1
0
Fork 0
mirror of https://github.com/CTCaer/hekate.git synced 2024-11-13 22:06:46 +00:00
hekate/bdk/display/di.c
CTCaer 9ba7c44b89 bdk: clock: use real source clock dividers
Use CLK_SRC_DIV macro in order to have the actual divider showing.
2024-03-13 02:01:01 +02:00

1012 lines
32 KiB
C

/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018-2024 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include "di.h"
#include <power/max77620.h>
#include <power/max7762x.h>
#include <mem/heap.h>
#include <soc/clock.h>
#include <soc/fuse.h>
#include <soc/gpio.h>
#include <soc/hw_init.h>
#include <soc/i2c.h>
#include <soc/pinmux.h>
#include <soc/pmc.h>
#include <soc/timer.h>
#include <soc/t210.h>
#include <utils/util.h>
#include "di.inl"
extern volatile nyx_storage_t *nyx_str;
static u32 _display_id = 0;
static u32 _dsi_bl = -1;
static bool _nx_aula = false;
static void _display_panel_and_hw_end(bool no_panel_deinit);
void display_enable_interrupt(u32 intr)
{
DISPLAY_A(_DIREG(DC_CMD_INT_ENABLE)) |= intr;
}
void display_disable_interrupt(u32 intr)
{
DISPLAY_A(_DIREG(DC_CMD_INT_ENABLE)) &= ~intr;
DISPLAY_A(_DIREG(DC_CMD_INT_STATUS)) = intr;
}
void display_wait_interrupt(u32 intr)
{
DISPLAY_A(_DIREG(DC_CMD_INT_STATUS)) = intr;
// Interrupts are masked. Poll status register for checking if fired.
while (!(DISPLAY_A(_DIREG(DC_CMD_INT_STATUS)) & intr))
;
}
static void _display_dsi_wait(u32 timeout, u32 off, u32 mask)
{
u32 end = get_tmr_us() + timeout;
while (get_tmr_us() < end && DSI(off) & mask)
;
usleep(5);
}
static void _display_dsi_send_cmd(u8 cmd, u32 param, u32 wait)
{
DSI(_DSIREG(DSI_WR_DATA)) = (param << 8) | cmd;
DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST;
if (wait)
usleep(wait);
}
static void _display_dsi_wait_vblank(bool enable)
{
if (enable)
{
// Enable vblank interrupt.
display_enable_interrupt(DC_CMD_INT_FRAME_END_INT);
// Use the 4th line to transmit the host cmd packet.
DSI(_DSIREG(DSI_VIDEO_MODE_CONTROL)) = DSI_CMD_PKT_VID_ENABLE | DSI_DSI_LINE_TYPE(4);
// Wait for vblank before starting the transfer.
display_wait_interrupt(DC_CMD_INT_FRAME_END_INT);
}
else
{
// Wait for vblank before resetting sync points.
display_wait_interrupt(DC_CMD_INT_FRAME_END_INT);
usleep(14);
// Reset all states of syncpt block.
DSI(_DSIREG(DSI_INCR_SYNCPT_CNTRL)) = DSI_INCR_SYNCPT_SOFT_RESET;
usleep(300); // Stabilization delay.
// Clear syncpt block reset.
DSI(_DSIREG(DSI_INCR_SYNCPT_CNTRL)) = 0;
usleep(300); // Stabilization delay.
// Restore video mode and host control.
DSI(_DSIREG(DSI_VIDEO_MODE_CONTROL)) = 0;
// Disable and clear vblank interrupt.
display_disable_interrupt(DC_CMD_INT_FRAME_END_INT);
}
}
static void _display_dsi_read_rx_fifo(u32 *data)
{
u32 fifo_count = DSI(_DSIREG(DSI_STATUS)) & DSI_STATUS_RX_FIFO_SIZE;
if (fifo_count)
DSI(_DSIREG(DSI_TRIGGER)) = 0;
for (u32 i = 0; i < fifo_count; i++)
{
// Read or Drain RX FIFO.
if (data)
data[i] = DSI(_DSIREG(DSI_RD_DATA));
else
(void)DSI(_DSIREG(DSI_RD_DATA));
}
}
int display_dsi_read(u8 cmd, u32 len, void *data)
{
int res = 0;
u32 fifo[DSI_STATUS_RX_FIFO_SIZE] = {0};
// Drain RX FIFO.
_display_dsi_read_rx_fifo(NULL);
// Set reply size.
_display_dsi_send_cmd(MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, len, 0);
_display_dsi_wait(250000, _DSIREG(DSI_TRIGGER), DSI_TRIGGER_HOST | DSI_TRIGGER_VIDEO);
// Request register read.
_display_dsi_send_cmd(MIPI_DSI_DCS_READ, cmd, 0);
_display_dsi_wait(250000, _DSIREG(DSI_TRIGGER), DSI_TRIGGER_HOST | DSI_TRIGGER_VIDEO);
// Transfer bus control to device for transmitting the reply.
DSI(_DSIREG(DSI_HOST_CONTROL)) |= DSI_HOST_CONTROL_IMM_BTA;
// Wait for reply to complete. DSI_HOST_CONTROL_IMM_BTA bit acts as a DSI host read busy.
_display_dsi_wait(150000, _DSIREG(DSI_HOST_CONTROL), DSI_HOST_CONTROL_IMM_BTA);
// Wait a bit for the reply.
usleep(5000);
// Read RX FIFO.
