1
0
Fork 0
mirror of https://github.com/CTCaer/hekate.git synced 2024-11-13 22:06:46 +00:00
hekate/bootloader/hos/pkg2.c

1323 lines
48 KiB
C

/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018-2019 CTCaer
* Copyright (c) 2018 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include "hos.h"
#include "pkg2.h"
#include "pkg2_ini_kippatch.h"
#include "../config/config.h"
#include "../libs/fatfs/ff.h"
#include "../utils/aarch64_util.h"
#include "../mem/heap.h"
#include "../sec/se.h"
#include "../storage/emummc.h"
#include "../libs/compr/blz.h"
#include "../gfx/gfx.h"
extern hekate_config h_cfg;
extern const u8 package2_keyseed[];
extern void *sd_file_read(const char *path, u32 *fsize);
#ifdef KIP1_PATCH_DEBUG
#include "../utils/util.h"
#define DPRINTF(...) gfx_printf(__VA_ARGS__)
#define DEBUG_PRINTING
#else
#define DPRINTF(...)
#endif
//TODO: Replace hardcoded AArch64 instructions with instruction macros.
//TODO: Reduce hardcoded values without searching kernel for patterns?
// The process ID send/receive kernel patches were taken from Atmosphère's kernel patches.
// They should only be used when running Atmosphère.
#define FREE_CODE_OFF_1ST_100 0x4797C
#define FREE_CODE_OFF_1ST_200 0x6486C
#define FREE_CODE_OFF_1ST_300 0x494A4
#define FREE_CODE_OFF_1ST_302 0x494BC
#define FREE_CODE_OFF_1ST_400 0x52890
#define FREE_CODE_OFF_1ST_500 0x5C020
#define FREE_CODE_OFF_1ST_600 0x5EE00
#define FREE_CODE_OFF_1ST_700 0x5FEC0
#define FREE_CODE_OFF_1ST_800 0x607F0
#define FREE_CODE_OFF_1ST_900 0x65780
#define ID_SND_OFF_100 0x23CC0
#define ID_SND_OFF_200 0x3F134
#define ID_SND_OFF_300 0x26080
#define ID_SND_OFF_302 0x26080
#define ID_SND_OFF_400 0x2AF64
#define ID_SND_OFF_500 0x2AD34
#define ID_SND_OFF_600 0x2BB8C
#define ID_SND_OFF_700 0x2D044
#define ID_SND_OFF_800 0x2F1FC
#define ID_SND_OFF_900 0x329A0
#define ID_RCV_OFF_100 0x219F0
#define ID_RCV_OFF_200 0x3D1A8
#define ID_RCV_OFF_300 0x240F0
#define ID_RCV_OFF_302 0x240F0
#define ID_RCV_OFF_400 0x28F6C
#define ID_RCV_OFF_500 0x28DAC
#define ID_RCV_OFF_600 0x29B6C
#define ID_RCV_OFF_700 0x2B23C
#define ID_RCV_OFF_800 0x2D424
#define ID_RCV_OFF_900 0x309B4
static u32 PRC_ID_SND_100[] =
{
0xA9BF2FEA, 0x2A0E03EB, 0xD37EF56B, 0xF86B6B8B, 0x92FFFFE9, 0x8A090168, 0xD2FFFFE9, 0x8A09016B,
0xD2FFFFC9, 0xEB09017F, 0x54000040, 0xF9412948, 0xA8C12FEA
};
#define FREE_CODE_OFF_2ND_100 (FREE_CODE_OFF_1ST_100 + sizeof(PRC_ID_SND_100) + sizeof(u32))
static u32 PRC_ID_RCV_100[] =
{
0xA9BF2FEA, 0x2A1C03EA, 0xD37EF54A, 0xF86A69AA, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A,
0xD2FFFFC9, 0xEB09015F, 0x54000040, 0xF9412968, 0xA8C12FEA
};
static u32 PRC_ID_SND_200[] =
{
0xA9BF2FEA, 0x2A1803EB, 0xD37EF56B, 0xF86B6B8B, 0x92FFFFE9, 0x8A090168, 0xD2FFFFE9, 0x8A09016B,
0xD2FFFFC9, 0xEB09017F, 0x54000040, 0xF9413148, 0xA8C12FEA
};
#define FREE_CODE_OFF_2ND_200 (FREE_CODE_OFF_1ST_200 + sizeof(PRC_ID_SND_200) + sizeof(u32))
static u32 PRC_ID_RCV_200[] =
{
0xA9BF2FEA, 0x2A0F03EA, 0xD37EF54A, 0xF9405FEB, 0xF86A696A, 0xF9407BEB, 0x92FFFFE9, 0x8A090148,
0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000040, 0xF9413168, 0xA8C12FEA
};
static u32 PRC_ID_SND_300[] =
{
0xA9BF2FEA, 0x2A1803EB, 0xD37EF56B, 0xF86B6B8B, 0x92FFFFE9, 0x8A090168, 0xD2FFFFE9, 0x8A09016B,
0xD2FFFFC9, 0xEB09017F, 0x54000040, 0xF9415548, 0xA8C12FEA
};
#define FREE_CODE_OFF_2ND_300 (FREE_CODE_OFF_1ST_300 + sizeof(PRC_ID_SND_300) + sizeof(u32))
static u32 PRC_ID_RCV_300[] =
{
0xA9BF2FEA, 0x2A0F03EA, 0xD37EF54A, 0xF9405FEB, 0xF86A696A, 0xF9407BEB, 0x92FFFFE9, 0x8A090148,
0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000040, 0xF9415568, 0xA8C12FEA
};
#define FREE_CODE_OFF_2ND_302 (FREE_CODE_OFF_1ST_302 + sizeof(PRC_ID_SND_300) + sizeof(u32))
static u32 PRC_ID_SND_400[] =
{
0x2A1703EA, 0xD37EF54A, 0xF86A6B8A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9,
0xEB09015F, 0x54000060, 0xF94053EA, 0xF9415948, 0xF94053EA
};
#define FREE_CODE_OFF_2ND_400 (FREE_CODE_OFF_1ST_400 + sizeof(PRC_ID_SND_400) + sizeof(u32))
static u32 PRC_ID_RCV_400[] =
{
0xF9403BED, 0x2A0E03EA, 0xD37EF54A, 0xF86A69AA, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A,
0xD2FFFFC9, 0xEB09015F, 0x54000040, 0xF9415B28, 0xD503201F
};
static u32 PRC_ID_SND_500[] =
{
0x2A1703EA, 0xD37EF54A, 0xF86A6B6A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A, 0xD2FFFFC9,
0xEB09015F, 0x54000060, 0xF94043EA, 0xF9415948, 0xF94043EA
};
#define FREE_CODE_OFF_2ND_500 (FREE_CODE_OFF_1ST_500 + sizeof(PRC_ID_SND_500) + sizeof(u32))
static u32 PRC_ID_RCV_500[] =
{
0xF9403BED, 0x2A1503EA, 0xD37EF54A, 0xF86A69AA, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9, 0x8A09014A,
0xD2FFFFC9, 0xEB09015F, 0x54000040, 0xF9415B08, 0xF9406FEA
};
static u32 PRC_ID_SND_600[] =
{
0xA9BF2FEA, 0xF94037EB, 0x2A1503EA, 0xD37EF54A, 0xF86A696A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9,
0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000100, 0xA9BF27E8, 0xF9400308, 0xF9401D08, 0xAA1803E0,
0xD63F0100, 0xA8C127E8, 0xAA0003E8, 0xA8C12FEA, 0xAA0803E0
};
#define FREE_CODE_OFF_2ND_600 (FREE_CODE_OFF_1ST_600 + sizeof(PRC_ID_SND_600) + sizeof(u32))
static u32 PRC_ID_RCV_600[] =
{
0xA9BF2FEA, 0xF94043EB, 0x2A1503EA, 0xD37EF54A, 0xF86A696A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9,
0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000100, 0xA9BF27E8, 0xF9400308, 0xF9401D08, 0xAA1803E0,
0xD63F0100, 0xA8C127E8, 0xAA0003E8, 0xA8C12FEA, 0xAA0803E0
};
static u32 PRC_ID_SND_700[] =
{
0xA9BF2FEA, 0xF9403BEB, 0x2A1903EA, 0xD37EF54A, 0xF86A696A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9,
0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000100, 0xA9BF27E8, 0xF94002A8, 0xF9401D08, 0xAA1503E0,
0xD63F0100, 0xA8C127E8, 0xAA0003E8, 0xA8C12FEA, 0xAA0803E0
};
#define FREE_CODE_OFF_2ND_700 (FREE_CODE_OFF_1ST_700 + sizeof(PRC_ID_SND_700) + sizeof(u32))
static u32 PRC_ID_RCV_700[] =
{
0xA9BF2FEA, 0xF9404FEB, 0x2A1603EA, 0xD37EF54A, 0xF86A696A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9,
0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000100, 0xA9BF27E8, 0xF9400368, 0xF9401D08, 0xAA1B03E0,
0xD63F0100, 0xA8C127E8, 0xAA0003E8, 0xA8C12FEA, 0xAA0803E0
};
#define FREE_CODE_OFF_2ND_800 (FREE_CODE_OFF_1ST_800 + sizeof(PRC_ID_SND_700) + sizeof(u32))
static u32 PRC_ID_SND_900[] =
{
0xA9BF2FEA, 0xF94037EB, 0x2A1603EA, 0xD37EF54A, 0xF86A696A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9,
0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000100, 0xA9BF27E8, 0xF94002E8, 0xF9401D08, 0xAA1703E0,
0xD63F0100, 0xA8C127E8, 0xAA0003E8, 0xA8C12FEA, 0xAA0803E0
};
#define FREE_CODE_OFF_2ND_900 (FREE_CODE_OFF_1ST_900 + sizeof(PRC_ID_SND_900) + sizeof(u32))
static u32 PRC_ID_RCV_900[] =
{
0xA9BF2FEA, 0xF9404BEB, 0x2A1703EA, 0xD37EF54A, 0xF86A696A, 0x92FFFFE9, 0x8A090148, 0xD2FFFFE9,
0x8A09014A, 0xD2FFFFC9, 0xEB09015F, 0x54000100, 0xA9BF27E8, 0xF9400368, 0xF9401D08, 0xAA1B03E0,
0xD63F0100, 0xA8C127E8, 0xAA0003E8, 0xA8C12FEA, 0xAA0803E0
};
// Include kernel patches here, so we can utilize pkg1 id
KERNEL_PATCHSET_DEF(_kernel_1_patchset,
{ SVC_VERIFY_DS, 0x3764C, _NOP(), NULL }, // Disable SVC verifications
{ DEBUG_MODE_EN, 0x44074, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch
// Atmosphère kernel patches.
