist_workaround() { CLOCK(0x410) = (CLOCK(0x410) | 0x8000) & 0xFFFFBFFF; CLOCK(0xD0) |= 0x40800000u; CLOCK(0x2AC) = 0x40; CLOCK(0x294) = 0x40000; CLOCK(0x304) = 0x18000000; sleep(2); I2S(0x0A0) |= 0x400; I2S(0x088) &= 0xFFFFFFFE; I2S(0x1A0) |= 0x400; I2S(0x188) &= 0xFFFFFFFE; I2S(0x2A0) |= 0x400; I2S(0x288) &= 0xFFFFFFFE; I2S(0x3A0) |= 0x400; I2S(0x388) &= 0xFFFFFFFE; I2S(0x4A0) |= 0x400; I2S(0x488) &= 0xFFFFFFFE; DISPLAY_A(0xCF8) |= 4; VIC(0x8C) = 0xFFFFFFFF; sleep(2); CLOCK(0x2A8) = 0x40; CLOCK(0x300) = 0x18000000; CLOCK(0x290) = 0x40000; CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_H) = 0xC0; CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_L) = 0x80000130; CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_U) = 0x1F00200; CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_V) = 0x80400808; CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_W) = 0x402000FC; CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_X) = 0x23000780; CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_Y) = 0x300; CLOCK(0xF8) = 0; CLOCK(0xFC) = 0; CLOCK(0x3A0) = 0; CLOCK(0x3A4) = 0; CLOCK(0x554) = 0; CLOCK(0xD0) &= 0x1F7FFFFF; CLOCK(0x410) &= 0xFFFF3FFF; CLOCK(0x148) = (CLOCK(0x148) & 0x1FFFFFFF) | 0x80000000; CLOCK(0x180) = (CLOCK(0x180) & 0x1FFFFFFF) | 0x80000000; CLOCK(0x6A0) = (CLOCK(0x6A0) & 0x1FFFFFFF) | 0x80000000; } void config_se_brom() { // Bootrom part we skipped. u32 sbk[4] = { FUSE(0x1A4), FUSE(0x1A8), FUSE(0x1AC), FUSE(0x1B0) }; se_aes_key_set(14, sbk, 0x10); // Lock SBK from being read. SE(SE_KEY_TABLE_ACCESS_REG_OFFSET + 14 * 4) = 0x7E; // This memset needs to happen here, else TZRAM will behave weirdly later on. memset((void *)0x7C010000, 0, 0x10000); PMC(APBDEV_PMC_CRYPTO_OP) = 0; SE(SE_INT_STATUS_REG_OFFSET) = 0x1F; //Lock SSK (although it's not set and unused anyways). SE(SE_KEY_TABLE_ACCESS_REG_OFFSET + 15 * 4) = 0x7E; // Clear the boot reason to avoid problems later PMC(APBDEV_PMC_SCRATCH200) = 0x0; PMC(APBDEV_PMC_RST_STATUS_0) = 0x0; } void config_hw() { // Bootrom stuff we skipped by going through rcm. config_se_brom(); //FUSE(FUSE_PRIVATEKEYDISABLE) = 0x11; SYSREG(0x110) &= 0xFFFFFF9F; PMC(0x244) = ((PMC(0x244) >> 1) << 1) & 0xFFFFFFFD; mbist_workaround(); clock_enable_se(); // Enable fuse clock. clock_enable_fuse(1); // Disable fuse programming. fuse_disable_program(); mc_enable(); config_oscillators(); APB_MISC(0x40) = 0; config_gpios(); //clock_enable_uart(UART_C); //uart_init(UART_C, 115200); clock_enable_cl_dvfs(); clock_enable_i2c(I2C_1); clock_enable_i2c(I2C_5); static const clock_t clock_unk1 = { 0x358, 0x360, 0x42C, 0x1F, 0, 0 }; static const clock_t clock_unk2 = { 0x358, 0x360, 0, 0x1E, 0, 0 }; clock_enable(&clock_unk1); clock_enable(&clock_unk2); i2c_init(I2C_1); i2c_init(I2C_5); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_CNFGBBC, 0x40); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_ONOFFCNFG1, 0x78); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_FPS_CFG0, 0x38); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_FPS_CFG1, 0x3A); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_FPS_CFG2, 0x38); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_FPS_LDO4, 0xF); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_FPS_LDO8, 0xC7); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_FPS_SD0, 0x4F); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_FPS_SD1, 0x29); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_FPS_SD3, 0x1B); i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_SD0, 42); //42 = (1125000 - 600000) / 12500 -> 1.125V config_pmc_scratch(); CLOCK(CLK_RST_CONTROLLER_SCLK_BURST_POLICY) = (CLOCK(CLK_RST_CONTROLLER_SCLK_BURST_POLICY) & 0xFFFF8888) | 0x3333; mc_config_carveout(); sdram_init(); //TODO: test this with LP0 wakeup. sdram_lp0_save_params(sdram_get_params()); } void print_fuseinfo() { gfx_clear_grey(&gfx_ctxt, 0x1B); gfx_con_setpos(&gfx_con, 0, 0); gfx_printf(&gfx_con, "%k(Unlocked) fuse cache:\n\n%k", 0xFF00DDFF, 0xFFCCCCCC); gfx_hexdump(&gfx_con, 0x7000F900, (u8 *)0x7000F900, 0x2FC); gfx_puts(&gfx_con, "\nPress POWER to dump them to SD Card.\nPress VOL to go to the menu.\n"); u32 btn = btn_wait(); if (btn & BTN_POWER) { if (sd_mount()) { char fuseFilename[9]; memcpy(fuseFilename, "fuse.bin", 8); fuseFilename[8] = 0; if (sd_save_to_file((u8 *)0x7000F900, 0x2FC, fuseFilename)) EPRINTF("\nError creating fuse.bin file."); else gfx_puts(&gfx_con, "\nDone!