_display_dsi_read_rx_fifo(fifo);
// Parse packet and copy over the data.
if ((fifo[0] & 0xFF) == DSI_ESCAPE_CMD)
{
// Act based on reply type.
switch (fifo[1] & 0xFF)
{
case GEN_LONG_RD_RES:
case DCS_LONG_RD_RES:
memcpy(data, &fifo[2], MIN((fifo[1] >> 8) & 0xFFFF, len));
break;
case GEN_1_BYTE_SHORT_RD_RES:
case DCS_1_BYTE_SHORT_RD_RES:
memcpy(data, &fifo[2], 1);
break;
case GEN_2_BYTE_SHORT_RD_RES:
case DCS_2_BYTE_SHORT_RD_RES:
memcpy(data, &fifo[2], 2);
break;
case ACK_ERROR_RES:
default:
res = 1;
break;
}
}
else
res = 1;
return res;
}
int display_dsi_vblank_read(u8 cmd, u32 len, void *data)
{
int res = 0;
u32 host_control = 0;
u32 fifo[DSI_STATUS_RX_FIFO_SIZE] = {0};
// Drain RX FIFO.
_display_dsi_read_rx_fifo(NULL);
// Save host control and enable host cmd packets during video.
host_control = DSI(_DSIREG(DSI_HOST_CONTROL));
_display_dsi_wait_vblank(true);
// Set reply size.
_display_dsi_send_cmd(MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, len, 0);
_display_dsi_wait(0, _DSIREG(DSI_TRIGGER), DSI_TRIGGER_HOST | DSI_TRIGGER_VIDEO);
// Request register read.
_display_dsi_send_cmd(MIPI_DSI_DCS_READ, cmd, 0);
_display_dsi_wait(0, _DSIREG(DSI_TRIGGER), DSI_TRIGGER_HOST | DSI_TRIGGER_VIDEO);
_display_dsi_wait_vblank(false);
// Transfer bus control to device for transmitting the reply.
DSI(_DSIREG(DSI_HOST_CONTROL)) |= DSI_HOST_CONTROL_IMM_BTA;
// Wait for reply to complete. DSI_HOST_CONTROL_IMM_BTA bit acts as a DSI host read busy.
_display_dsi_wait(150000, _DSIREG(DSI_HOST_CONTROL), DSI_HOST_CONTROL_IMM_BTA);
// Wait a bit for the reply.
usleep(5000);
// Read RX FIFO.
_display_dsi_read_rx_fifo(fifo);
// Parse packet and copy over the data.
if ((fifo[0] & 0xFF) == DSI_ESCAPE_CMD)
{
// Act based on reply type.
switch (fifo[1] & 0xFF)
{
case GEN_LONG_RD_RES:
case DCS_LONG_RD_RES:
memcpy(data, &fifo[2], MIN((fifo[1] >> 8) & 0xFFFF, len));
break;
case GEN_1_BYTE_SHORT_RD_RES:
case DCS_1_BYTE_SHORT_RD_RES:
memcpy(data, &fifo[2], 1);
break;
case GEN_2_BYTE_SHORT_RD_RES:
case DCS_2_BYTE_SHORT_RD_RES:
memcpy(data, &fifo[2], 2);
break;
case ACK_ERROR_RES:
default:
res = 1;
break;
}
}
else
res = 1;
// Restore host control.
DSI(_DSIREG(DSI_HOST_CONTROL)) = host_control;
return res;
}
void display_dsi_write(u8 cmd, u32 len, void *data)
{
static u8 *fifo8 = NULL;
static u32 *fifo32 = NULL;
u32 host_control;
// Allocate fifo buffer.
if (!fifo32)
{
fifo32 = malloc(DSI_STATUS_RX_FIFO_SIZE * 8 * sizeof(u32));
fifo8 = (u8 *)fifo32;
}
// Prepare data for long write.
if (len >= 2)
{
memcpy(&fifo8[5], data, len);
memset(&fifo8[5] + len, 0, len % sizeof(u32));
len++; // Increase length by CMD.
}
// Save host control.
host_control = DSI(_DSIREG(DSI_HOST_CONTROL));
// Enable host transfer trigger.
DSI(_DSIREG(DSI_HOST_CONTROL)) = (host_control & ~(DSI_HOST_CONTROL_TX_TRIG_MASK)) | DSI_HOST_CONTROL_TX_TRIG_HOST;
switch (len)
{
case 0:
_display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE, cmd, 0);
break;
case 1:
_display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE_PARAM, cmd | (*(u8 *)data << 8), 0);
break;
default:
fifo32[0] = (len << 8) | MIPI_DSI_DCS_LONG_WRITE;
fifo8[4] = cmd;
len += sizeof(u32); // Increase length by length word and DCS CMD.
for (u32 i = 0; i < (ALIGN(len, sizeof(u32)) / sizeof(u32)); i++)
DSI(_DSIREG(DSI_WR_DATA)) = fifo32[i];
DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST;
break;
}
// Wait for the write to happen.
_display_dsi_wait(250000, _DSIREG(DSI_TRIGGER), DSI_TRIGGER_HOST);
// Restore host control.
DSI(_DSIREG(DSI_HOST_CONTROL)) = host_control;
}
void display_dsi_vblank_write(u8 cmd, u32 len, void *data)
{
static u8 *fifo8 = NULL;
static u32 *fifo32 = NULL;
// Allocate fifo buffer.
if (!fifo32)
{
fifo32 = malloc(DSI_STATUS_RX_FIFO_SIZE * 8 * sizeof(u32));
fifo8 = (u8 *)fifo32;
}
// Prepare data for long write.
if (len >= 2)
{
memcpy(&fifo8[5], data, len);
memset(&fifo8[5] + len, 0, len % sizeof(u32));
len++; // Increase length by CMD.
}
_display_dsi_wait_vblank(true);
switch (len)
{
case 0:
DSI(_DSIREG(DSI_WR_DATA)) = (cmd << 8) | MIPI_DSI_DCS_SHORT_WRITE;
break;
case 1:
DSI(_DSIREG(DSI_WR_DATA)) = ((cmd | (*(u8 *)data << 8)) << 8) | MIPI_DSI_DCS_SHORT_WRITE_PARAM;
break;
default:
fifo32[0] = (len << 8) | MIPI_DSI_DCS_LONG_WRITE;
fifo8[4] = cmd;
len += sizeof(u32); // Increase length by length word and DCS CMD.
for (u32 i = 0; i < (ALIGN(len, sizeof(u32)) / sizeof(u32)); i++)
DSI(_DSIREG(DSI_WR_DATA)) = fifo32[i];
break;
}
_display_dsi_wait_vblank(false);
}
void display_init()
{
// Get Hardware type, as it's used in various DI functions.