{ ATM_GEN_PATCH, ID_SND_OFF_100, _B(ID_SND_OFF_100, FREE_CODE_OFF_1ST_100), NULL}, // Send process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_1ST_100, sizeof(PRC_ID_SND_100) >> 2, PRC_ID_SND_100}, // Send process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_1ST_100 + sizeof(PRC_ID_SND_100), // Branch back and skip 1 instruction.
_B(FREE_CODE_OFF_1ST_100 + sizeof(PRC_ID_SND_100), ID_SND_OFF_100 + sizeof(u32)), NULL},
{ ATM_GEN_PATCH, ID_RCV_OFF_100, _B(ID_RCV_OFF_100, FREE_CODE_OFF_2ND_100), NULL}, // Receive process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_2ND_100, sizeof(PRC_ID_RCV_100) >> 2, PRC_ID_RCV_100}, // Receive process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_2ND_100 + sizeof(PRC_ID_RCV_100), // Branch back and skip 1 instruction.
_B(FREE_CODE_OFF_2ND_100 + sizeof(PRC_ID_RCV_100), ID_RCV_OFF_100 + sizeof(u32)), NULL}
);
KERNEL_PATCHSET_DEF(_kernel_2_patchset,
{ SVC_VERIFY_DS, 0x54834, _NOP(), NULL }, // Disable SVC verifications
{ DEBUG_MODE_EN, 0x6086C, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch
// Atmosphère kernel patches.
{ ATM_GEN_PATCH, ID_SND_OFF_200, _B(ID_SND_OFF_200, FREE_CODE_OFF_1ST_200), NULL}, // Send process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_1ST_200, sizeof(PRC_ID_SND_200) >> 2, PRC_ID_SND_200}, // Send process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_1ST_200 + sizeof(PRC_ID_SND_200), // Branch back and skip 1 instruction.
_B(FREE_CODE_OFF_1ST_200 + sizeof(PRC_ID_SND_200), ID_SND_OFF_200 + sizeof(u32)), NULL},
{ ATM_GEN_PATCH, ID_RCV_OFF_200, _B(ID_RCV_OFF_200, FREE_CODE_OFF_2ND_200), NULL}, // Receive process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_2ND_200, sizeof(PRC_ID_RCV_200) >> 2, PRC_ID_RCV_200}, // Receive process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_2ND_200 + sizeof(PRC_ID_RCV_200), // Branch back and skip 1 instruction.
_B(FREE_CODE_OFF_2ND_200 + sizeof(PRC_ID_RCV_200), ID_RCV_OFF_200 + sizeof(u32)), NULL}
);
KERNEL_PATCHSET_DEF(_kernel_3_patchset,
{ SVC_VERIFY_DS, 0x3BD24, _NOP(), NULL }, // Disable SVC verifications
{ DEBUG_MODE_EN, 0x483FC, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch
// Atmosphère kernel patches.
{ ATM_GEN_PATCH, ID_SND_OFF_300, _B(ID_SND_OFF_300, FREE_CODE_OFF_1ST_300), NULL}, // Send process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_1ST_300, sizeof(PRC_ID_SND_300) >> 2, PRC_ID_SND_300}, // Send process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_1ST_300 + sizeof(PRC_ID_SND_300), // Branch back and skip 1 instruction.
_B(FREE_CODE_OFF_1ST_300 + sizeof(PRC_ID_SND_300), ID_SND_OFF_300 + sizeof(u32)), NULL},
{ ATM_GEN_PATCH, ID_RCV_OFF_300, _B(ID_RCV_OFF_300, FREE_CODE_OFF_2ND_300), NULL}, // Receive process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_2ND_300, sizeof(PRC_ID_RCV_300) >> 2, PRC_ID_RCV_300}, // Receive process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_2ND_300 + sizeof(PRC_ID_RCV_300), // Branch back and skip 1 instruction.
_B(FREE_CODE_OFF_2ND_300 + sizeof(PRC_ID_RCV_300), ID_RCV_OFF_300 + sizeof(u32)), NULL}
);
KERNEL_PATCHSET_DEF(_kernel_302_patchset,
{ SVC_VERIFY_DS, 0x3BD24, _NOP(), NULL }, // Disable SVC verifications
{ DEBUG_MODE_EN, 0x48414, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch
// Atmosphère kernel patches.
{ ATM_GEN_PATCH, ID_SND_OFF_302, _B(ID_SND_OFF_302, FREE_CODE_OFF_1ST_302), NULL}, // Send process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_1ST_302, sizeof(PRC_ID_SND_300) >> 2, PRC_ID_SND_300}, // Send process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_1ST_302 + sizeof(PRC_ID_SND_300), // Branch back and skip 1 instruction.
_B(FREE_CODE_OFF_1ST_302 + sizeof(PRC_ID_SND_300), ID_SND_OFF_302 + sizeof(u32)), NULL},
{ ATM_GEN_PATCH, ID_RCV_OFF_302, _B(ID_RCV_OFF_302, FREE_CODE_OFF_2ND_302), NULL}, // Receive process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_2ND_302, sizeof(PRC_ID_RCV_300) >> 2, PRC_ID_RCV_300}, // Receive process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_2ND_302 + sizeof(PRC_ID_RCV_300), // Branch back and skip 1 instruction.
_B(FREE_CODE_OFF_2ND_302 + sizeof(PRC_ID_RCV_300), ID_RCV_OFF_302 + sizeof(u32)), NULL}
);
KERNEL_PATCHSET_DEF(_kernel_4_patchset,
{ SVC_VERIFY_DS, 0x41EB4, _NOP(), NULL }, // Disable SVC verifications
{ DEBUG_MODE_EN, 0x4EBFC, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch
// Atmosphère kernel patches.
{ ATM_GEN_PATCH, ID_SND_OFF_400, _B(ID_SND_OFF_400, FREE_CODE_OFF_1ST_400), NULL}, // Send process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_1ST_400, sizeof(PRC_ID_SND_400) >> 2, PRC_ID_SND_400}, // Send process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_1ST_400 + sizeof(PRC_ID_SND_400), // Branch back and skip 2 instructions.