\n"); } btn_wait(); } } void print_kfuseinfo() { gfx_clear_grey(&gfx_ctxt, 0x1B); gfx_con_setpos(&gfx_con, 0, 0); gfx_printf(&gfx_con, "%kKFuse contents:\n\n%k", 0xFF00DDFF, 0xFFCCCCCC); u32 buf[KFUSE_NUM_WORDS]; if (!kfuse_read(buf)) EPRINTF("CRC fail."); else gfx_hexdump(&gfx_con, 0, (u8 *)buf, KFUSE_NUM_WORDS * 4); gfx_puts(&gfx_con, "\nPress POWER to dump them to SD Card.\nPress VOL to go to the menu.\n"); u32 btn = btn_wait(); if (btn & BTN_POWER) { if (sd_mount()) { char kfuseFilename[10]; memcpy(kfuseFilename, "kfuse.bin", 9); kfuseFilename[9] = 0; if (sd_save_to_file((u8 *)buf, KFUSE_NUM_WORDS * 4, kfuseFilename)) EPRINTF("\nError creating kfuse.bin file."); else gfx_puts(&gfx_con, "\nDone!\n"); } btn_wait(); } } void print_mmc_info() { gfx_clear_grey(&gfx_ctxt, 0x1B); gfx_con_setpos(&gfx_con, 0, 0); static const u32 SECTORS_TO_MIB_COEFF = 11; sdmmc_storage_t storage; sdmmc_t sdmmc; if(!sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_4, SDMMC_BUS_WIDTH_8, 4)) { EPRINTF("Failed to init eMMC."); goto out; } else { u16 card_type; u32 speed; gfx_printf(&gfx_con, "%kCard IDentification:%k\n", 0xFF00DDFF, 0xFFCCCCCC); switch (storage.csd.mmca_vsn) { case 0: /* MMC v1.0 - v1.2 */ case 1: /* MMC v1.4 */ gfx_printf(&gfx_con, " Vendor ID: %03X\n\ Model: %c%c%c%c%c%c%c\n\ HW rev: %X\n\ FW rev: %X\n\ S/N: %03X\n\ Month/Year: %02d/%04d\n\n", storage.cid.manfid, storage.cid.prod_name[0], storage.cid.prod_name[1], storage.cid.prod_name[2], storage.cid.prod_name[3], storage.cid.prod_name[4], storage.cid.prod_name[5], storage.cid.prod_name[6], storage.cid.hwrev, storage.cid.fwrev, storage.cid.serial, storage.cid.month, storage.cid.year); break; case 2: /* MMC v2.0 - v2.2 */ case 3: /* MMC v3.1 - v3.3 */ case 4: /* MMC v4 */ gfx_printf(&gfx_con, " Vendor ID: %X\n\ Card/BGA: %X\n\ OEM ID: %02X\n\ Model: %c%c%c%c%c%c\n\ Prd Rev: %X\n\ S/N: %04X\n\ Month/Year: %02d/%04d\n\n", storage.cid.manfid, storage.cid.card_bga, storage.cid.oemid, storage.cid.prod_name[0], storage.cid.prod_name[1], storage.cid.prod_name[2], storage.cid.prod_name[3], storage.cid.prod_name[4], storage.cid.prod_name[5], storage.cid.prv, storage.cid.serial, storage.cid.month, storage.cid.year); break; default: EPRINTFARGS("eMMC has unknown MMCA version %d", storage.csd.mmca_vsn); break; } if (storage.csd.structure == 0) EPRINTF("Unknown CSD structure."); else { gfx_printf(&gfx_con, "%kExtended Card-Specific Data V1.%d:%k\n", 0xFF00DDFF, storage.ext_csd.ext_struct, 0xFFCCCCCC); card_type = storage.ext_csd.card_type; u8 card_type_support[96]; u8 pos_type = 0; if (card_type & EXT_CSD_CARD_TYPE_HS_26) { memcpy(card_type_support, "HS26", 4); speed = (26 << 16) | 26; pos_type += 4; } if (card_type & EXT_CSD_CARD_TYPE_HS_52) { memcpy(card_type_support + pos_type, ", HS52", 6); speed = (52 << 16) | 52; pos_type += 6; } if (card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { memcpy(card_type_support + pos_type, ", DDR52_1.8V", 12); speed = (52 << 16) | 104; pos_type += 12; } if (card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { memcpy(card_type_support + pos_type, ", HS200_1.8V", 12); speed = (200 << 16) | 200; pos_type += 12; } if (card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { memcpy(card_type_support + pos_type, ", HS400_1.8V", 12); speed = (200 << 16) | 400; pos_type += 12; } card_type_support[pos_type] = 0; gfx_printf(&gfx_con, " Spec Version: %02X\n\ Extended Rev: 1.%d\n\ Dev Version: %d\n\ Cmd Classes: %02X\n\ Capacity: %s\n\ Max Speed: %d MB/s (%d MHz)\n\ Type Support: %s\n\n", storage.csd.mmca_vsn, storage.ext_csd.rev, storage.ext_csd.dev_version, storage.csd.cmdclass, storage.csd.capacity == (4096 * 512) ? "High" : "Low", speed & 0xFFFF, (speed >> 16) & 0xFFFF, card_type_support); u32 boot_size = storage.ext_csd.boot_mult << 17; u32 rpmb_size = storage.ext_csd.rpmb_mult << 17; gfx_printf(&gfx_con, "%keMMC Partitions:%k\n", 0xFF00DDFF, 0xFFCCCCCC); gfx_printf(&gfx_con, " 1: %kBOOT0 %kSize: %5d KiB (LBA Sectors: 0x%07X)\n", 0xFF96FF00, 0xFFCCCCCC, boot_size / 1024, boot_size / 1024 / 512); gfx_printf(&gfx_con, " 2: %kBOOT1 %kSize: %5d KiB (LBA Sectors: 0x%07X)\n", 0xFF96FF00, 0xFFCCCCCC, boot_size / 1024, boot_size / 1024 / 512); gfx_printf(&gfx_con, " 3: %kRPMB %kSize: %5d KiB (LBA Sectors: 0x%07X)\n", 0xFF96FF00, 0xFFCCCCCC, rpmb_size / 1024, rpmb_size / 1024 / 512); gfx_printf(&gfx_con, " 0: %kGPP (USER) %kSize: %5d MiB (LBA Sectors: 0x%07X)\n\n", 0xFF96FF00, 0xFFCCCCCC, storage.sec_cnt >> SECTORS_TO_MIB_COEFF, storage.sec_cnt); gfx_printf(&gfx_con, "%kGPP (eMMC USER) partition table:%k\n", 0xFF00DDFF, 0xFFCCCCCC); sdmmc_storage_set_mmc_partition(&storage, 0); LIST_INIT(gpt); nx_emmc_gpt_parse(&gpt, &storage); int gpp_idx = 0; LIST_FOREACH_ENTRY(emmc_part_t, part, &gpt, link) { gfx_printf(&gfx_con, " %02d: %k%s%k\n Size: % 5d MiB (LBA Sectors 0x%07X, LBA Range: %08X-%08X)\n", gpp_idx++, 0xFFAEFD14, part->name, 0xFFCCCCCC, (part->lba_end - part->lba_start + 1) >> SECTORS_TO_MIB_COEFF, part->lba_end - part->lba_start + 1, part->lba_start, part->lba_end); } } } out: sdmmc_storage_end(&storage); btn_wait(); } void print_sdcard_info() { gfx_clear_grey(&gfx_ctxt, 0x1B); gfx_con_setpos(&gfx_con, 0, 0); static const u32 SECTORS_TO_MIB_COEFF = 11; if (sd_mount()) { u32 capacity; gfx_printf(&gfx_con, "%kCard IDentification:%k\n", 0xFF00DDFF, 0xFFCCCCCC); gfx_printf(&gfx_con, " Vendor ID: %02x\n\ OEM ID: %c%c\n\ Model: %c%c%c%c%c\n\ HW rev: %X\n\ FW rev: %X\n\ S/N: %08x\n\ Month/Year: %02d/%04d\n\n", sd_storage.cid.manfid, (sd_storage.cid.oemid >> 8) & 0xFF, sd_storage.cid.oemid & 0xFF, sd_storage.cid.prod_name[0], sd_storage.cid.prod_name[1], sd_storage.cid.prod_name[2], sd_storage.cid.prod_name[3], sd_storage.cid.prod_name[4], sd_storage.cid.hwrev, sd_storage.cid.fwrev, sd_storage.cid.serial, sd_storage.cid.month, sd_storage.cid.year); gfx_printf(&gfx_con, "%kCard-Specific Data V%d.0:%k\n", 0xFF00DDFF, sd_storage.csd.structure + 1, 0xFFCCCCCC); capacity = sd_storage.csd.capacity >> (20 - sd_storage.csd.read_blkbits); gfx_printf(&gfx_con, " Cmd Classes: %02X\n\ Capacity: %d MiB\n\ Bus Width: %d\n\ Speed Class: %d\n\ UHS Grade: U%d\n\ Video Class: V%d\n\ App perf class: A%d\n\ Write Protect: %d\n\n", sd_storage.csd.cmdclass, capacity, sd_storage.ssr.bus_width, sd_storage.ssr.speed_class, sd_storage.ssr.uhs_grade, sd_storage.ssr.video_class, sd_storage.ssr.app_class, sd_storage.csd.write_protect); gfx_puts(&gfx_con, "Acquiring FAT volume info...\n\n"); f_getfree("", &sd_fs.free_clst, NULL); gfx_printf(&gfx_con, "%kFound %s volume:%k\n Free: %d MiB\n Cluster: %d KiB\n", 0xFF00DDFF, sd_fs.fs_type == FS_EXFAT ? "exFAT" : "FAT32", 0xFFCCCCCC, sd_fs.free_clst * sd_fs.csize >> SECTORS_TO_MIB_COEFF, (sd_fs.csize > 1) ? (sd_fs.csize >> 1) : 512); } btn_wait(); } void print_tsec_key() { gfx_clear_grey(&gfx_ctxt, 0x1B); gfx_con_setpos(&gfx_con, 0, 0); sdmmc_storage_t storage; sdmmc_t sdmmc; sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_4, SDMMC_BUS_WIDTH_8, 4); // Read package1. u8 *pkg1 = (u8 *)malloc(0x40000); sdmmc_storage_set_mmc_partition(&storage, 1); sdmmc_storage_read(&storage, 0x100000 / NX_EMMC_BLOCKSIZE, 0x40000 / NX_EMMC_BLOCKSIZE, pkg1); const pkg1_id_t *pkg1_id = pkg1_identify(pkg1); if (!pkg1_id) { EPRINTFARGS("Could not identify package1 version to read TSEC firmware (= '%s').", (char *)pkg1 + 0x10); goto out; } for(u32 i = 1; i <= 3; i++) { u8 key[0x10]; int res = tsec_query(key, i, pkg1 + pkg1_id->tsec_off); gfx_printf(&gfx_con, "%kTSEC key %d: %k", 0xFF00DDFF, i, 0xFFCCCCCC); if (res >= 0) { for (u32 i = 0; i < 0x10; i++) gfx_printf(&gfx_con, "%02X", key[i]); } else EPRINTFARGS("ERROR %X", res); gfx_putc(&gfx_con, '\n'); } out:; free(pkg1); sdmmc_storage_end(&storage); gfx_puts(&gfx_con, "\nPress any key...\n"); btn_wait(); } void reboot_normal() { sd_unmount(); #ifdef MENU_LOGO_ENABLE free(Kc_MENU_LOGO); #endif //MENU_LOGO_ENABLE panic(0x21); // Bypass fuse programming in package1. } void reboot_rcm() { sd_unmount(); #ifdef MENU_LOGO_ENABLE free(Kc_MENU_LOGO); #endif //MENU_LOGO_ENABLE PMC(APBDEV_PMC_SCRATCH0) = 2; // Reboot into rcm. PMC(0) |= 0x10; while (1) sleep(1); } void power_off() { sd_unmount(); #ifdef MENU_LOGO_ENABLE free(Kc_MENU_LOGO); #endif //MENU_LOGO_ENABLE //TODO: we should probably make sure all regulators are powered off properly. i2c_send_byte(I2C_5, 0x3C, MAX77620_REG_ONOFFCNFG1, MAX77620_ONOFFCNFG1_PWR_OFF); } int dump_emmc_verify(sdmmc_storage_t *storage, u32 lba_curr, char* outFilename, u32 NUM_SECTORS_PER_ITER, emmc_part_t *part) { FIL fp; u32 prevPct = 200; if (f_open(&fp, outFilename, FA_READ) == FR_OK) { u8 *bufEm = (u8 *)malloc(NX_EMMC_BLOCKSIZE * NUM_SECTORS_PER_ITER); u8 *bufSd = (u8 *)malloc(NX_EMMC_BLOCKSIZE * NUM_SECTORS_PER_ITER); u32 totalSectorsVer = (u32)(f_size(&fp) >> 9); u32 lbaCurrVer = lba_curr - totalSectorsVer; u32 pct = (u64)((u64)(lbaCurrVer - part->lba_start) * 100u) / (u64)(part->lba_end - part->lba_start); tui_pbar(&gfx_con, 0, gfx_con.y, pct, 0xFF96FF00, 0xFF155500); while (totalSectorsVer > 0) { u32 num = MIN(totalSectorsVer, NUM_SECTORS_PER_ITER); if(!sdmmc_storage_read(storage, lbaCurrVer, num, bufEm)) { EPRINTFARGS("\nFailed to read %d blocks @ LBA %08X\nfrom eMMC. Aborting..