_nx_aula = fuse_read_hw_type() == FUSE_NX_HW_TYPE_AULA;
// Check if display is already initialized.
if (CLOCK(CLK_RST_CONTROLLER_CLK_OUT_ENB_L) & BIT(CLK_L_DISP1))
_display_panel_and_hw_end(true);
// Get Chip ID.
bool tegra_t210 = hw_get_chip_id() == GP_HIDREV_MAJOR_T210;
// T210B01: Power on SD2 regulator for supplying LDO0.
if (!tegra_t210)
{
// Set SD2 regulator voltage.
max7762x_regulator_set_voltage(REGULATOR_SD2, 1325000);
// Set slew rate and enable SD2 regulator.
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_SD2_CFG, (1 << MAX77620_SD_SR_SHIFT) | MAX77620_SD_CFG1_FSRADE_SD_ENABLE);
max7762x_regulator_enable(REGULATOR_SD2, true);
}
// Enable LCD DVDD.
max7762x_regulator_set_voltage(REGULATOR_LDO0, 1200000);
max7762x_regulator_enable(REGULATOR_LDO0, true);
if (tegra_t210)
max77620_config_gpio(7, MAX77620_GPIO_OUTPUT_ENABLE); // T210: LD0 -> GPIO7 -> LCD.
// Enable Display Interface specific clocks.
CLOCK(CLK_RST_CONTROLLER_RST_DEV_H_CLR) = BIT(CLK_H_MIPI_CAL) | BIT(CLK_H_DSI);
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_H_SET) = BIT(CLK_H_MIPI_CAL) | BIT(CLK_H_DSI);
CLOCK(CLK_RST_CONTROLLER_RST_DEV_L_CLR) = BIT(CLK_L_DISP1);
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_L_SET) = BIT(CLK_L_DISP1);
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_X_SET) = BIT(CLK_X_UART_FST_MIPI_CAL);
CLOCK(CLK_RST_CONTROLLER_CLK_SOURCE_UART_FST_MIPI_CAL) = CLK_SRC_DIV(6); // Set PLLP_OUT3 and div 6 (17MHz).
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_W_SET) = BIT(CLK_W_DSIA_LP);
CLOCK(CLK_RST_CONTROLLER_CLK_SOURCE_DSIA_LP) = CLK_SRC_DIV(6); // Set PLLP_OUT and div 6 (68MHz).
// Bring every IO rail out of deep power down.
PMC(APBDEV_PMC_IO_DPD_REQ) = PMC_IO_DPD_REQ_DPD_OFF;
PMC(APBDEV_PMC_IO_DPD2_REQ) = PMC_IO_DPD_REQ_DPD_OFF;
// Configure LCD/BL pins.
if (!_nx_aula)
{
// Configure LCD pins.
PINMUX_AUX(PINMUX_AUX_NFC_EN) = PINMUX_PULL_DOWN;
PINMUX_AUX(PINMUX_AUX_NFC_INT) = PINMUX_PULL_DOWN;
// Configure Backlight pins.
PINMUX_AUX(PINMUX_AUX_LCD_BL_PWM) = PINMUX_PULL_DOWN;
PINMUX_AUX(PINMUX_AUX_LCD_BL_EN) = PINMUX_PULL_DOWN;
// Enable LCD AVDD.
gpio_direction_output(GPIO_PORT_I, GPIO_PIN_0 | GPIO_PIN_1, GPIO_HIGH);
usleep(10000); // Wait minimum 4.2ms to stabilize.
// Configure Backlight PWM/EN pins (BL PWM, BL EN).
gpio_direction_output(GPIO_PORT_V, GPIO_PIN_0 | GPIO_PIN_1, GPIO_LOW);
// Enable Backlight power.
gpio_write(GPIO_PORT_V, GPIO_PIN_1, GPIO_HIGH);
}
// Configure LCD RST pin.
PINMUX_AUX(PINMUX_AUX_LCD_RST) = PINMUX_PULL_DOWN;
gpio_direction_output(GPIO_PORT_V, GPIO_PIN_2, GPIO_LOW);
// Power up supply regulator for display interface.
MIPI_CAL(_DSIREG(MIPI_CAL_MIPI_BIAS_PAD_CFG2)) = 0;
if (!tegra_t210)
{
MIPI_CAL(_DSIREG(MIPI_CAL_MIPI_BIAS_PAD_CFG0)) = 0;
APB_MISC(APB_MISC_GP_DSI_PAD_CONTROL) = 0;
}
// Set DISP1 clock source, parent clock and DSI/PCLK to low power mode.