_B(FREE_CODE_OFF_1ST_400 + sizeof(PRC_ID_SND_400), ID_SND_OFF_400 + sizeof(u32) * 2), NULL},
{ ATM_GEN_PATCH, ID_RCV_OFF_400, _B(ID_RCV_OFF_400, FREE_CODE_OFF_2ND_400), NULL}, // Receive process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_2ND_400, sizeof(PRC_ID_RCV_400) >> 2, PRC_ID_RCV_400}, // Receive process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_2ND_400 + sizeof(PRC_ID_RCV_400), // Branch back and skip 1 instruction.
_B(FREE_CODE_OFF_2ND_400 + sizeof(PRC_ID_RCV_400), ID_RCV_OFF_400 + sizeof(u32)), NULL}
);
KERNEL_PATCHSET_DEF(_kernel_5_patchset,
{ SVC_GENERIC, 0x38C2C, _NOP(), NULL }, // Allow same process on svcControlCodeMemory.
{ SVC_VERIFY_DS, 0x45E6C, _NOP(), NULL }, // Disable SVC verifications
{ DEBUG_MODE_EN, 0x5513C, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch
// Atmosphère kernel patches.
{ ATM_SYSM_INCR, 0x54E30, _MOVZW(8, 0x1E00, LSL16), NULL }, // System memory pool increase.
{ ATM_GEN_PATCH, ID_SND_OFF_500, _B(ID_SND_OFF_500, FREE_CODE_OFF_1ST_500), NULL}, // Send process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_1ST_500, sizeof(PRC_ID_SND_500) >> 2, PRC_ID_SND_500}, // Send process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_1ST_500 + sizeof(PRC_ID_SND_500), // Branch back and skip 2 instructions.
_B(FREE_CODE_OFF_1ST_500 + sizeof(PRC_ID_SND_500), ID_SND_OFF_500 + sizeof(u32) * 2), NULL},
{ ATM_GEN_PATCH, ID_RCV_OFF_500, _B(ID_RCV_OFF_500, FREE_CODE_OFF_2ND_500), NULL}, // Receive process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_2ND_500, sizeof(PRC_ID_RCV_500) >> 2, PRC_ID_RCV_500}, // Receive process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_2ND_500 + sizeof(PRC_ID_RCV_500), // Branch back and skip 2 instructions.
_B(FREE_CODE_OFF_2ND_500 + sizeof(PRC_ID_RCV_500), ID_RCV_OFF_500 + sizeof(u32) * 2), NULL}
);
KERNEL_PATCHSET_DEF(_kernel_6_patchset,
{ SVC_GENERIC, 0x3A8CC, _NOP(), NULL }, // Allow same process on svcControlCodeMemory.
{ SVC_VERIFY_DS, 0x47EA0, _NOP(), NULL }, // Disable SVC verifications
{ DEBUG_MODE_EN, 0x57548, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch
// Atmosphère kernel patches.
{ ATM_SYSM_INCR, 0x57330, _MOVZW(8, 0x1D80, LSL16), NULL }, // System memory pool increase.
{ ATM_GEN_PATCH, ID_SND_OFF_600, _B(ID_SND_OFF_600, FREE_CODE_OFF_1ST_600), NULL}, // Send process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_1ST_600, sizeof(PRC_ID_SND_600) >> 2, PRC_ID_SND_600}, // Send process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_1ST_600 + sizeof(PRC_ID_SND_600), // Branch back and skip 4 instructions.
_B(FREE_CODE_OFF_1ST_600 + sizeof(PRC_ID_SND_600), ID_SND_OFF_600 + sizeof(u32) * 4), NULL},
{ ATM_GEN_PATCH, ID_RCV_OFF_600, _B(ID_RCV_OFF_600, FREE_CODE_OFF_2ND_600), NULL}, // Receive process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_2ND_600, sizeof(PRC_ID_RCV_600) >> 2, PRC_ID_RCV_600}, // Receive process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_2ND_600 + sizeof(PRC_ID_RCV_600), // Branch back and skip 4 instructions.
_B(FREE_CODE_OFF_2ND_600 + sizeof(PRC_ID_RCV_600), ID_RCV_OFF_600 + sizeof(u32) * 4), NULL}
);
KERNEL_PATCHSET_DEF(_kernel_7_patchset,
{ SVC_GENERIC, 0x3C6E0, _NOP(), NULL }, // Allow same process on svcControlCodeMemory.
{ SVC_VERIFY_DS, 0x49E5C, _NOP(), NULL }, // Disable SVC verifications
{ DEBUG_MODE_EN, 0x581B0, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch
// Atmosphère kernel patches.
{ ATM_SYSM_INCR, 0x57F98, _MOVZW(8, 0x1D80, LSL16), NULL }, // System memory pool increase.
{ ATM_GEN_PATCH, ID_SND_OFF_700, _B(ID_SND_OFF_700, FREE_CODE_OFF_1ST_700), NULL}, // Send process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_1ST_700, sizeof(PRC_ID_SND_700) >> 2, PRC_ID_SND_700}, // Send process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_1ST_700 + sizeof(PRC_ID_SND_700), // Branch back and skip 4 instructions.
_B(FREE_CODE_OFF_1ST_700 + sizeof(PRC_ID_SND_700), ID_SND_OFF_700 + sizeof(u32) * 4), NULL},
{ ATM_GEN_PATCH, ID_RCV_OFF_700, _B(ID_RCV_OFF_700, FREE_CODE_OFF_2ND_700), NULL}, // Receive process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_2ND_700, sizeof(PRC_ID_RCV_700) >> 2, PRC_ID_RCV_700}, // Receive process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_2ND_700 + sizeof(PRC_ID_RCV_700), // Branch back and skip 4 instructions.
_B(FREE_CODE_OFF_2ND_700 + sizeof(PRC_ID_RCV_700), ID_RCV_OFF_700 + sizeof(u32) * 4), NULL}
);
KERNEL_PATCHSET_DEF(_kernel_8_patchset,
{ SVC_GENERIC, 0x3FAD0, _NOP(), NULL }, // Allow same process on svcControlCodeMemory.
{ SVC_VERIFY_DS, 0x4D15C, _NOP(), NULL }, // Disable SVC verifications
{ DEBUG_MODE_EN, 0x5BFAC, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch
// Atmosphère kernel patches.
{ ATM_SYSM_INCR, 0x5F9A4, _MOVZW(19, 0x1D80, LSL16), NULL }, // System memory pool increase.
{ ATM_GEN_PATCH, ID_SND_OFF_800, _B(ID_SND_OFF_800, FREE_CODE_OFF_1ST_800), NULL}, // Send process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_1ST_800, sizeof(PRC_ID_SND_700) >> 2, PRC_ID_SND_700}, // Send process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_1ST_800 + sizeof(PRC_ID_SND_700), // Branch back and skip 4 instructions.
_B(FREE_CODE_OFF_1ST_800 + sizeof(PRC_ID_SND_700), ID_SND_OFF_800 + sizeof(u32) * 4), NULL},
{ ATM_GEN_PATCH, ID_RCV_OFF_800, _B(ID_RCV_OFF_800, FREE_CODE_OFF_2ND_800), NULL}, // Receive process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_2ND_800, sizeof(PRC_ID_RCV_700) >> 2, PRC_ID_RCV_700}, // Receive process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_2ND_800 + sizeof(PRC_ID_RCV_700), // Branch back and skip 4 instructions.
_B(FREE_CODE_OFF_2ND_800 + sizeof(PRC_ID_RCV_700), ID_RCV_OFF_800 + sizeof(u32) * 4), NULL}
);
KERNEL_PATCHSET_DEF(_kernel_9_patchset,
{ SVC_GENERIC, 0x43DFC, _NOP(), NULL }, // Allow same process on svcControlCodeMemory.
{ SVC_VERIFY_DS, 0x50628, _NOP(), NULL }, // Disable SVC verifications
{ DEBUG_MODE_EN, 0x609E8, _MOVZX(8, 1, 0), NULL }, // Enable Debug Patch
// Atmosphère kernel patches.
{ ATM_SYSM_INCR, 0x6493C, _MOVZW(19, 0x1D80, LSL16), NULL }, // System memory pool increase.
{ ATM_GEN_PATCH, ID_SND_OFF_900, _B(ID_SND_OFF_900, FREE_CODE_OFF_1ST_900), NULL}, // Send process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_1ST_900, sizeof(PRC_ID_SND_900) >> 2, PRC_ID_SND_900}, // Send process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_1ST_900 + sizeof(PRC_ID_SND_900), // Branch back and skip 4 instructions.