\n", num, lbaCurrVer); free(bufEm); free(bufSd); f_close(&fp); return 1; } if (!(f_read(&fp, bufSd, num, NULL) == FR_OK)) { EPRINTFARGS("\nFailed to read %d blocks from sd card.\nVerification failed..\n", num); free(bufEm); free(bufSd); f_close(&fp); return 1; } if(!memcmp(bufEm, bufSd, num << 9)) { EPRINTFARGS("\nSD card and eMMC data do not match!\nVerification failed..\n", num); free(bufEm); free(bufSd); f_close(&fp); return 1; } pct = (u64)((u64)(lbaCurrVer - part->lba_start) * 100u) / (u64)(part->lba_end - part->lba_start); if (pct != prevPct) { tui_pbar(&gfx_con, 0, gfx_con.y, pct, 0xFF96FF00, 0xFF155500); prevPct = pct; } lbaCurrVer += num; totalSectorsVer -= num; } free(bufEm); free(bufSd); f_close(&fp); tui_pbar(&gfx_con, 0, gfx_con.y, pct, 0xFFCCCCCC, 0xFF555555); return 0; } else { EPRINTF("\nFile not found or could not be loaded.\nVerification failed..\n"); return 1; } } int dump_emmc_part(char *sd_path, sdmmc_storage_t *storage, emmc_part_t *part) { static const u32 FAT32_FILESIZE_LIMIT = 0xFFFFFFFF; static const u32 SECTORS_TO_MIB_COEFF = 11; u32 multipartSplitSize = (1u << 31); u32 totalSectors = part->lba_end - part->lba_start + 1; u32 currPartIdx = 0; u32 numSplitParts = 0; u32 maxSplitParts = 0; int isSmallSdCard = 0; int partialDumpInProgress = 0; int res = 0; char* outFilename = sd_path; u32 sdPathLen = strlen(sd_path); FIL partialIdxFp; char partialIdxFilename[12]; memcpy(partialIdxFilename, "partial.idx", 11); partialIdxFilename[11] = 0; gfx_printf(&gfx_con, "\nSD Card free space: %d MiB, Total backup size %d MiB\n\n", sd_fs.free_clst * sd_fs.csize >> SECTORS_TO_MIB_COEFF, totalSectors >> SECTORS_TO_MIB_COEFF); // 1GB parts for sd cards 8GB and less. if ((sd_storage.csd.capacity >> (20 - sd_storage.csd.read_blkbits)) <= 8192) multipartSplitSize = (1u << 30); // Maximum parts fitting the free space available. maxSplitParts = (sd_fs.free_clst * sd_fs.csize) / (multipartSplitSize / 512); // Check if the USER partition or the RAW eMMC fits the sd card free space. if (totalSectors > (sd_fs.free_clst * sd_fs.csize)) { isSmallSdCard = 1; gfx_printf(&gfx_con, "%k\nSD card free space is smaller than total backup size.%k\n", 0xFFFFBA00, 0xFFCCCCCC); if (!maxSplitParts) { EPRINTF("Not enough free space for Partial Backup."); return 0; } } // Check if we continuing a previous raw eMMC backup in progress. if (f_open(&partialIdxFp, partialIdxFilename, FA_READ) == FR_OK) { gfx_printf(&gfx_con, "%kFound Partial Backup in progress. Continuing...%k\n\n", 0xFFAEFD14, 0xFFCCCCCC); partialDumpInProgress = 1; // Force partial dumping, even if the card is larger. isSmallSdCard = 1; f_read(&partialIdxFp, &currPartIdx, 4, NULL); f_close(&partialIdxFp); if (!maxSplitParts) { EPRINTF("Not enough free space for Partial Backup."); return 0; } // Increase maxSplitParts to accommodate previously backed up parts. maxSplitParts += currPartIdx; } else if (isSmallSdCard) gfx_printf(&gfx_con, "%kPartial Backup enabled (with %d MiB parts)...%k\n\n", 0xFFFFBA00, multipartSplitSize >> 20, 0xFFCCCCCC); // Check if filesystem is FAT32 or the free space is smaller and backup in parts. if (((sd_fs.fs_type != FS_EXFAT) && totalSectors > (FAT32_FILESIZE_LIMIT / NX_EMMC_BLOCKSIZE)) | isSmallSdCard) { u32 multipartSplitSectors = multipartSplitSize / NX_EMMC_BLOCKSIZE; numSplitParts = (totalSectors + multipartSplitSectors - 1) / multipartSplitSectors; outFilename = alloca(sdPathLen+4); memcpy(outFilename, sd_path, sdPathLen); outFilename[sdPathLen++] = '.'; if (!partialDumpInProgress) { outFilename[sdPathLen] = '0'; if (numSplitParts >= 10) { outFilename[sdPathLen + 1] = '0'; outFilename[sdPathLen + 2] = 0; } else outFilename[sdPathLen + 1] = 0; } // Continue from where we left, if Partial Backup in progress. else { if (numSplitParts >= 10 && currPartIdx < 10) { outFilename[sdPathLen] = '0'; itoa(currPartIdx, &outFilename[sdPathLen + 1], 10); } else itoa(currPartIdx, &outFilename[sdPathLen], 10); } } FIL fp; if (f_open(&fp, outFilename, FA_CREATE_ALWAYS | FA_WRITE) != FR_OK) { EPRINTFARGS("Error creating file %s.