// T210: DIVM: 1, DIVN: 20, DIVP: 3. PLLD_OUT: 100.0 MHz, PLLD_OUT0 (DSI-PCLK): 50.0 MHz. (PCLK: 16.66 MHz)
// T210B01: DIVM: 1, DIVN: 20, DIVP: 3. PLLD_OUT: 97.8 MHz, PLLD_OUT0 (DSI-PCLK): 48.9 MHz. (PCLK: 16.30 MHz)
clock_enable_plld(3, 20, true, tegra_t210);
// Setup Display Interface initial window configuration.
exec_cfg((u32 *)DISPLAY_A_BASE, _di_dc_setup_win_config, CFG_SIZE(_di_dc_setup_win_config));
// Setup dsi init sequence packets.
exec_cfg((u32 *)DSI_BASE, _di_dsi_init_irq_pkt_config0, CFG_SIZE(_di_dsi_init_irq_pkt_config0));
if (tegra_t210)
DSI(_DSIREG(DSI_INIT_SEQ_DATA_15)) = 0;
else
DSI(_DSIREG(DSI_INIT_SEQ_DATA_15_B01)) = 0;
exec_cfg((u32 *)DSI_BASE, _di_dsi_init_irq_pkt_config1, CFG_SIZE(_di_dsi_init_irq_pkt_config1));
// Reset pad trimmers for T210B01.
if (!tegra_t210)
exec_cfg((u32 *)DSI_BASE, _di_dsi_init_pads_t210b01, CFG_SIZE(_di_dsi_init_pads_t210b01));
// Setup init sequence packets and timings.
exec_cfg((u32 *)DSI_BASE, _di_dsi_init_timing_pkt_config2, CFG_SIZE(_di_dsi_init_timing_pkt_config2));
DSI(_DSIREG(DSI_PHY_TIMING_0)) = tegra_t210 ? 0x6070601 : 0x6070603; // DSI_THSPREPR: 1 : 3.
exec_cfg((u32 *)DSI_BASE, _di_dsi_init_timing_pwrctrl_config, CFG_SIZE(_di_dsi_init_timing_pwrctrl_config));
DSI(_DSIREG(DSI_PHY_TIMING_0)) = tegra_t210 ? 0x6070601 : 0x6070603; // DSI_THSPREPR: 1 : 3.
exec_cfg((u32 *)DSI_BASE, _di_dsi_init_timing_pkt_config3, CFG_SIZE(_di_dsi_init_timing_pkt_config3));
usleep(10000);
// Enable LCD Reset.
gpio_write(GPIO_PORT_V, GPIO_PIN_2, GPIO_HIGH);
usleep(60000);
// Setup DSI device takeover timeout.
DSI(_DSIREG(DSI_BTA_TIMING)) = _nx_aula ? 0x40103 : 0x50204;
// Get Display ID.
_display_id = 0xCCCCCC;
for (u32 i = 0; i < 3; i++)
{
if (!display_dsi_read(MIPI_DCS_GET_DISPLAY_ID, 3, &_display_id))
break;
usleep(10000);
}
// Save raw Display ID to Nyx storage.
nyx_str->info.disp_id = _display_id;
// Decode Display ID.
_display_id = ((_display_id >> 8) & 0xFF00) | (_display_id & 0xFF);
if ((_display_id & 0xFF) == PANEL_JDI_XXX062M)
_display_id = PANEL_JDI_XXX062M;
// For Aula ensure that we have a compatible panel id.
if (_nx_aula && _display_id == 0xCCCC)
_display_id = PANEL_SAM_AMS699VC01;
// Initialize display panel.
switch (_display_id)
{
case PANEL_SAM_AMS699VC01:
_display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE, MIPI_DCS_EXIT_SLEEP_MODE, 180000);
// Set color mode to natural. Stock is Saturated (0x00). (Reset value is 0x20).
_display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE_PARAM,
MIPI_DCS_PRIV_SM_SET_COLOR_MODE | (DCS_SM_COLOR_MODE_NATURAL << 8), 0);
// Enable backlight and smooth PWM.
_display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE_PARAM,
MIPI_DCS_SET_CONTROL_DISPLAY | ((DCS_CONTROL_DISPLAY_BRIGHTNESS_CTRL | DCS_CONTROL_DISPLAY_DIMMING_CTRL) << 8), 0);
// Unlock Level 2 registers.
DSI(_DSIREG(DSI_WR_DATA)) = 0x539; // MIPI_DSI_DCS_LONG_WRITE: 5 bytes.
DSI(_DSIREG(DSI_WR_DATA)) = 0x5A5A5AE2; // MIPI_DCS_PRIV_SM_SET_REGS_LOCK: Unlock Level 2 registers.
DSI(_DSIREG(DSI_WR_DATA)) = 0x5A;
DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST;
// Set registers offset and set PWM transition to 6 frames (100ms).
_display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE_PARAM, MIPI_DCS_PRIV_SM_SET_REG_OFFSET | (7 << 8), 0);
_display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE_PARAM, MIPI_DCS_PRIV_SM_SET_ELVSS | (6 << 8), 0);
// Relock Level 2 registers.
DSI(_DSIREG(DSI_WR_DATA)) = 0x539; // MIPI_DSI_DCS_LONG_WRITE: 5 bytes.
DSI(_DSIREG(DSI_WR_DATA)) = 0xA55A5AE2; // MIPI_DCS_PRIV_SM_SET_REGS_LOCK: Lock Level 2 registers.
DSI(_DSIREG(DSI_WR_DATA)) = 0xA5;
DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST;
// Set backlight to 0%.
DSI(_DSIREG(DSI_WR_DATA)) = 0x339; // MIPI_DSI_DCS_LONG_WRITE: 3 bytes.
DSI(_DSIREG(DSI_WR_DATA)) = 0x000051; // MIPI_DCS_SET_BRIGHTNESS 0000: 0%. FF07: 100%.
DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST;
usleep(5000);
_dsi_bl = 0;
break;
case PANEL_JDI_XXX062M:
exec_cfg((u32 *)DSI_BASE, _di_dsi_panel_init_config_jdi, CFG_SIZE(_di_dsi_panel_init_config_jdi));
_display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE, MIPI_DCS_EXIT_SLEEP_MODE, 180000);
break;
case PANEL_INL_P062CCA_AZ1:
case PANEL_AUO_A062TAN01:
_display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE, MIPI_DCS_EXIT_SLEEP_MODE, 180000);
// Unlock extension cmds.
DSI(_DSIREG(DSI_WR_DATA)) = 0x439; // MIPI_DSI_DCS_LONG_WRITE: 4 bytes.