_B(FREE_CODE_OFF_1ST_900 + sizeof(PRC_ID_SND_900), ID_SND_OFF_900 + sizeof(u32) * 4), NULL},
{ ATM_GEN_PATCH, ID_RCV_OFF_900, _B(ID_RCV_OFF_900, FREE_CODE_OFF_2ND_900), NULL}, // Receive process id branch.
{ ATM_ARR_PATCH, FREE_CODE_OFF_2ND_900, sizeof(PRC_ID_RCV_900) >> 2, PRC_ID_RCV_900}, // Receive process id code.
{ ATM_GEN_PATCH, FREE_CODE_OFF_2ND_900 + sizeof(PRC_ID_RCV_900), // Branch back and skip 4 instructions.
_B(FREE_CODE_OFF_2ND_900 + sizeof(PRC_ID_RCV_900), ID_RCV_OFF_900 + sizeof(u32) * 4), NULL}
);
// Kernel sha256 hashes.
static const pkg2_kernel_id_t _pkg2_kernel_ids[] =
{
{ "\xb8\xc5\x0c\x68\x25\xa9\xb9\x5b", _kernel_1_patchset }, //1.0.0
{ "\x64\x0b\x51\xff\x28\x01\xb8\x30", _kernel_2_patchset }, //2.0.0 - 2.3.0
{ "\x50\x84\x23\xac\x6f\xa1\x5d\x3b", _kernel_3_patchset }, //3.0.0 - 3.0.1
{ "\x81\x9d\x08\xbe\xe4\x5e\x1f\xbb", _kernel_302_patchset }, //3.0.2
{ "\xe6\xc0\xb7\xe3\x2f\xf9\x44\x51", _kernel_4_patchset }, //4.0.0 - 4.1.0
{ "\xb2\x38\x61\xa8\xe1\xe2\xe4\xe4", _kernel_5_patchset }, //5.0.0 - 5.1.0
{ "\x85\x97\x40\xf6\xc0\x3e\x3d\x44", _kernel_6_patchset }, //6.0.0 - 6.2.0
{ "\xa2\x5e\x47\x0c\x8e\x6d\x2f\xd7", _kernel_7_patchset }, //7.0.0 - 7.0.1
{ "\xf1\x5e\xc8\x34\xfd\x68\xf0\xf0", _kernel_8_patchset }, //8.0.0 - 8.1.0. Kernel only.
{ "\x69\x00\x39\xdf\x21\x56\x70\x6b", _kernel_9_patchset } //9.0.0 - 9.1.0. Kernel only.
};
enum kip_offset_section
{
KIP_TEXT = 0,
KIP_RODATA = 1,
KIP_DATA = 2,
KIP_BSS = 3,
KIP_UNKSEC1 = 4,
KIP_UNKSEC2 = 5
};
#define KIP_PATCH_SECTION_SHIFT (29)
#define KIP_PATCH_SECTION_MASK (7 << KIP_PATCH_SECTION_SHIFT)
#define KIP_PATCH_OFFSET_MASK (~KIP_PATCH_SECTION_MASK)
#define GET_KIP_PATCH_SECTION(x) ((x >> KIP_PATCH_SECTION_SHIFT) & 7)
#define GET_KIP_PATCH_OFFSET(x) (x & KIP_PATCH_OFFSET_MASK)
#define KPS(x) ((u32)(x) << KIP_PATCH_SECTION_SHIFT)
static kip1_patch_t _fs_emummc[] =
{
{ KPS(KIP_TEXT) | 1, 0, "", "" },
{ 0, 0, NULL, NULL }
};
static kip1_patchset_t _fs_patches_100[] =
{
{ "nogc", NULL },
{ "emummc", _fs_emummc },
{ NULL, NULL }
};
static kip1_patch_t _fs_nogc_40x[] =
{
{ KPS(KIP_TEXT) | 0xA3458, 4, "\x14\x40\x80\x72", "\x14\x80\x80\x72" },
{ KPS(KIP_TEXT) | 0xAAB44, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" },
{ 0, 0, NULL, NULL }
};
static kip1_patchset_t _fs_patches_40x[] =
{
{ "nogc", _fs_nogc_40x },
{ "emummc", _fs_emummc },
{ NULL, NULL }
};
static kip1_patch_t _fs_nogc_410[] =
{
{ KPS(KIP_TEXT) | 0xA34BC, 4, "\x14\x40\x80\x72", "\x14\x80\x80\x72" },
{ KPS(KIP_TEXT) | 0xAABA8, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" },
{ 0, 0, NULL, NULL }
};
static kip1_patchset_t _fs_patches_410[] =
{
{ "nogc", _fs_nogc_410 },
{ "emummc", _fs_emummc },
{ NULL, NULL }
};
static kip1_patch_t _fs_nogc_50x[] =
{
{ KPS(KIP_TEXT) | 0xCF3C4, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" },
{ KPS(KIP_TEXT) | 0xD73A0, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" },
{ 0, 0, NULL, NULL }
};
static kip1_patchset_t _fs_patches_50x[] =
{
{ "nogc", _fs_nogc_50x },
{ "emummc", _fs_emummc },
{ NULL, NULL }
};
static kip1_patch_t _fs_nogc_510[] =
{
{ KPS(KIP_TEXT) | 0xCF794, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" },
{ KPS(KIP_TEXT) | 0xD7770, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" },
{ 0, 0, NULL, NULL }
};
static kip1_patchset_t _fs_patches_510[] =
{
{ "nogc", _fs_nogc_510 },
{ "emummc", _fs_emummc },
{ NULL, NULL }
};
static kip1_patch_t _fs_nogc_600[] =
{
{ KPS(KIP_TEXT) | 0x12CC20, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" },
{ KPS(KIP_TEXT) | 0x1538F4, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" },
{ 0, 0, NULL, NULL }
};
static kip1_patch_t _fs_nogc_600_exfat[] =
{
{ KPS(KIP_TEXT) | 0x138320, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" },
{ KPS(KIP_TEXT) | 0x15EFF4, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" },
{ 0, 0, NULL, NULL }
};
static kip1_patchset_t _fs_patches_600[] =
{
{ "nogc", _fs_nogc_600 },
{ "emummc", _fs_emummc },
{ NULL, NULL }
};
static kip1_patchset_t _fs_patches_600_exfat[] =
{
{ "nogc", _fs_nogc_600_exfat },
{ "emummc", _fs_emummc },
{ NULL, NULL }
};
static kip1_patch_t _fs_nogc_700[] =
{
{ KPS(KIP_TEXT) | 0x134160, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" },
{ KPS(KIP_TEXT) | 0x15BF04, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" },
{ 0, 0, NULL, NULL }
};
static kip1_patch_t _fs_nogc_700_exfat[] =
{
{ KPS(KIP_TEXT) | 0x13F710, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" },
{ KPS(KIP_TEXT) | 0x1674B4, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" },
{ 0, 0, NULL, NULL }
};
static kip1_patchset_t _fs_patches_700[] =
{
{ "nogc", _fs_nogc_700 },
{ "emummc", _fs_emummc },
{ NULL, NULL }
};
static kip1_patchset_t _fs_patches_700_exfat[] =
{
{ "nogc", _fs_nogc_700_exfat },
{ "emummc", _fs_emummc },
{ NULL, NULL }
};
static kip1_patch_t _fs_nogc_800[] =
{
{ KPS(KIP_TEXT) | 0x136800, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" },
{ KPS(KIP_TEXT) | 0x15EB94, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" },
{ 0, 0, NULL, NULL }
};
static kip1_patch_t _fs_nogc_800_exfat[] =
{
{ KPS(KIP_TEXT) | 0x141DB0, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" },
{ KPS(KIP_TEXT) | 0x16A144, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" },
{ 0, 0, NULL, NULL }
};
static kip1_patchset_t _fs_patches_800[] =
{
{ "nogc", _fs_nogc_800 },
{ "emummc", _fs_emummc },
{ NULL, NULL }
};
static kip1_patchset_t _fs_patches_800_exfat[] =
{
{ "nogc", _fs_nogc_800_exfat },
{ "emummc", _fs_emummc },
{ NULL, NULL }
};
static kip1_patch_t _fs_nogc_900[] =
{
{ KPS(KIP_TEXT) | 0x129420, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" },
{ KPS(KIP_TEXT) | 0x143268, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" },
{ 0, 0, NULL, NULL }
};
static kip1_patchset_t _fs_patches_900[] =
{
{ "nogc", _fs_nogc_900 },
{ "emummc", _fs_emummc },
{ NULL, NULL }
};
static kip1_patch_t _fs_nogc_910[] =
{
{ KPS(KIP_TEXT) | 0x129430, 8, "\xF4\x4F\xBE\xA9\xFD\x7B\x01\xA9", "\xE0\x03\x1F\x2A\xC0\x03\x5F\xD6" },
{ KPS(KIP_TEXT) | 0x143278, 4, "\x14\x40\x80\x52", "\x14\x80\x80\x52" },
{ 0, 0, NULL, NULL }
};
static kip1_patchset_t _fs_patches_910[] =
{
{ "nogc", _fs_nogc_910 },
{ "emummc", _fs_emummc },
{ NULL, NULL }
};
// SHA256 hashes.