\n", outFilename); return 0; } static const u32 NUM_SECTORS_PER_ITER = 512; u8 *buf = (u8 *)malloc(NX_EMMC_BLOCKSIZE * NUM_SECTORS_PER_ITER); u32 lba_curr = part->lba_start; u32 bytesWritten = 0; u32 prevPct = 200; int retryCount = 0; // Continue from where we left, if Partial Backup in progress. if (partialDumpInProgress) { lba_curr += currPartIdx * (multipartSplitSize / NX_EMMC_BLOCKSIZE); totalSectors -= currPartIdx * (multipartSplitSize / NX_EMMC_BLOCKSIZE); } while(totalSectors > 0) { if (numSplitParts != 0 && bytesWritten >= multipartSplitSize) { f_close(&fp); memset(&fp, 0, sizeof(fp)); currPartIdx++; // Verify part. if (dump_emmc_verify(storage, lba_curr, outFilename, NUM_SECTORS_PER_ITER, part)) { EPRINTF("\nPress any key and try again...\n"); free(buf); return 0; } if (numSplitParts >= 10 && currPartIdx < 10) { outFilename[sdPathLen] = '0'; itoa(currPartIdx, &outFilename[sdPathLen + 1], 10); } else itoa(currPartIdx, &outFilename[sdPathLen], 10); // Always create partial.idx before next part, in case a fatal error occurs. if (isSmallSdCard) { // Create partial backup index file. if (f_open(&partialIdxFp, partialIdxFilename, FA_CREATE_ALWAYS | FA_WRITE) == FR_OK) { f_write(&partialIdxFp, &currPartIdx, 4, NULL); f_close(&partialIdxFp); } else { EPRINTF("\nError creating partial.idx file.\n"); free(buf); return 0; } // More parts to backup that do not currently fit the sd card free space or fatal error. if (currPartIdx >= maxSplitParts) { gfx_puts(&gfx_con, "\n\n1. Press any key and Power off Switch from the main menu.\n\ 2. Move the files from SD card to free space.\n\ Don\'t move the partial.idx file!\n\ 3. Unplug and re-plug USB while pressing Vol+.\n\ 4. Run hekate again and press Backup eMMC RAW GPP (or eMMC USER) to continue.\n"); free(buf); return 1; } } // Create next part. if (f_open(&fp, outFilename, FA_CREATE_ALWAYS | FA_WRITE) != FR_OK) { EPRINTFARGS("Error creating file %s.\n", outFilename); free(buf); return 0; } bytesWritten = 0; } retryCount = 0; u32 num = MIN(totalSectors, NUM_SECTORS_PER_ITER); while(!sdmmc_storage_read(storage, lba_curr, num, buf)) { EPRINTFARGS("Error reading %d blocks @ LBA %08X from eMMC (try %d), retrying...", num, lba_curr, ++retryCount); sleep(150000); if (retryCount >= 3) { EPRINTFARGS("\nFailed to read %d blocks @ LBA %08X\nfrom eMMC. Aborting..\n", num, lba_curr); EPRINTF("\nPress any key and try again...\n"); free(buf); f_close(&fp); return 0; } } res = f_write(&fp, buf, NX_EMMC_BLOCKSIZE * num, NULL); if (res) { EPRINTFARGS("\nFatal error (%d) when writing to SD Card", res); EPRINTF("\nPress any key and try again...\n"); free(buf); f_close(&fp); return 0; } u32 pct = (u64)((u64)(lba_curr - part->lba_start) * 100u) / (u64)(part->lba_end - part->lba_start); if (pct != prevPct) { tui_pbar(&gfx_con, 0, gfx_con.y, pct, 0xFFCCCCCC, 0xFF555555); prevPct = pct; } lba_curr += num; totalSectors -= num; bytesWritten += num * NX_EMMC_BLOCKSIZE; // Force a flush after a lot of data if not splitting. if (numSplitParts == 0 && bytesWritten >= multipartSplitSize) { f_sync(&fp); bytesWritten = 0; } } tui_pbar(&gfx_con, 0, gfx_con.y, 100, 0xFFCCCCCC, 0xFF555555); // Backup operation ended successfully. free(buf); f_close(&fp); // Verify last part or single file backup. if (dump_emmc_verify(storage, lba_curr, outFilename, NUM_SECTORS_PER_ITER, part)) { EPRINTF("\nPress any key and try again...\n"); free(buf); return 0; } else tui_pbar(&gfx_con, 0, gfx_con.y, 100, 0xFF96FF00, 0xFF155500); // Remove partial backup index file if no fatal errors occurred. if(isSmallSdCard) { f_unlink(partialIdxFilename); gfx_printf(&gfx_con, "%k\n\nYou can now join the files\nand get the complete eMMC RAW GPP backup.", 0xFFCCCCCC); } gfx_puts(&gfx_con, "\n\n"); return 1; } typedef enum { DUMP_BOOT = 1, DUMP_SYSTEM = 2, DUMP_USER = 4, DUMP_RAW = 8 } dumpType_t; static void dump_emmc_selected(dumpType_t dumpType) { int res = 0; u32 timer = 0; gfx_clear_grey(&gfx_ctxt, 0x1B); gfx_con_setpos(&gfx_con, 0, 0); if (!sd_mount()) goto out; gfx_puts(&gfx_con, "Checking for available free space...