1
0
Fork 0
mirror of https://github.com/CTCaer/hekate.git synced 2025-01-03 21:46:04 +00:00
hekate/bootloader/frontend/fe_info.c
CTCaer d8995ee9c0 hekate: clean unused stuff
Remove anything that will never be in TUI in the future.
Especially these that need modernization.
2021-08-22 16:56:05 +03:00

564 lines
16 KiB
C

/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018-2021 CTCaer
* Copyright (c) 2018 balika011
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include "fe_info.h"
#include "../config.h"
#include <gfx_utils.h>
#include "../hos/hos.h"
#include "../hos/pkg1.h"
#include <libs/fatfs/ff.h>
#include <mem/heap.h>
#include <mem/smmu.h>
#include <power/bq24193.h>
#include <power/max17050.h>
#include <sec/se_t210.h>
#include <sec/tsec.h>
#include <soc/fuse.h>
#include <soc/i2c.h>
#include <soc/kfuse.h>
#include <soc/t210.h>
#include <storage/mmc.h>
#include "../storage/nx_emmc.h"
#include <storage/nx_sd.h>
#include <storage/sdmmc.h>
#include <utils/btn.h>
#include <utils/util.h>
extern hekate_config h_cfg;
extern void emmcsn_path_impl(char *path, char *sub_dir, char *filename, sdmmc_storage_t *storage);
#pragma GCC push_options
#pragma GCC optimize ("Os")
void print_fuseinfo()
{
u32 fuse_size = h_cfg.t210b01 ? 0x368 : 0x300;
u32 fuse_address = h_cfg.t210b01 ? 0x7000F898 : 0x7000F900;
u32 fuse_array_size = (h_cfg.t210b01 ? 256 : 192) * sizeof(u32);
gfx_clear_partial_grey(0x1B, 0, 1256);
gfx_con_setpos(0, 0);
gfx_printf("\nSKU: %X - ", FUSE(FUSE_SKU_INFO));
switch (fuse_read_hw_state())
{
case FUSE_NX_HW_STATE_PROD:
gfx_printf("Retail\n");
break;
case FUSE_NX_HW_STATE_DEV:
gfx_printf("Dev\n");
break;
}
gfx_printf("Sdram ID: %d\n", fuse_read_dramid(true));
gfx_printf("Burnt fuses: %d / 64\n", bit_count(fuse_read_odm(7)));
gfx_printf("Secure key: %08X%08X%08X%08X\n\n\n",
byte_swap_32(FUSE(FUSE_PRIVATE_KEY0)), byte_swap_32(FUSE(FUSE_PRIVATE_KEY1)),
byte_swap_32(FUSE(FUSE_PRIVATE_KEY2)), byte_swap_32(FUSE(FUSE_PRIVATE_KEY3)));
gfx_printf("%kFuse cache:\n\n%k", 0xFF00DDFF, 0xFFCCCCCC);
gfx_hexdump(fuse_address, (u8 *)fuse_address, fuse_size);
gfx_puts("\nPress POWER to dump them to SD Card.\nPress VOL to go to the menu.\n");
u32 btn = btn_wait();
if (btn & BTN_POWER)
{
if (sd_mount())
{
char path[64];
emmcsn_path_impl(path, "/dumps", "fuse_cached.bin", NULL);
if (!sd_save_to_file((u8 *)fuse_address, fuse_size, path))
gfx_puts("\nfuse_cached.bin saved!\n");
u32 words[256];
fuse_read_array(words);
emmcsn_path_impl(path, "/dumps", "fuse_array_raw.bin", NULL);
if (!sd_save_to_file((u8 *)words, fuse_array_size, path))
gfx_puts("\nfuse_array_raw.bin saved!\n");
sd_end();
}
btn_wait();
}
}
void print_kfuseinfo()
{
gfx_clear_partial_grey(0x1B, 0, 1256);
gfx_con_setpos(0, 0);
gfx_printf("%kKFuse contents:\n\n%k", 0xFF00DDFF, 0xFFCCCCCC);
u32 buf[KFUSE_NUM_WORDS];
if (!kfuse_read(buf))
EPRINTF("CRC fail.");
else
gfx_hexdump(0, (u8 *)buf, KFUSE_NUM_WORDS * 4);
gfx_puts("\nPress POWER to dump them to SD Card.\nPress VOL to go to the menu.\n");
u32 btn = btn_wait();
if (btn & BTN_POWER)
{
if (sd_mount())
{
char path[64];
emmcsn_path_impl(path, "/dumps", "kfuses.bin", NULL);
if (!sd_save_to_file((u8 *)buf, KFUSE_NUM_WORDS * 4, path))
gfx_puts("\nDone!\n");
sd_end();
}
btn_wait();
}
}
void print_mmc_info()
{
gfx_clear_partial_grey(0x1B, 0, 1256);
gfx_con_setpos(0, 0);
static const u32 SECTORS_TO_MIB_COEFF = 11;
if (!sdmmc_storage_init_mmc(&emmc_storage, &emmc_sdmmc, SDMMC_BUS_WIDTH_8, SDHCI_TIMING_MMC_HS400))
{
EPRINTF("Failed to init eMMC.");
goto out;
}
else
{
u16 card_type;
u32 speed = 0;
gfx_printf("%kCID:%k\n", 0xFF00DDFF, 0xFFCCCCCC);
switch (emmc_storage.csd.mmca_vsn)
{
case 2: /* MMC v2.0 - v2.2 */
case 3: /* MMC v3.1 - v3.3 */
case 4: /* MMC v4 */
gfx_printf(
" Vendor ID: %X\n"
" OEM ID: %02X\n"