DSI(_DSIREG(DSI_WR_DATA)) = 0x9483FFB9; // MIPI_DCS_PRIV_SET_EXTC. (Pass: FF 83 94).
DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST;
usleep(5000);
// Set Power control.
DSI(_DSIREG(DSI_WR_DATA)) = 0x739; // MIPI_DSI_DCS_LONG_WRITE: 7 bytes.
if (_display_id == PANEL_INL_P062CCA_AZ1)
DSI(_DSIREG(DSI_WR_DATA)) = 0x751548B1; // MIPI_DCS_PRIV_SET_POWER_CONTROL. (Not deep standby, BT5 / XDK, VRH gamma volt adj 53 / x40).
else // PANEL_AUO_A062TAN01.
DSI(_DSIREG(DSI_WR_DATA)) = 0x711148B1; // MIPI_DCS_PRIV_SET_POWER_CONTROL. (Not deep standby, BT1 / XDK, VRH gamma volt adj 49 / x40).
DSI(_DSIREG(DSI_WR_DATA)) = 0x143209; // (NVRH gamma volt adj 9, Amplifier current small / x30, FS0 freq Fosc/80 / FS1 freq Fosc/32).
DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST;
usleep(5000);
break;
case PANEL_INL_2J055IA_27A:
case PANEL_AUO_A055TAN01:
case PANEL_SHP_LQ055T1SW10:
default: // Allow spare part displays to work.
_display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE, MIPI_DCS_EXIT_SLEEP_MODE, 120000);
break;
}
// Unblank display.
_display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE, MIPI_DCS_SET_DISPLAY_ON, 20000);
// Setup final dsi clock.
// DIVM: 1, DIVN: 24, DIVP: 1. PLLD_OUT: 468.0 MHz, PLLD_OUT0 (DSI): 234.0 MHz.
clock_enable_plld(1, 24, false, tegra_t210);
// Finalize DSI init packet sequence configuration.
DSI(_DSIREG(DSI_PAD_CONTROL_1)) = 0;
DSI(_DSIREG(DSI_PHY_TIMING_0)) = tegra_t210 ? 0x6070601 : 0x6070603;
exec_cfg((u32 *)DSI_BASE, _di_dsi_init_seq_pkt_final_config, CFG_SIZE(_di_dsi_init_seq_pkt_final_config));
// Set 1-by-1 pixel/clock and pixel clock to 234 / 3 = 78 MHz. For 60 Hz refresh rate.
DISPLAY_A(_DIREG(DC_DISP_DISP_CLOCK_CONTROL)) = PIXEL_CLK_DIVIDER_PCD1 | SHIFT_CLK_DIVIDER(4); // 4: div3.
// Set DSI mode.
exec_cfg((u32 *)DSI_BASE, _di_dsi_mode_config, CFG_SIZE(_di_dsi_mode_config));
usleep(10000);
// Calibrate display communication pads.
u32 loops = tegra_t210 ? 1 : 2; // Calibrate pads 2 times on T210B01.
exec_cfg((u32 *)MIPI_CAL_BASE, _di_mipi_pad_cal_config, CFG_SIZE(_di_mipi_pad_cal_config));
for (u32 i = 0; i < loops; i++)
{
// Set MIPI bias pad config.
MIPI_CAL(_DSIREG(MIPI_CAL_MIPI_BIAS_PAD_CFG2)) = 0x10010;
MIPI_CAL(_DSIREG(MIPI_CAL_MIPI_BIAS_PAD_CFG1)) = tegra_t210 ? 0x300 : 0;
// Set pad trimmers and set MIPI DSI cal offsets.
if (tegra_t210)
{
exec_cfg((u32 *)DSI_BASE, _di_dsi_pad_cal_config_t210, CFG_SIZE(_di_dsi_pad_cal_config_t210));
exec_cfg((u32 *)MIPI_CAL_BASE, _di_mipi_dsi_cal_offsets_config_t210, CFG_SIZE(_di_mipi_dsi_cal_offsets_config_t210));
}
else
{
exec_cfg((u32 *)DSI_BASE, _di_dsi_pad_cal_config_t210b01, CFG_SIZE(_di_dsi_pad_cal_config_t210b01));
exec_cfg((u32 *)MIPI_CAL_BASE, _di_mipi_dsi_cal_offsets_config_t210b01, CFG_SIZE(_di_mipi_dsi_cal_offsets_config_t210b01));
}
// Reset all MIPI cal offsets and start calibration.
exec_cfg((u32 *)MIPI_CAL_BASE, _di_mipi_start_dsi_cal_config, CFG_SIZE(_di_mipi_start_dsi_cal_config));
}
usleep(10000);
// Enable video display controller.
exec_cfg((u32 *)DISPLAY_A_BASE, _di_dc_video_enable_config, CFG_SIZE(_di_dc_video_enable_config));
}
void display_backlight_pwm_init()
{
if (_display_id == PANEL_SAM_AMS699VC01)
return;
clock_enable_pwm();
// Enable PWM and set it to 25KHz PFM. 29.5KHz is stock.
PWM(PWM_CONTROLLER_PWM_CSR_0) = PWM_CSR_EN;
PINMUX_AUX(PINMUX_AUX_LCD_BL_PWM) = (PINMUX_AUX(PINMUX_AUX_LCD_BL_PWM) & ~PINMUX_FUNC_MASK) | 1; // Set PWM0 mode.
gpio_config(GPIO_PORT_V, GPIO_PIN_0, GPIO_MODE_SPIO); // Backlight power mode.