\n\n"); // Get SD Card free space for Partial Backup. f_getfree("", &sd_fs.free_clst, NULL); sdmmc_storage_t storage; sdmmc_t sdmmc; if(!sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_4, SDMMC_BUS_WIDTH_8, 4)) { EPRINTF("Failed to init eMMC."); goto out; } int i = 0; timer = get_tmr(); if (dumpType & DUMP_BOOT) { static const u32 BOOT_PART_SIZE = 0x400000; emmc_part_t bootPart; memset(&bootPart, 0, sizeof(bootPart)); bootPart.lba_start = 0; bootPart.lba_end = (BOOT_PART_SIZE/NX_EMMC_BLOCKSIZE)-1; for (i = 0; i < 2; i++) { memcpy(bootPart.name, "BOOT", 4); bootPart.name[4] = (u8)('0' + i); bootPart.name[5] = 0; gfx_printf(&gfx_con, "%k%02d: %s (%07X-%07X)%k\n", 0xFF00DDFF, i, bootPart.name, bootPart.lba_start, bootPart.lba_end, 0xFFCCCCCC); sdmmc_storage_set_mmc_partition(&storage, i+1); res = dump_emmc_part(bootPart.name, &storage, &bootPart); } } if ((dumpType & DUMP_SYSTEM) || (dumpType & DUMP_USER) || (dumpType & DUMP_RAW)) { sdmmc_storage_set_mmc_partition(&storage, 0); if ((dumpType & DUMP_SYSTEM) || (dumpType & DUMP_USER)) { LIST_INIT(gpt); nx_emmc_gpt_parse(&gpt, &storage); LIST_FOREACH_ENTRY(emmc_part_t, part, &gpt, link) { if ((dumpType & DUMP_USER) == 0 && !strcmp(part->name, "USER")) continue; if ((dumpType & DUMP_SYSTEM) == 0 && strcmp(part->name, "USER")) continue; gfx_printf(&gfx_con, "%k%02d: %s (%07X-%07X)%k\n", 0xFF00DDFF, i++, part->name, part->lba_start, part->lba_end, 0xFFCCCCCC); res = dump_emmc_part(part->name, &storage, part); } } if (dumpType & DUMP_RAW) { static const u32 RAW_AREA_NUM_SECTORS = 0x3A3E000; emmc_part_t rawPart; memset(&rawPart, 0, sizeof(rawPart)); rawPart.lba_start = 0; rawPart.lba_end = RAW_AREA_NUM_SECTORS-1; strcpy(rawPart.name, "rawnand.bin"); { gfx_printf(&gfx_con, "%k%02d: %s (%07X-%07X)%k\n", 0xFF00DDFF, i++, rawPart.name, rawPart.lba_start, rawPart.lba_end, 0xFFCCCCCC); res = dump_emmc_part(rawPart.name, &storage, &rawPart); } } } gfx_putc(&gfx_con, '\n'); gfx_printf(&gfx_con, "Time taken: %d seconds.\n", (get_tmr() - timer) / 1000000); sdmmc_storage_end(&storage); if (res) gfx_printf(&gfx_con, "\n%kFinished and verified!%k\nPress any key...\n",0xFF96FF00, 0xFFCCCCCC); out:; btn_wait(); } void dump_emmc_system() { dump_emmc_selected(DUMP_SYSTEM); } void dump_emmc_user() { dump_emmc_selected(DUMP_USER); } void dump_emmc_boot() { dump_emmc_selected(DUMP_BOOT); } void dump_emmc_rawnand() { dump_emmc_selected(DUMP_RAW); } void dump_package1() { u8 *pkg1 = (u8 *)calloc(1, 0x40000); u8 *warmboot = (u8 *)calloc(1, 0x40000); u8 *secmon = (u8 *)calloc(1, 0x40000); u8 *loader = (u8 *)calloc(1, 0x40000); gfx_clear_grey(&gfx_ctxt, 0x1B); gfx_con_setpos(&gfx_con, 0, 0); if (!sd_mount()) goto out; sdmmc_storage_t storage; sdmmc_t sdmmc; if(!sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_4, SDMMC_BUS_WIDTH_8, 4)) { EPRINTF("Failed to init eMMC."); goto out; } sdmmc_storage_set_mmc_partition(&storage, 1); // Read package1. sdmmc_storage_read(&storage, 0x100000 / NX_EMMC_BLOCKSIZE, 0x40000 / NX_EMMC_BLOCKSIZE, pkg1); const pkg1_id_t *pkg1_id = pkg1_identify(pkg1); const pk11_hdr_t *hdr = (pk11_hdr_t *)(pkg1 + pkg1_id->pkg11_off + 0x20); if (!pkg1_id) { EPRINTFARGS("Could not identify package1 version to read TSEC firmware (= '%s').", (char *)pkg1 + 0x10); goto out; } // Read keyblob. u8 * keyblob = (u8 *)malloc(NX_EMMC_BLOCKSIZE); sdmmc_storage_read(&storage, 0x180000 / NX_EMMC_BLOCKSIZE + pkg1_id->kb, 1, keyblob); // Decrypt. keygen(keyblob, pkg1_id->kb, (u8 *)pkg1 + pkg1_id->tsec_off); pkg1_decrypt(pkg1_id, pkg1); pkg1_unpack(warmboot, secmon, loader, pkg1_id, pkg1); // Display info. gfx_printf(&gfx_con, "%kNX Bootloader size: %k0x%05X\n", 0xFFC7EA46, 0xFFCCCCCC, hdr->ldr_size); gfx_printf(&gfx_con, "%kNX Bootloader ofst: %k0x%05X\n\n", 0xFFC7EA46, 0xFFCCCCCC, hdr->ldr_off); gfx_printf(&gfx_con, "%kSecure monitor addr: %k0x%05X\n", 0xFFC7EA46, 0xFFCCCCCC, pkg1_id->secmon_base); gfx_printf(&gfx_con, "%kSecure monitor size: %k0x%05X\n\n", 0xFFC7EA46, 0xFFCCCCCC, hdr->sm_size); gfx_printf(&gfx_con, "%kSecure monitor ofst: %k0x%05X\n\n", 0xFFC7EA46, 0xFFCCCCCC, hdr->sm_off); gfx_printf(&gfx_con, "%kWarmboot addr: %k0x%05X\n", 0xFFC7EA46, 0xFFCCCCCC, pkg1_id->warmboot_base); gfx_printf(&gfx_con, "%kWarmboot size: %k0x%05X\n\n", 0xFFC7EA46, 