static kip1_id_t _kip_ids[] =
{
{ "FS", "\xde\x9f\xdd\xa4\x08\x5d\xd5\xfe", _fs_patches_100 }, // FS 1.0.0
{ "FS", "\xfc\x3e\x80\x99\x1d\xca\x17\x96", _fs_patches_100 }, // FS 1.0.0 exfat
{ "FS", "\xcd\x7b\xbe\x18\xd6\x13\x0b\x28", _fs_patches_100 }, // FS 2.0.0
{ "FS", "\xe7\x66\x92\xdf\xaa\x04\x20\xe9", _fs_patches_100 }, // FS 2.0.0 exfat
{ "FS", "\x0d\x70\x05\x62\x7b\x07\x76\x7c", _fs_patches_100 }, // FS 2.1.0
{ "FS", "\xdb\xd8\x5f\xca\xcc\x19\x3d\xa8", _fs_patches_100 }, // FS 2.1.0 exfat
{ "FS", "\xa8\x6d\xa5\xe8\x7e\xf1\x09\x7b", _fs_patches_100 }, // FS 3.0.0
{ "FS", "\x98\x1c\x57\xe7\xf0\x2f\x70\xf7", _fs_patches_100 }, // FS 3.0.0 exfat
{ "FS", "\x57\x39\x7c\x06\x3f\x10\xb6\x31", _fs_patches_100 }, // FS 3.0.1
{ "FS", "\x07\x30\x99\xd7\xc6\xad\x7d\x89", _fs_patches_100 }, // FS 3.0.1 exfat
{ "FS", "\x06\xe9\x07\x19\x59\x5a\x01\x0c", _fs_patches_40x }, // FS 4.0.1
{ "FS", "\x54\x9b\x0f\x8d\x6f\x72\xc4\xe9", _fs_patches_40x }, // FS 4.0.1 exfat
{ "FS", "\x80\x96\xaf\x7c\x6a\x35\xaa\x82", _fs_patches_410 }, // FS 4.1.0
{ "FS", "\x02\xd5\xab\xaa\xfd\x20\xc8\xb0", _fs_patches_410 }, // FS 4.1.0 exfat
{ "FS", "\xa6\xf2\x7a\xd9\xac\x7c\x73\xad", _fs_patches_50x }, // FS 5.0.0
{ "FS", "\xce\x3e\xcb\xa2\xf2\xf0\x62\xf5", _fs_patches_50x }, // FS 5.0.0 exfat
{ "FS", "\x76\xf8\x74\x02\xc9\x38\x7c\x0f", _fs_patches_510 }, // FS 5.1.0
{ "FS", "\x10\xb2\xd8\x16\x05\x48\x85\x99", _fs_patches_510 }, // FS 5.1.0 exfat
{ "FS", "\x1b\x82\xcb\x22\x18\x67\xcb\x52", _fs_patches_600 }, // FS 6.0.0-4.0
{ "FS", "\x96\x6a\xdd\x3d\x20\xb6\x27\x13", _fs_patches_600_exfat }, // FS 6.0.0-4.0 exfat
{ "FS", "\x3a\x57\x4d\x43\x61\x86\x19\x1d", _fs_patches_600 }, // FS 6.0.0-5.0
{ "FS", "\x33\x05\x53\xf6\xb5\xfb\x55\xc4", _fs_patches_600_exfat }, // FS 6.0.0-5.0 exfat
{ "FS", "\x2A\xDB\xE9\x7E\x9B\x5F\x41\x77", _fs_patches_700 }, // FS 7.0.0
{ "FS", "\x2C\xCE\x65\x9C\xEC\x53\x6A\x8E", _fs_patches_700_exfat }, // FS 7.0.0 exfat
{ "FS", "\xB2\xF5\x17\x6B\x35\x48\x36\x4D", _fs_patches_800 }, // FS 8.0.0
{ "FS", "\xDB\xD9\x41\xC0\xC5\x3C\x52\xCC", _fs_patches_800_exfat }, // FS 8.0.0 exfat
{ "FS", "\x6B\x09\xB6\x7B\x29\xC0\x20\x24", _fs_patches_800 }, // FS 8.1.0
{ "FS", "\xB4\xCA\xE1\xF2\x49\x65\xD9\x2E", _fs_patches_800_exfat }, // FS 8.1.0 exfat
{ "FS", "\x46\x87\x40\x76\x1E\x19\x3E\xB7", _fs_patches_900 }, // FS 9.0.0
{ "FS", "\x7C\x95\x13\x76\xE5\xC1\x2D\xF8", _fs_patches_900 }, // FS 9.0.0 exfat
{ "FS", "\xB5\xE7\xA6\x4C\x6F\x5C\x4F\xE3", _fs_patches_910 }, // FS 9.1.0
{ "FS", "\xF1\x96\xD1\x44\xD0\x44\x45\xB6", _fs_patches_910 } // FS 9.1.0 exfat
};
static void parse_external_kip_patches()
{
u32 curr_kip_idx = 0;
char path[64];
strcpy(path, "bootloader/patches.ini");
LIST_INIT(ini_kip_sections);
if (ini_patch_parse(&ini_kip_sections, path))
{
// Parse patchsets and glue them together.
LIST_FOREACH_ENTRY(ini_kip_sec_t, ini_psec, &ini_kip_sections, link)
{
kip1_id_t* curr_kip = &_kip_ids[curr_kip_idx];
if (!strcmp(curr_kip->name, ini_psec->name) && !memcmp(curr_kip->hash, ini_psec->hash, 8))
{
kip1_patchset_t *patchsets = (kip1_patchset_t *)calloc(sizeof(kip1_patchset_t), 8); // Max 8 patchsets per kip.
u32 curr_patchset_idx;
for(curr_patchset_idx = 0; curr_kip->patchset[curr_patchset_idx].name != NULL; curr_patchset_idx++)
{
patchsets[curr_patchset_idx].name = curr_kip->patchset[curr_patchset_idx].name;
patchsets[curr_patchset_idx].patches = curr_kip->patchset[curr_patchset_idx].patches;
}
curr_kip->patchset = patchsets;
bool first_ext_patch = true;
u32 curr_patch_idx = 0;
// Parse patches and glue them together to a patchset.
kip1_patch_t *patches = calloc(sizeof(kip1_patch_t), 16); // Max 16 patches per set.