}
void display_backlight(bool enable)
{
// Backlight PWM GPIO.
gpio_write(GPIO_PORT_V, GPIO_PIN_0, enable ? GPIO_HIGH : GPIO_LOW);
}
static void _display_dsi_backlight_brightness(u32 duty)
{
if (_dsi_bl == duty)
return;
// Convert duty to candela.
u32 candela = duty * PANEL_SM_BL_CANDELA_MAX / 255;
u16 bl_ctrl = byte_swap_16((u16)candela);
display_dsi_vblank_write(MIPI_DCS_SET_BRIGHTNESS, 2, &bl_ctrl);
// Wait for backlight to completely turn off. 6+1 frames.
if (!duty)
usleep(120000);
_dsi_bl = duty;
}
static void _display_pwm_backlight_brightness(u32 duty, u32 step_delay)
{
u32 old_value = (PWM(PWM_CONTROLLER_PWM_CSR_0) >> 16) & 0xFF;
if (duty == old_value)
return;
if (old_value < duty)
{
for (u32 i = old_value; i < duty + 1; i++)
{
PWM(PWM_CONTROLLER_PWM_CSR_0) = PWM_CSR_EN | (i << 16);
usleep(step_delay);
}
}
else
{
for (u32 i = old_value; i > duty; i--)
{
PWM(PWM_CONTROLLER_PWM_CSR_0) = PWM_CSR_EN | (i << 16);
usleep(step_delay);
}
}
if (!duty)
PWM(PWM_CONTROLLER_PWM_CSR_0) = 0;
}
void display_backlight_brightness(u32 brightness, u32 step_delay)
{
if (brightness > 255)
brightness = 255;
if (_display_id != PANEL_SAM_AMS699VC01)
_display_pwm_backlight_brightness(brightness, step_delay);
else
_display_dsi_backlight_brightness(brightness);
}
u32 display_get_backlight_brightness()
{
return ((PWM(PWM_CONTROLLER_PWM_CSR_0) >> 16) & 0xFF);
}
static void _display_panel_and_hw_end(bool no_panel_deinit)
{
if (no_panel_deinit)
goto skip_panel_deinit;
display_backlight_brightness(0, 1000);
// Enable host cmd packets during video.
DSI(_DSIREG(DSI_VIDEO_MODE_CONTROL)) = DSI_CMD_PKT_VID_ENABLE;
// Blank display.
DSI(_DSIREG(DSI_WR_DATA)) = (MIPI_DCS_SET_DISPLAY_OFF << 8) | MIPI_DSI_DCS_SHORT_WRITE;
// Wait for 5 frames (HOST1X_CH0_SYNC_SYNCPT_9).
// Not here.
// Propagate changes to all register buffers and disable host cmd packets during video.
DISPLAY_A(_DIREG(DC_CMD_STATE_ACCESS)) = READ_MUX | WRITE_MUX;
DSI(_DSIREG(DSI_VIDEO_MODE_CONTROL)) = 0;
// De-initialize video controller.
exec_cfg((u32 *)DISPLAY_A_BASE, _di_dc_video_disable_config, CFG_SIZE(_di_dc_video_disable_config));
// Set DISP1 clock source, parent clock and DSI/PCLK to low power mode.
// T210: DIVM: 1, DIVN: 20, DIVP: 3. PLLD_OUT: 100.0 MHz, PLLD_OUT0 (DSI-PCLK): 50.0 MHz. (PCLK: 16.66 MHz)
// T210B01: DIVM: 1, DIVN: 20, DIVP: 3. PLLD_OUT: 97.8 MHz, PLLD_OUT0 (DSI-PCLK): 48.9 MHz. (PCLK: 16.30 MHz)
clock_enable_plld(3, 20, true, hw_get_chip_id() == GP_HIDREV_MAJOR_T210);
// Set timings for lowpower clocks.
exec_cfg((u32 *)DSI_BASE, _di_dsi_timing_deinit_config, CFG_SIZE(_di_dsi_timing_deinit_config));
if (_display_id != PANEL_SAM_AMS699VC01)
usleep(10000);
// De-initialize display panel.
switch (_display_id)
{
case PANEL_JDI_XXX062M:
exec_cfg((u32 *)DSI_BASE, _di_dsi_panel_deinit_config_jdi, CFG_SIZE(_di_dsi_panel_deinit_config_jdi));
break;
case PANEL_AUO_A062TAN01:
exec_cfg((u32 *)DSI_BASE, _di_dsi_panel_deinit_config_auo, CFG_SIZE(_di_dsi_panel_deinit_config_auo));
break;
case PANEL_INL_2J055IA_27A:
case PANEL_AUO_A055TAN01:
case PANEL_SHP_LQ055T1SW10:
// Unlock extension cmds.
DSI(_DSIREG(DSI_WR_DATA)) = 0x439; // MIPI_DSI_DCS_LONG_WRITE: 4 bytes.
DSI(_DSIREG(DSI_WR_DATA)) = 0x9483FFB9; // MIPI_DCS_PRIV_SET_EXTC. (Pass: FF 83 94).
DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST;
usleep(5000);
// Set Power control.
DSI(_DSIREG(DSI_WR_DATA)) = 0xB39; // MIPI_DSI_DCS_LONG_WRITE: 11 bytes.
if (_display_id == PANEL_INL_2J055IA_27A)
DSI(_DSIREG(DSI_WR_DATA)) = 0x751548B1; // MIPI_DCS_PRIV_SET_POWER_CONTROL. (Not deep standby, BT5 / XDK, VRH gamma volt adj 53 / x40).
else if (_display_id == PANEL_AUO_A055TAN01)
DSI(_DSIREG(DSI_WR_DATA)) = 0x711148B1; // MIPI_DCS_PRIV_SET_POWER_CONTROL. (Not deep standby, BT1 / XDK, VRH gamma volt adj 49 / x40).
else // PANEL_SHP_LQ055T1SW10.
DSI(_DSIREG(DSI_WR_DATA)) = 0x731348B1; // MIPI_DCS_PRIV_SET_POWER_CONTROL. (Not deep standby, BT3 / XDK, VRH gamma volt adj 51 / x40).
if (_display_id == PANEL_INL_2J055IA_27A || _display_id == PANEL_AUO_A055TAN01)
{
// (NVRH gamma volt adj 9, Amplifier current small / x30, FS0 freq Fosc/80 / FS1 freq Fosc/32, Enter standby / PON / VCOMG).