0xFFCCCCCC, hdr->wb_size); gfx_printf(&gfx_con, "%kWarmboot ofst: %k0x%05X\n\n", 0xFFC7EA46, 0xFFCCCCCC, hdr->wb_off); // Dump package1. if (sd_save_to_file(pkg1, 0x40000, "pkg1_decr.bin")) { EPRINTF("\nFailed to create pkg1_decr.bin"); goto out; } gfx_puts(&gfx_con, "\npackage1 dumped to pkg1_decr.bin\n"); // Dump nxbootloader. if (sd_save_to_file(loader, hdr->ldr_size, "nxloader.bin")) { EPRINTF("\nFailed to create nxloader.bin"); goto out; } gfx_puts(&gfx_con, "NX Bootloader dumped to nxloader.bin\n"); // Dump secmon. if (sd_save_to_file(secmon, hdr->sm_size, "secmon.bin")) { EPRINTF("\nFailed to create secmon.bin"); goto out; } gfx_puts(&gfx_con, "Secure Monitor dumped to secmon.bin\n"); // Dump warmboot. if (sd_save_to_file(warmboot, hdr->wb_size, "warmboot.bin")) { EPRINTF("\nFailed to create warmboot.bin"); goto out; } gfx_puts(&gfx_con, "Warmboot dumped to warmboot.bin\n"); sdmmc_storage_end(&storage); gfx_puts(&gfx_con, "\nDone. Press any key...\n"); out:; free(pkg1); free(secmon); free(warmboot); free(loader); btn_wait(); } void launch_firmware() { u8 max_entries = 16; ini_sec_t *cfg_sec = NULL; LIST_INIT(ini_sections); gfx_clear_grey(&gfx_ctxt, 0x1B); gfx_con_setpos(&gfx_con, 0, 0); if (sd_mount()) { if (ini_parse(&ini_sections, "hekate_ipl.ini")) { // Build configuration menu. ment_t *ments = (ment_t *)malloc(sizeof(ment_t) * max_entries); ments[0].type = MENT_BACK; ments[0].caption = "Back"; u32 i = 1; LIST_FOREACH_ENTRY(ini_sec_t, ini_sec, &ini_sections, link) { if (!strcmp(ini_sec->name, "config")) continue; ments[i].type = MENT_CHOICE; ments[i].caption = ini_sec->name; ments[i].data = ini_sec; i++; if (i > max_entries) break; } if (i > 1) { memset(&ments[i], 0, sizeof(ment_t)); menu_t menu = { ments, "Launch configurations", 0, 0 }; cfg_sec = ini_clone_section((ini_sec_t *)tui_do_menu(&gfx_con, &menu)); if (!cfg_sec) { free(ments); ini_free(&ini_sections); return; } } else EPRINTF("No launch configurations found."); free(ments); ini_free(&ini_sections); } else EPRINTF("Could not find or open 'hekate_ipl.ini'.\nMake sure it exists in SD Card!."); } if (!cfg_sec) { gfx_printf(&gfx_con, "\nUsing default launch configuration...\n"); sleep(3000000); } #ifdef MENU_LOGO_ENABLE free(Kc_MENU_LOGO); #endif //MENU_LOGO_ENABLE if (!hos_launch(cfg_sec)) { #ifdef MENU_LOGO_ENABLE Kc_MENU_LOGO = (u8 *)malloc(36864); LZ_Uncompress(Kc_MENU_LOGOlz, Kc_MENU_LOGO, SZ_MENU_LOGOLZ); #endif //MENU_LOGO_ENABLE EPRINTF("Failed to launch firmware."); } ini_free_section(cfg_sec); btn_wait(); } void toggle_autorcm(){ sdmmc_storage_t storage; sdmmc_t sdmmc; gfx_clear_grey(&gfx_ctxt, 0x1B); gfx_con_setpos(&gfx_con, 0, 0); if(!sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_4, SDMMC_BUS_WIDTH_8, 4)) { EPRINTF("Failed to init eMMC."); goto out; } u8 *tempbuf = (u8 *)malloc(0x200); sdmmc_storage_set_mmc_partition(&storage, 1); int i, sect = 0; for (i = 0; i < 4; i++) { sect = (0x200 + (0x4000 * i)) / NX_EMMC_BLOCKSIZE; sdmmc_storage_read(&storage, sect, 1, tempbuf); tempbuf[0x10] ^= 0x77; // !IMPORTANT: DO NOT CHANGE! XOR by arbitrary number to corrupt. sdmmc_storage_write(&storage, sect, 1, tempbuf); } free(tempbuf); sdmmc_storage_end(&storage); gfx_printf(&gfx_con, "%kAutoRCM mode toggled!%k\n\nPress any key...\n", 0xFF96FF00, 0xFFCCCCCC); out:; btn_wait(); } int fix_attributes(char *path, u32 *total) { FRESULT res; DIR dir; u32 i = 0; u32 k = 0; static FILINFO fno; // Open directory. res = f_opendir(&dir, path); if (res == FR_OK) { for (;;) { // Read a directory item. res = f_readdir(&dir, &fno); // Break on error or end of dir. if (res != FR_OK || fno.fname[0] == 0) break; // Set new directory. i = strlen(path); memcpy(&path[i], "/", 1); for (k = 0; k < 256; k++) { if (fno.fname[k] == 0) break; } memcpy(&path[i+1], fno.fname, k + 1); path[i + k + 2] = 0; // Check if archive bit is set. if (fno.fattrib & AM_ARC) { *(u32 *)total = *(u32 *)total + 1; f_chmod(path, 0, AM_ARC); } // Is it a directory? if (fno.fattrib & AM_DIR) { // Enter the directory. res = fix_attributes(path, total); if (res != FR_OK) break; } // Clear file or folder path. path[i] = 0; } f_closedir(&dir); } return res; } void fix_sd_attr(){ gfx_clear_grey(&gfx_ctxt, 0x1B); gfx_con_setpos(&gfx_con, 0, 0); char buff[256]; u32 total = 0; if (sd_mount()) { gfx_printf(&gfx_con, "Traversing all sd card files!