LIST_FOREACH_ENTRY(ini_patchset_t, pt, &ini_psec->pts, link)
{
if (first_ext_patch)
{
first_ext_patch = false;
patchsets[curr_patchset_idx].name = malloc(strlen(pt->name) + 1);
strcpy(patchsets[curr_patchset_idx].name, pt->name);
patchsets[curr_patchset_idx].patches = patches;
}
else
{
// Check if new patchset name is found and create a new set.
if (strcmp(pt->name, patchsets[curr_patchset_idx].name))
{
curr_patchset_idx++;
curr_patch_idx = 0;
patches = calloc(sizeof(kip1_patch_t), 16); // Max 16 patches per set.
patchsets[curr_patchset_idx].name = malloc(strlen(pt->name) + 1);
strcpy(patchsets[curr_patchset_idx].name, pt->name);
patchsets[curr_patchset_idx].patches = patches;
}
}
if (pt->length)
{
patches[curr_patch_idx].offset = pt->offset;
patches[curr_patch_idx].length = pt->length;
patches[curr_patch_idx].srcData = malloc(pt->length);
patches[curr_patch_idx].dstData = malloc(pt->length);
memcpy(patches[curr_patch_idx].srcData, pt->srcData, pt->length);
memcpy(patches[curr_patch_idx].dstData, pt->dstData, pt->length);
}
else
patches[curr_patch_idx].srcData = malloc(1); // Empty patches check. Keep everything else as 0.
curr_patch_idx++;
}
curr_patchset_idx++;
patchsets[curr_patchset_idx].name = NULL;
patchsets[curr_patchset_idx].patches = NULL;
}
curr_kip_idx++;
if (!(curr_kip_idx < (sizeof(_kip_ids) / sizeof(_kip_ids[0]))))
break;
}
}
}
const pkg2_kernel_id_t *pkg2_identify(u8 *hash)
{
for (u32 i = 0; i < (sizeof(_pkg2_kernel_ids) / sizeof(pkg2_kernel_id_t)); i++)
{
if (!memcmp(hash, _pkg2_kernel_ids[i].hash, sizeof(_pkg2_kernel_ids[0].hash)))
return &_pkg2_kernel_ids[i];
}
return NULL;
}
static u32 _pkg2_calc_kip1_size(pkg2_kip1_t *kip1)
{
u32 size = sizeof(pkg2_kip1_t);
for (u32 j = 0; j < KIP1_NUM_SECTIONS; j++)
size += kip1->sections[j].size_comp;
return size;
}
void pkg2_get_newkern_info(u8 *kern_data)
{
u32 info_op = *(u32 *)(kern_data + PKG2_NEWKERN_GET_INI1);
pkg2_newkern_ini1_val = ((info_op & 0xFFFF) >> 3) + PKG2_NEWKERN_GET_INI1; // Parse ADR and PC.
pkg2_newkern_ini1_start = *(u32 *)(kern_data + pkg2_newkern_ini1_val);
pkg2_newkern_ini1_end = *(u32 *)(kern_data + pkg2_newkern_ini1_val + 0x8);
}
void pkg2_parse_kips(link_t *info, pkg2_hdr_t *pkg2, bool *new_pkg2)
{
u8 *ptr;
// Check for new pkg2 type.
if (!pkg2->sec_size[PKG2_SEC_INI1])
{
pkg2_get_newkern_info(pkg2->data);
ptr = pkg2->data + pkg2_newkern_ini1_start;
*new_pkg2 = true;
}
else
ptr = pkg2->data + pkg2->sec_size[PKG2_SEC_KERNEL];
pkg2_ini1_t *ini1 = (pkg2_ini1_t *)ptr;
ptr += sizeof(pkg2_ini1_t);
for (u32 i = 0; i < ini1->num_procs; i++)
{
pkg2_kip1_t *kip1 = (pkg2_kip1_t *)ptr;
pkg2_kip1_info_t *ki = (pkg2_kip1_info_t *)malloc(sizeof(pkg2_kip1_info_t));
ki->kip1 = kip1;
ki->size = _pkg2_calc_kip1_size(kip1);
list_append(info, &ki->link);
ptr += ki->size;
DPRINTF(" kip1 %d:%s @ %08X (%08X)\n", i, kip1->name, (u32)kip1, ki->size);
}
}
int pkg2_has_kip(link_t *info, u64 tid)
{
LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, info, link)
if(ki->kip1->tid == tid)
return 1;
return 0;
}
void pkg2_replace_kip(link_t *info, u64 tid, pkg2_kip1_t *kip1)
{
LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, info, link)
{
if (ki->kip1->tid == tid)
{
ki->kip1 = kip1;
ki->size = _pkg2_calc_kip1_size(kip1);
DPRINTF("replaced kip %s (new size %08X)\n", kip1->name, ki->size);
return;
}
}
}
void pkg2_add_kip(link_t *info, pkg2_kip1_t *kip1)
{
pkg2_kip1_info_t *ki = (pkg2_kip1_info_t *)malloc(sizeof(pkg2_kip1_info_t));
ki->kip1 = kip1;
ki->size = _pkg2_calc_kip1_size(kip1);
DPRINTF("added kip %s (size %08X)\n", kip1->name, ki->size);
list_append(info, &ki->link);
}
void pkg2_merge_kip(link_t *info, pkg2_kip1_t *kip1)
{
if (pkg2_has_kip(info, kip1->tid))
pkg2_replace_kip(info, kip1->tid, kip1);
else
pkg2_add_kip(info, kip1);
}
int pkg2_decompress_kip(pkg2_kip1_info_t* ki, u32 sectsToDecomp)
{
u32 compClearMask = ~sectsToDecomp;
if ((ki->kip1->flags & compClearMask) == ki->kip1->flags)
return 0; // Already decompressed, nothing to do.
pkg2_kip1_t hdr;
memcpy(&hdr, ki->kip1, sizeof(hdr));
unsigned int newKipSize = sizeof(hdr);
for (u32 sectIdx = 0; sectIdx < KIP1_NUM_SECTIONS; sectIdx++)
{
u32 sectCompBit = 1u << sectIdx;
// For compressed, cant get actual decompressed size without doing it, so use safe "output size".
if (sectIdx < 3 && (sectsToDecomp & sectCompBit) && (hdr.flags & sectCompBit))
newKipSize += hdr.sections[sectIdx].size_decomp;
else
newKipSize += hdr.sections[sectIdx].size_comp;
}
pkg2_kip1_t* newKip = malloc(newKipSize);
unsigned char* dstDataPtr = newKip->data;
const unsigned char* srcDataPtr = ki->kip1->data;
for (u32 sectIdx = 0; sectIdx < KIP1_NUM_SECTIONS; sectIdx++)
{
u32 sectCompBit = 1u << sectIdx;
// Easy copy path for uncompressed or ones we dont want to uncompress.
if (sectIdx >= 3 || !(sectsToDecomp & sectCompBit) || !(hdr.flags & sectCompBit))
{
unsigned int dataSize = hdr.sections[sectIdx].size_comp;
if (dataSize == 0)
continue;
memcpy(dstDataPtr, srcDataPtr, dataSize);
srcDataPtr += dataSize;
dstDataPtr += dataSize;
continue;
}
unsigned int compSize = hdr.sections[sectIdx].size_comp;
unsigned int outputSize = hdr.sections[sectIdx].size_decomp;
gfx_printf("Decomping %s KIP1 sect %d of size %d...\n", (const char*)hdr.name, sectIdx, compSize);
if (blz_uncompress_srcdest(srcDataPtr, compSize, dstDataPtr, outputSize) == 0)
{
gfx_printf("%kERROR decomping sect %d of %s KIP!%k\n", 0xFFFF0000, sectIdx, (char*)hdr.name, 0xFFCCCCCC);
free(newKip);
return 1;
}
else
{
DPRINTF("Done! Decompressed size is %d!\n", outputSize);
}
hdr.sections[sectIdx].size_comp = outputSize;
srcDataPtr += compSize;
dstDataPtr += outputSize;
}
hdr.flags &= compClearMask;
memcpy(newKip, &hdr, sizeof(hdr));
newKipSize = dstDataPtr-(unsigned char*)(newKip);
free(ki->kip1);
ki->kip1 = newKip;
ki->size = newKipSize;
return 0;
}
static int _kipm_inject(const char *kipm_path, char *target_name, pkg2_kip1_info_t* ki)
{
if (!strcmp((const char *)ki->kip1->name, target_name))
{
u32 size = 0;
u8 *kipm_data = (u8 *)sd_file_read(kipm_path, &size);
if (!kipm_data)
return 1;
u32 inject_size = size - sizeof(ki->kip1->caps);
u8 *kip_patched_data = (u8 *)malloc(ki->size + inject_size);
// Copy headers.
memcpy(kip_patched_data, ki->kip1, sizeof(pkg2_kip1_t));
pkg2_kip1_t *fs_kip = ki->kip1;
ki->kip1 = (pkg2_kip1_t *)kip_patched_data;
ki->size = ki->size + inject_size;
// Patch caps.
memcpy(&ki->kip1->caps, kipm_data, sizeof(ki->kip1->caps));
// Copy our .text data.
memcpy(&ki->kip1->data, kipm_data + sizeof(ki->kip1->caps), inject_size);
u32 new_offset = 0;
for (u32 currSectIdx = 0; currSectIdx < KIP1_NUM_SECTIONS - 2; currSectIdx++)
{
if(!currSectIdx) // .text.
{
memcpy(ki->kip1->data + inject_size, fs_kip->data, fs_kip->sections[0].size_comp);
ki->kip1->sections[0].size_decomp += inject_size;
ki->kip1->sections[0].size_comp += inject_size;
}
else // Others.