DSI(_DSIREG(DSI_WR_DATA)) = 0x71143209;
DSI(_DSIREG(DSI_WR_DATA)) = 0x114D31; // (Unknown).
}
else // PANEL_SHP_LQ055T1SW10.
{
// (NVRH gamma volt adj 9, Amplifier current small / x30, FS0 freq Fosc/80 / FS1 freq Fosc/48, Enter standby / PON / VCOMG).
DSI(_DSIREG(DSI_WR_DATA)) = 0x71243209;
DSI(_DSIREG(DSI_WR_DATA)) = 0x004C31; // (Unknown).
}
DSI(_DSIREG(DSI_TRIGGER)) = DSI_TRIGGER_HOST;
usleep(5000);
break;
case PANEL_INL_P062CCA_AZ1:
case PANEL_SAM_AMS699VC01:
default:
break;
}
// Blank - powerdown.
_display_dsi_send_cmd(MIPI_DSI_DCS_SHORT_WRITE, MIPI_DCS_ENTER_SLEEP_MODE,
(_display_id == PANEL_SAM_AMS699VC01) ? 120000 : 50000);
skip_panel_deinit:
// Disable LCD power pins.
gpio_write(GPIO_PORT_V, GPIO_PIN_2, GPIO_LOW); // LCD Reset disable.
usleep(10000);
if (!_nx_aula) // HOS uses panel id.
{
gpio_write(GPIO_PORT_I, GPIO_PIN_1, GPIO_LOW); // LCD AVDD -5.4V disable.
gpio_write(GPIO_PORT_I, GPIO_PIN_0, GPIO_LOW); // LCD AVDD +5.4V disable.
}
usleep(10000);
// Disable Display Interface specific clocks.
CLOCK(CLK_RST_CONTROLLER_RST_DEV_H_SET) = BIT(CLK_H_MIPI_CAL) | BIT(CLK_H_DSI);
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_H_CLR) = BIT(CLK_H_MIPI_CAL) | BIT(CLK_H_DSI);
CLOCK(CLK_RST_CONTROLLER_RST_DEV_L_SET) = BIT(CLK_L_DISP1);
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_L_CLR) = BIT(CLK_L_DISP1);
// Power down pads.
DSI(_DSIREG(DSI_PAD_CONTROL_0)) = DSI_PAD_CONTROL_VS1_PULLDN_CLK | DSI_PAD_CONTROL_VS1_PULLDN(0xF) |
DSI_PAD_CONTROL_VS1_PDIO_CLK | DSI_PAD_CONTROL_VS1_PDIO(0xF);
DSI(_DSIREG(DSI_POWER_CONTROL)) = 0;
// Switch LCD PWM backlight pin to special function mode and enable PWM0 mode.
if (!_nx_aula)
{
gpio_config(GPIO_PORT_V, GPIO_PIN_0, GPIO_MODE_SPIO); // Backlight PWM.
PINMUX_AUX(PINMUX_AUX_LCD_BL_PWM) = PINMUX_TRISTATE | PINMUX_PULL_DOWN | 1; // Set PWM0 mode.
}
// Disable LCD DVDD.
max7762x_regulator_enable(REGULATOR_LDO0, false);
}
void display_end() { _display_panel_and_hw_end(false); };
u16 display_get_decoded_panel_id()
{
return _display_id;
}
void display_set_decoded_panel_id(u32 id)
{
// Get Hardware type, as it's used in various DI functions.
_nx_aula = fuse_read_hw_type() == FUSE_NX_HW_TYPE_AULA;
// Decode Display ID.
_display_id = ((id >> 8) & 0xFF00) | (id & 0xFF);
if ((_display_id & 0xFF) == PANEL_JDI_XXX062M)
_display_id = PANEL_JDI_XXX062M;
// For Aula ensure that we have a compatible panel id.
if (_nx_aula && _display_id == 0xCCCC)
_display_id = PANEL_SAM_AMS699VC01;
}
void display_color_screen(u32 color)
{
exec_cfg((u32 *)DISPLAY_A_BASE, _di_win_one_color, CFG_SIZE(_di_win_one_color));
// Configure display to show single color.
DISPLAY_A(_DIREG(DC_WIN_AD_WIN_OPTIONS)) = 0;
DISPLAY_A(_DIREG(DC_WIN_BD_WIN_OPTIONS)) = 0;
DISPLAY_A(_DIREG(DC_WIN_CD_WIN_OPTIONS)) = 0;
DISPLAY_A(_DIREG(DC_DISP_BLEND_BACKGROUND_COLOR)) = color;
DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = (DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) & 0xFFFFFFFE) | GENERAL_ACT_REQ;
usleep(35000); // Wait 2 frames. No need on Aula.
if (_display_id != PANEL_SAM_AMS699VC01)
display_backlight(true);
else
display_backlight_brightness(150, 0);
}
u32 *display_init_framebuffer_pitch()
{
// Sanitize framebuffer area.
memset((u32 *)IPL_FB_ADDRESS, 0, IPL_FB_SZ);
// This configures the framebuffer @ IPL_FB_ADDRESS with a resolution of 720x1280 (line stride 720).
exec_cfg((u32 *)DISPLAY_A_BASE, _di_win_framebuffer_pitch, CFG_SIZE(_di_win_framebuffer_pitch));
//usleep(35000); // Wait 2 frames. No need on Aula.
return (u32 *)DISPLAY_A(_DIREG(DC_WINBUF_START_ADDR));
}
u32 *display_init_framebuffer_pitch_vic()
{
// This configures the framebuffer @ NYX_FB_ADDRESS with a resolution of 720x1280 (line stride 720).
if (_display_id != PANEL_SAM_AMS699VC01)
usleep(8000); // Wait half frame for PWM to apply.