\nThis may take some time, please wait...\n"); buff[0] = '/'; buff[1] = 0; fix_attributes(buff, &total); gfx_printf(&gfx_con, "\n%kTotal archive bits cleared: %d!%k\n\nDone! Press any key...", 0xFF96FF00, total, 0xFFCCCCCC); } btn_wait(); } void about() { static const char octopus[] = "hekate (C) 2018 naehrwert, st4rk\n" "Authored by: CTCaer\n\n" "Thanks to: %kderrek, nedwill, plutoo, shuffle2, smea, thexyz, yellows8%k\n\n" "Greetings to: fincs, hexkyz, SciresM, Shiny Quagsire, WinterMute\n\n" "Open source and free packages used:\n" " - FatFs R0.13a, (Copyright (C) 2017, ChaN)\n" " - bcl-1.2.0, (Copyright (C) 2003-2006, Marcus Geelnard)\n\n" " %k___\n" " .-' `'.\n" " / \\\n" " | ;\n" " | | ___.--,\n" " _.._ |0) = (0) | _.---'`__.-( (_.\n" " __.--'`_.. '.__.\\ '--. \\_.-' ,.--'` `\"\"`\n" " ( ,.--'` ',__ /./; ;, '.__.'` __\n" " _`) ) .---.__.' / | |\\ \\__..--\"\" \"\"\"--.,_\n" " `---' .'.''-._.-'`_./ /\\ '. \\ _.--''````'''--._`-.__.'\n" " | | .' _.-' | | \\ \\ '. `----`\n" " \\ \\/ .' \\ \\ '. '-._)\n" " \\/ / \\ \\ `=.__`'-.\n" " / /\\ `) ) / / `\"\".`\\\n" " , _.-'.'\\ \\ / / ( ( / /\n" " `--'` ) ) .-'.' '.'. | (\n" " (/` ( (` ) ) '-; %k[switchbrew]%k\n" " ` '-; (-'%k"; gfx_clear_grey(&gfx_ctxt, 0x1B); gfx_con_setpos(&gfx_con, 0, 0); gfx_printf(&gfx_con, octopus, 0xFF00CCFF, 0xFFCCCCCC, 0xFF00CCFF, 0xFF00FFCC, 0xFF00CCFF, 0xFFCCCCCC); btn_wait(); } ment_t ment_cinfo[] = { MDEF_BACK(), MDEF_CHGLINE(), MDEF_CAPTION("---- SoC Info ----", 0xFF0AB9E6), MDEF_HANDLER("Print fuse info", print_fuseinfo), MDEF_HANDLER("Print kfuse info", print_kfuseinfo), MDEF_HANDLER("Print TSEC keys", print_tsec_key), MDEF_CHGLINE(), MDEF_CAPTION("-- Storage Info --", 0xFF0AB9E6), MDEF_HANDLER("Print eMMC info", print_mmc_info), MDEF_HANDLER("Print SD Card info", print_sdcard_info), MDEF_END() }; menu_t menu_cinfo = { ment_cinfo, "Console info", 0, 0 }; ment_t ment_autorcm[] = { MDEF_CAPTION("WARNING: This corrupts your BOOT0 partition!", 0xFFE6FF00), MDEF_CHGLINE(), MDEF_CAPTION("Do you want to continue?", 0xFFCCCCCC), MDEF_CHGLINE(), MDEF_BACK(), MDEF_BACK(), MDEF_BACK(), MDEF_BACK(), MDEF_HANDLER("Toggle AutoRCM", toggle_autorcm), MDEF_BACK(), MDEF_BACK(), MDEF_BACK(), MDEF_BACK(), MDEF_END() }; menu_t menu_autorcm = { ment_autorcm, "AutoRCM", 0, 0 }; ment_t ment_tools[] = { MDEF_BACK(), MDEF_CHGLINE(), MDEF_CAPTION("------ Full --------", 0xFF0AB9E6), MDEF_HANDLER("Backup eMMC RAW GPP", dump_emmc_rawnand), MDEF_HANDLER("Backup eMMC BOOT0/1", dump_emmc_boot), MDEF_CHGLINE(), MDEF_CAPTION("-- GPP Partitions --", 0xFF0AB9E6), MDEF_HANDLER("Backup eMMC SYS", dump_emmc_system), MDEF_HANDLER("Backup eMMC USER", dump_emmc_user), MDEF_CHGLINE(), MDEF_CAPTION("------ Misc -------", 0xFF0AB9E6), MDEF_HANDLER("Dump package1", dump_package1), MDEF_HANDLER("Fix SD files attributes", fix_sd_attr), MDEF_CHGLINE(), MDEF_CAPTION("---- Dangerous ----", 0xFFFF0000), MDEF_MENU("AutoRCM", &menu_autorcm), MDEF_END() }; menu_t menu_tools = { ment_tools, "Tools", 0, 0 }; ment_t ment_top[] = { MDEF_HANDLER("Launch firmware", launch_firmware), MDEF_CAPTION("---------------", 0xFF444444), MDEF_MENU("Tools", &menu_tools), MDEF_MENU("Console info", &menu_cinfo), MDEF_CAPTION("---------------", 0xFF444444), MDEF_HANDLER("Reboot (Normal)", reboot_normal), MDEF_HANDLER("Reboot (RCM)", reboot_rcm), MDEF_HANDLER("Power off", power_off), MDEF_CAPTION("---------------", 0xFF444444), MDEF_HANDLER("About", about), MDEF_END() }; menu_t menu_top = { ment_top, "hekate - CTCaer mod v_._", 0, 0 }; extern void pivot_stack(u32 stack_top); void ipl_main() { config_hw(); //Pivot the stack so we have enough space. pivot_stack(0x90010000); //Tegra/Horizon configuration goes to 0x80000000+, package2 goes to 0xA9800000, we place our heap in between. heap_init(0x90020000); //uart_send(UART_C, (u8 *)0x40000000, 0x10000); //uart_wait_idle(UART_C, UART_TX_IDLE); display_init(); //display_color_screen(0xAABBCCDD); u32 *fb = display_init_framebuffer(); gfx_init_ctxt(&gfx_ctxt, fb, 720, 1280, 768); gfx_clear_grey(&gfx_ctxt, 0x1B); #ifdef MENU_LOGO_ENABLE Kc_MENU_LOGO = (u8 *)malloc(36864); LZ_Uncompress(Kc_MENU_LOGOlz, Kc_MENU_LOGO, SZ_MENU_LOGOLZ); #endif //MENU_LOGO_ENABLE gfx_con_init(&gfx_con, &gfx_ctxt); // Enable backlight after initializing gfx display_backlight(1); while (1) tui_do_menu(&gfx_con, &menu_top); while (1) ; }