{
if (currSectIdx < 3)
memcpy(ki->kip1->data + new_offset + inject_size, fs_kip->data + new_offset, fs_kip->sections[currSectIdx].size_comp);
ki->kip1->sections[currSectIdx].offset += inject_size;
}
new_offset += fs_kip->sections[currSectIdx].size_comp;
}
// Patch PMC capabilities for 1.0.0.
if (!emu_cfg.fs_ver)
{
for (u32 i = 0; i < 0x20; i++)
{
if (ki->kip1->caps[i] == 0xFFFFFFFF)
{
ki->kip1->caps[i] = 0x07000E7F;
break;
}
}
}
free(kipm_data);
return 0;
}
return 1;
}
static bool ext_patches_parsed = false;
const char* pkg2_patch_kips(link_t *info, char* patchNames)
{
if (patchNames == NULL || patchNames[0] == 0)
return NULL;
if (!ext_patches_parsed)
{
parse_external_kip_patches();
ext_patches_parsed = true;
}
static const u32 MAX_NUM_PATCHES_REQUESTED = sizeof(u32) * 8;
char* patches[MAX_NUM_PATCHES_REQUESTED];
u32 numPatches = 1;
patches[0] = patchNames;
{
for (char* p = patchNames; *p != 0; p++)
{
if (*p == ',')
{
*p = 0;
patches[numPatches++] = p + 1;
if (numPatches >= MAX_NUM_PATCHES_REQUESTED)
return "too_many_patches";
}
else if (*p >= 'A' && *p <= 'Z')
*p += 0x20;
}
}
u32 patchesApplied = 0; // Bitset over patches.
for (u32 i = 0; i < numPatches; i++)
{
// Eliminate leading spaces.
for (const char* p = patches[i]; *p != 0; p++)
{
if (*p == ' ' || *p == '\t' || *p == '\r' || *p == '\n')
patches[i]++;
else
break;
}
int valueLen = strlen(patches[i]);
if (valueLen == 0)
continue;
// Eliminate trailing spaces.
for (int chIdx = valueLen - 1; chIdx >= 0; chIdx--)
{
const char* p = patches[i] + chIdx;
if (*p == ' ' || *p == '\t' || *p == '\r' || *p == '\n')
valueLen = chIdx;
else
break;
}
patches[i][valueLen] = 0;
DPRINTF("Requested patch: '%s'\n", patches[i]);
}
u32 shaBuf[32 / sizeof(u32)];
LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, info, link)
{
shaBuf[0] = 0; // sha256 for this kip not yet calculated.
for (u32 currKipIdx = 0; currKipIdx < (sizeof(_kip_ids) / sizeof(_kip_ids[0])); currKipIdx++)
{
if (strncmp((const char*)ki->kip1->name, _kip_ids[currKipIdx].name, sizeof(ki->kip1->name)) != 0)
continue;
u32 bitsAffected = 0;
kip1_patchset_t* currPatchset = _kip_ids[currKipIdx].patchset;
while (currPatchset != NULL && currPatchset->name != NULL)
{
for (u32 i = 0; i < numPatches; i++)
{
if (strcmp(currPatchset->name, patches[i]) != 0)
{
bitsAffected = i + 1;
break;
}
}
currPatchset++;
}
// Dont bother even hashing this KIP if we dont have any patches enabled for it.
if (bitsAffected == 0)
continue;
if (shaBuf[0] == 0)
{
if (!se_calc_sha256(shaBuf, ki->kip1, ki->size))
memset(shaBuf, 0, sizeof(shaBuf));
}
if (memcmp(shaBuf, _kip_ids[currKipIdx].hash, sizeof(_kip_ids[0].hash)) != 0)
continue;
// Find out which sections are affected by the enabled patches, to know which to decompress.
bitsAffected = 0;
currPatchset = _kip_ids[currKipIdx].patchset;
while (currPatchset != NULL && currPatchset->name != NULL)
{
if (currPatchset->patches != NULL)
{
for (u32 currEnabIdx = 0; currEnabIdx < numPatches; currEnabIdx++)
{
if (strcmp(currPatchset->name, patches[currEnabIdx]))
continue;
if (!strcmp(currPatchset->name, "emummc"))
bitsAffected |= 1u << GET_KIP_PATCH_SECTION(currPatchset->patches->offset);
for (const kip1_patch_t* currPatch=currPatchset->patches; currPatch != NULL && (currPatch->length != 0); currPatch++)
bitsAffected |= 1u << GET_KIP_PATCH_SECTION(currPatch->offset);
}
}
currPatchset++;
}
// Got patches to apply to this kip, have to decompress it.
#ifdef DEBUG_PRINTING
u32 preDecompTime = get_tmr_us();
#endif
if (pkg2_decompress_kip(ki, bitsAffected))
return (const char*)ki->kip1->name; // Failed to decompress.
#ifdef DEBUG_PRINTING
u32 postDecompTime = get_tmr_us();
if (!se_calc_sha256(shaBuf, ki->kip1, ki->size))
memset(shaBuf, 0, sizeof(shaBuf));
DPRINTF("%dms %s KIP1 size %d hash %08X\n", (postDecompTime-preDecompTime) / 1000, ki->kip1->name, (int)ki->size, __builtin_bswap32(shaBuf[0]));
#endif
currPatchset = _kip_ids[currKipIdx].patchset;
bool emummc_patch_selected = false;
while (currPatchset != NULL && currPatchset->name != NULL)
{
for (u32 currEnabIdx = 0; currEnabIdx < numPatches; currEnabIdx++)
{
if (strcmp(currPatchset->name, patches[currEnabIdx]))
continue;
u32 appliedMask = 1u << currEnabIdx;
if (!strcmp(currPatchset->name, "emummc"))
{
emummc_patch_selected = true;
patchesApplied |= appliedMask;
break;
}
if (currPatchset->patches == NULL)
{
gfx_printf("Patch '%s' not necessary for %s KIP1\n", currPatchset->name, (const char*)ki->kip1->name);
patchesApplied |= appliedMask;
break;
}
unsigned char* kipSectData = ki->kip1->data;
for (u32 currSectIdx = 0; currSectIdx < KIP1_NUM_SECTIONS; currSectIdx++)
{
if (bitsAffected & (1u << currSectIdx))
{
gfx_printf("Applying patch '%s' on %s KIP1 sect %d\n", currPatchset->name, (const char*)ki->kip1->name, currSectIdx);
for (const kip1_patch_t* currPatch = currPatchset->patches; currPatch != NULL && currPatch->srcData != 0; currPatch++)
{
if (GET_KIP_PATCH_SECTION(currPatch->offset) != currSectIdx)
continue;
if (!currPatch->length)
{
gfx_printf("%kPatch is empty!%k\n", 0xFFFF0000, 0xFFCCCCCC);
return currPatchset->name; // MUST stop here as it's not probably intended.
}
u32 currOffset = GET_KIP_PATCH_OFFSET(currPatch->offset);
// If source is does not match and is not already patched, throw an error.
if ((memcmp(&kipSectData[currOffset], currPatch->srcData, currPatch->length) != 0) &&
(memcmp(&kipSectData[currOffset], currPatch->dstData, currPatch->length) != 0))
{
gfx_printf("%kPatch data mismatch at 0x%x!%k\n", 0xFFFF0000, currOffset, 0xFFCCCCCC);
return currPatchset->name; // MUST stop here as kip is likely corrupt.