exec_cfg((u32 *)DISPLAY_A_BASE, _di_win_framebuffer_pitch_vic, CFG_SIZE(_di_win_framebuffer_pitch_vic));
if (_display_id != PANEL_SAM_AMS699VC01)
usleep(35000); // Wait 2 frames.
return (u32 *)DISPLAY_A(_DIREG(DC_WINBUF_START_ADDR));
}
u32 *display_init_framebuffer_pitch_inv()
{
// This configures the framebuffer @ NYX_FB_ADDRESS with a resolution of 720x1280 (line stride 720).
exec_cfg((u32 *)DISPLAY_A_BASE, _di_win_framebuffer_pitch_inv, CFG_SIZE(_di_win_framebuffer_pitch_inv));
usleep(35000); // Wait 2 frames. No need on Aula.
return (u32 *)DISPLAY_A(_DIREG(DC_WINBUF_START_ADDR));
}
u32 *display_init_framebuffer_block()
{
// This configures the framebuffer @ NYX_FB_ADDRESS with a resolution of 720x1280.
exec_cfg((u32 *)DISPLAY_A_BASE, _di_win_framebuffer_block, CFG_SIZE(_di_win_framebuffer_block));
usleep(35000); // Wait 2 frames. No need on Aula.
return (u32 *)DISPLAY_A(_DIREG(DC_WINBUF_START_ADDR));
}
u32 *display_init_framebuffer_log()
{
// This configures the framebuffer @ LOG_FB_ADDRESS with a resolution of 1280x720 (line stride 720).
exec_cfg((u32 *)DISPLAY_A_BASE, _di_win_framebuffer_log, CFG_SIZE(_di_win_framebuffer_log));
return (u32 *)DISPLAY_A(_DIREG(DC_WINBUF_START_ADDR));
}
void display_activate_console()
{
// Select window D.
DISPLAY_A(_DIREG(DC_CMD_DISPLAY_WINDOW_HEADER)) = WINDOW_D_SELECT;
// Enable and setup window D.
DISPLAY_A(_DIREG(DC_WIN_WIN_OPTIONS)) = WIN_ENABLE;
DISPLAY_A(_DIREG(DC_WIN_POSITION)) = 0xFF80; // X: -128.
// Arm and activate changes.
DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | WIN_D_UPDATE;
DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | WIN_D_ACT_REQ;
// Pull-down effect.
for (u32 i = 0xFF80; i < 0x10000; i++)
{
// Set window position.
DISPLAY_A(_DIREG(DC_WIN_POSITION)) = i & 0xFFFF;
// Arm and activate changes.
DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | WIN_D_UPDATE;
DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | WIN_D_ACT_REQ;
usleep(1000);
}
DISPLAY_A(_DIREG(DC_WIN_POSITION)) = 0;
// Arm and activate changes.
DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | WIN_D_UPDATE;
DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | WIN_D_ACT_REQ;
// Re-select window A.
DISPLAY_A(_DIREG(DC_CMD_DISPLAY_WINDOW_HEADER)) = WINDOW_A_SELECT;
}
void display_deactivate_console()
{
// Select window D.
DISPLAY_A(_DIREG(DC_CMD_DISPLAY_WINDOW_HEADER)) = WINDOW_D_SELECT;
// Pull-up effect.
for (u32 i = 0xFFFF; i > 0xFF7F; i--)
{
// Set window position.
DISPLAY_A(_DIREG(DC_WIN_POSITION)) = i & 0xFFFF;
// Arm and activate changes.
DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | WIN_D_UPDATE;
DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | WIN_D_ACT_REQ;
usleep(500);
}
// Disable window D.
DISPLAY_A(_DIREG(DC_WIN_POSITION)) = 0;
DISPLAY_A(_DIREG(DC_WIN_WIN_OPTIONS)) = 0;
// Arm and activate changes.
DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | WIN_D_UPDATE;
DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | WIN_D_ACT_REQ;
// Re-select window A.
DISPLAY_A(_DIREG(DC_CMD_DISPLAY_WINDOW_HEADER)) = WINDOW_A_SELECT;
}
void display_init_cursor(void *crs_fb, u32 size)
{
// Setup cursor.
DISPLAY_A(_DIREG(DC_DISP_CURSOR_START_ADDR)) = CURSOR_CLIPPING(CURSOR_CLIP_WIN_A) | size | ((u32)crs_fb >> 10);
DISPLAY_A(_DIREG(DC_DISP_BLEND_CURSOR_CONTROL)) = CURSOR_BLEND_R8G8B8A8 |
CURSOR_BLEND_DST_FACTOR(CURSOR_BLEND_K1) |
CURSOR_BLEND_SRC_FACTOR(CURSOR_BLEND_K1) | 0xFF;
// Enable cursor window.
DISPLAY_A(_DIREG(DC_DISP_DISP_WIN_OPTIONS)) |= CURSOR_ENABLE;
// Arm and activate changes.
DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | CURSOR_UPDATE;
DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | CURSOR_ACT_REQ;
}
void display_set_pos_cursor(u32 x, u32 y)
{
// Set cursor position.
DISPLAY_A(_DIREG(DC_DISP_CURSOR_POSITION)) = x | (y << 16);
// Arm and activate changes.
DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | CURSOR_UPDATE;
DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | CURSOR_ACT_REQ;
}
void display_deinit_cursor()
{
DISPLAY_A(_DIREG(DC_DISP_BLEND_CURSOR_CONTROL)) = 0;
DISPLAY_A(_DIREG(DC_DISP_DISP_WIN_OPTIONS)) &= ~CURSOR_ENABLE;
DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_UPDATE | CURSOR_UPDATE;
DISPLAY_A(_DIREG(DC_CMD_STATE_CONTROL)) = GENERAL_ACT_REQ | CURSOR_ACT_REQ;
}