}
else
{
DPRINTF("Patching %d bytes at offset 0x%x\n", currPatch->length, currOffset);
memcpy(&kipSectData[currOffset], currPatch->dstData, currPatch->length);
}
}
}
kipSectData += ki->kip1->sections[currSectIdx].size_comp;
}
patchesApplied |= appliedMask;
break;
}
currPatchset++;
}
if (emummc_patch_selected && !strncmp(_kip_ids[currKipIdx].name, "FS", 2))
{
emummc_patch_selected = false;
emu_cfg.fs_ver = currKipIdx;
if (currKipIdx)
emu_cfg.fs_ver--;
if (currKipIdx > 17)
emu_cfg.fs_ver -= 2;
gfx_printf("Injecting emuMMC. FS ver: %d\n", emu_cfg.fs_ver);
if (_kipm_inject("/bootloader/sys/emummc.kipm", "FS", ki))
return "emummc";
}
}
}
for (u32 i = 0; i < numPatches; i++)
{
if ((patchesApplied & (1u << i)) == 0)
return patches[i];
}
return NULL;
}
static const u8 mkey_keyseed_8xx[][0x10] =
{
// Master key 8 encrypted with 9. (8.1.0 with 9.0.0)
{ 0x4D, 0xD9, 0x98, 0x42, 0x45, 0x0D, 0xB1, 0x3C, 0x52, 0x0C, 0x9A, 0x44, 0xBB, 0xAD, 0xAF, 0x80 },
// Master key 9 encrypted with 10. (9.0.0 with 9.1.0)
{ 0xB8, 0x96, 0x9E, 0x4A, 0x00, 0x0D, 0xD6, 0x28, 0xB3, 0xD1, 0xDB, 0x68, 0x5F, 0xFB, 0xE1, 0x2A }
};
static bool _pkg2_key_unwrap_validate(pkg2_hdr_t *tmp_test, pkg2_hdr_t *hdr, u8 src_slot, u8 *mkey, const u8 *key_seed)
{
// Decrypt older encrypted mkey.
se_aes_crypt_ecb(src_slot, 0, mkey, 0x10, key_seed, 0x10);
// Set and unwrap pkg2 key.
se_aes_key_clear(9);
se_aes_key_set(9, mkey, 0x10);
se_aes_unwrap_key(9, 9, package2_keyseed);
// Decrypt header.
se_aes_crypt_ctr(9, tmp_test, sizeof(pkg2_hdr_t), hdr, sizeof(pkg2_hdr_t), hdr);
// Return if header is valid.
return (tmp_test->magic == PKG2_MAGIC);
}
pkg2_hdr_t *pkg2_decrypt(void *data, u8 kb)
{
pkg2_hdr_t mkey_test;
u8 *pdata = (u8 *)data;
u8 keyslot = 8;
// Skip signature.
pdata += 0x100;
pkg2_hdr_t *hdr = (pkg2_hdr_t *)pdata;
// Skip header.
pdata += sizeof(pkg2_hdr_t);
//! Check if we need to decrypt with newer mkeys. Valid for sept for 8.1.0 and up.
se_aes_crypt_ctr(8, &mkey_test, sizeof(pkg2_hdr_t), hdr, sizeof(pkg2_hdr_t), hdr);
if (mkey_test.magic == PKG2_MAGIC)
goto key_found;
// Decrypt older pkg2 via new mkeys.
if ((kb >= KB_FIRMWARE_VERSION_810) && (kb < KB_FIRMWARE_VERSION_MAX))
{
u8 tmp_mkey[0x10];
u8 decr_slot = 12; // Sept mkey.
u8 mkey_seeds_cnt = sizeof(mkey_keyseed_8xx) / 0x10;
u8 mkey_seeds_idx = mkey_seeds_cnt; // Real index + 1.
u8 mkey_seeds_min_idx = mkey_seeds_cnt - (KB_FIRMWARE_VERSION_MAX - kb);
while (mkey_seeds_cnt)
{
// Decrypt and validate mkey.
int res = _pkg2_key_unwrap_validate(&mkey_test, hdr, decr_slot,
tmp_mkey, mkey_keyseed_8xx[mkey_seeds_idx - 1]);
if (res)
{
keyslot = 9;
goto key_found;
}
else
{
// Set current mkey in order to decrypt a lower mkey.
mkey_seeds_idx--;
se_aes_key_clear(9);
se_aes_key_set(9, tmp_mkey, 0x10);
decr_slot = 9; // Temp key.
// Check if we tried last key for that pkg2 version.
// And start with a lower mkey in case sept is older.
if (mkey_seeds_idx == mkey_seeds_min_idx)
{
mkey_seeds_cnt--;
mkey_seeds_idx = mkey_seeds_cnt;
decr_slot = 12; // Sept mkey.
}
// Out of keys. pkg2 is latest or process failed.
if (!mkey_seeds_cnt)
se_aes_key_clear(9);
}
}
}
key_found:
// Decrypt header.
se_aes_crypt_ctr(keyslot, hdr, sizeof(pkg2_hdr_t), hdr, sizeof(pkg2_hdr_t), hdr);
//gfx_hexdump((u32)hdr, hdr, 0x100);
if (hdr->magic != PKG2_MAGIC)
return NULL;
for (u32 i = 0; i < 4; i++)
{
DPRINTF("sec %d has size %08X\n", i, hdr->sec_size[i]);
if (!hdr->sec_size[i])
continue;
se_aes_crypt_ctr(keyslot, pdata, hdr->sec_size[i], pdata, hdr->sec_size[i], &hdr->sec_ctr[i * 0x10]);
//gfx_hexdump((u32)pdata, pdata, 0x100);
pdata += hdr->sec_size[i];
}
if (keyslot != 8)
se_aes_key_clear(9);
return hdr;
}
static u32 _pkg2_ini1_build(u8 *pdst, pkg2_hdr_t *hdr, link_t *kips_info, bool new_pkg2)
{
u32 ini1_size = sizeof(pkg2_ini1_t);
pkg2_ini1_t *ini1 = (pkg2_ini1_t *)pdst;
memset(ini1, 0, sizeof(pkg2_ini1_t));
ini1->magic = INI1_MAGIC;
pdst += sizeof(pkg2_ini1_t);
LIST_FOREACH_ENTRY(pkg2_kip1_info_t, ki, kips_info, link)
{
DPRINTF("adding kip1 '%s' @ %08X (%08X)\n", ki->kip1->name, (u32)ki->kip1, ki->size);
memcpy(pdst, ki->kip1, ki->size);
pdst += ki->size;
ini1_size += ki->size;
ini1->num_procs++;
}
ini1_size = ALIGN(ini1_size, 4);
ini1->size = ini1_size;
if (!new_pkg2)
{
hdr->sec_size[PKG2_SEC_INI1] = ini1_size;
hdr->sec_off[PKG2_SEC_INI1] = 0x14080000;
se_aes_crypt_ctr(8, ini1, ini1_size, ini1, ini1_size, &hdr->sec_ctr[PKG2_SEC_INI1 * 0x10]);
}
else
{
hdr->sec_size[PKG2_SEC_INI1] = 0;
hdr->sec_off[PKG2_SEC_INI1] = 0;
}
return ini1_size;
}
void pkg2_build_encrypt(void *dst, void *kernel, u32 kernel_size, link_t *kips_info, bool new_pkg2)
{
u8 *pdst = (u8 *)dst;
// Signature.
memset(pdst, 0, 0x100);
pdst += 0x100;
// Header.
pkg2_hdr_t *hdr = (pkg2_hdr_t *)pdst;
memset(hdr, 0, sizeof(pkg2_hdr_t));
pdst += sizeof(pkg2_hdr_t);
hdr->magic = PKG2_MAGIC;
if (!new_pkg2)
hdr->base = 0x10000000;
else
hdr->base = 0x60000;
DPRINTF("kernel @ %08X (%08X)\n", (u32)kernel, kernel_size);
// Kernel.
memcpy(pdst, kernel, kernel_size);
if (!new_pkg2)
hdr->sec_off[PKG2_SEC_KERNEL] = 0x10000000;
else
{
// Set new INI1 offset to kernel.
*(u32 *)(pdst + pkg2_newkern_ini1_val) = kernel_size;
kernel_size += _pkg2_ini1_build(pdst + kernel_size, hdr, kips_info, new_pkg2);
hdr->sec_off[PKG2_SEC_KERNEL] = 0x60000;
}
hdr->sec_size[PKG2_SEC_KERNEL] = kernel_size;
se_aes_crypt_ctr(8, pdst, kernel_size, pdst, kernel_size, &hdr->sec_ctr[PKG2_SEC_KERNEL * 0x10]);
pdst += kernel_size;
DPRINTF("kernel encrypted\n");
// INI1.
u32 ini1_size = 0;
if (!new_pkg2)
ini1_size = _pkg2_ini1_build(pdst, hdr, kips_info, new_pkg2);
DPRINTF("INI1 encrypted\n");
//Encrypt header.
*(u32 *)hdr->ctr = 0x100 + sizeof(pkg2_hdr_t) + kernel_size + ini1_size;
se_aes_crypt_ctr(8, hdr, sizeof(pkg2_hdr_t), hdr, sizeof(pkg2_hdr_t), hdr);
memset(hdr->ctr, 0 , 0x10);
*(u32 *)hdr->ctr = 0x100 + sizeof(pkg2_hdr_t) + kernel_size + ini1_size;
}