" Model: %c%c%c%c%c%c\n"
" Prd Rev: %X\n"
" S/N: %04X\n"
" Month/Year: %02d/%04d\n\n",
emmc_storage.cid.manfid, emmc_storage.cid.oemid,
emmc_storage.cid.prod_name[0], emmc_storage.cid.prod_name[1], emmc_storage.cid.prod_name[2],
emmc_storage.cid.prod_name[3], emmc_storage.cid.prod_name[4], emmc_storage.cid.prod_name[5],
emmc_storage.cid.prv, emmc_storage.cid.serial, emmc_storage.cid.month, emmc_storage.cid.year);
break;
default:
break;
}
if (emmc_storage.csd.structure == 0)
EPRINTF("Unknown CSD structure.");
else
{
gfx_printf("%kExtended CSD V1.%d:%k\n",
0xFF00DDFF, emmc_storage.ext_csd.ext_struct, 0xFFCCCCCC);
card_type = emmc_storage.ext_csd.card_type;
char card_type_support[96];
card_type_support[0] = 0;
if (card_type & EXT_CSD_CARD_TYPE_HS_26)
{
strcat(card_type_support, "HS26");
speed = (26 << 16) | 26;
}
if (card_type & EXT_CSD_CARD_TYPE_HS_52)
{
strcat(card_type_support, ", HS52");
speed = (52 << 16) | 52;
}
if (card_type & EXT_CSD_CARD_TYPE_DDR_1_8V)
{
strcat(card_type_support, ", DDR52_1.8V");
speed = (52 << 16) | 104;
}
if (card_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
{
strcat(card_type_support, ", HS200_1.8V");
speed = (200 << 16) | 200;
}
if (card_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
{
strcat(card_type_support, ", HS400_1.8V");
speed = (200 << 16) | 400;
}
gfx_printf(
" Spec Version: %02X\n"
" Extended Rev: 1.%d\n"
" Dev Version: %d\n"
" Cmd Classes: %02X\n"
" Capacity: %s\n"
" Max Rate: %d MB/s (%d MHz)\n"
" Current Rate: %d MB/s\n"
" Type Support: ",
emmc_storage.csd.mmca_vsn, emmc_storage.ext_csd.rev, emmc_storage.ext_csd.dev_version, emmc_storage.csd.cmdclass,
emmc_storage.csd.capacity == (4096 * 512) ? "High" : "Low", speed & 0xFFFF, (speed >> 16) & 0xFFFF,
emmc_storage.csd.busspeed);
gfx_con.fntsz = 8;
gfx_printf("%s", card_type_support);
gfx_con.fntsz = 16;
gfx_printf("\n\n", card_type_support);
u32 boot_size = emmc_storage.ext_csd.boot_mult << 17;
u32 rpmb_size = emmc_storage.ext_csd.rpmb_mult << 17;
gfx_printf("%keMMC Partitions:%k\n", 0xFF00DDFF, 0xFFCCCCCC);
gfx_printf(" 1: %kBOOT0 %k\n Size: %5d KiB (LBA Sectors: 0x%07X)\n", 0xFF96FF00, 0xFFCCCCCC,
boot_size / 1024, boot_size / 512);
gfx_put_small_sep();
gfx_printf(" 2: %kBOOT1 %k\n Size: %5d KiB (LBA Sectors: 0x%07X)\n", 0xFF96FF00, 0xFFCCCCCC,
boot_size / 1024, boot_size / 512);
gfx_put_small_sep();
gfx_printf(" 3: %kRPMB %k\n Size: %5d KiB (LBA Sectors: 0x%07X)\n", 0xFF96FF00, 0xFFCCCCCC,
rpmb_size / 1024, rpmb_size / 512);
gfx_put_small_sep();
gfx_printf(" 0: %kGPP (USER) %k\n Size: %5d MiB (LBA Sectors: 0x%07X)\n\n", 0xFF96FF00, 0xFFCCCCCC,
emmc_storage.sec_cnt >> SECTORS_TO_MIB_COEFF, emmc_storage.sec_cnt);
gfx_put_small_sep();
gfx_printf("%kGPP (eMMC USER) partition table:%k\n", 0xFF00DDFF, 0xFFCCCCCC);
sdmmc_storage_set_mmc_partition(&emmc_storage, EMMC_GPP);
LIST_INIT(gpt);
nx_emmc_gpt_parse(&gpt, &emmc_storage);
int gpp_idx = 0;
LIST_FOREACH_ENTRY(emmc_part_t, part, &gpt, link)
{
gfx_printf(" %02d: %k%s%k\n Size: % 5d MiB (LBA Sectors 0x%07X)\n LBA Range: %08X-%08X\n",
gpp_idx++, 0xFFAEFD14, part->name, 0xFFCCCCCC, (part->lba_end - part->lba_start + 1) >> SECTORS_TO_MIB_COEFF,
part->lba_end - part->lba_start + 1, part->lba_start, part->lba_end);
gfx_put_small_sep();
}
nx_emmc_gpt_free(&gpt);
}
}
out:
sdmmc_storage_end(&emmc_storage);
btn_wait();
}
void print_sdcard_info()
{
static const u32 SECTORS_TO_MIB_COEFF = 11;
gfx_clear_partial_grey(0x1B, 0, 1256);
gfx_con_setpos(0, 0);
if (sd_initialize(false))
{
gfx_printf("%kCard IDentification:%k\n", 0xFF00DDFF, 0xFFCCCCCC);
gfx_printf(
" Vendor ID: %02x\n"
" OEM ID: %c%c\n"
" Model: %c%c%c%c%c\n"
" HW rev: %X\n"
" FW rev: %X\n"
" S/N: %08x\n"
" Month/Year: %02d/%04d\n\n",
sd_storage.cid.manfid, (sd_storage.cid.oemid >> 8) & 0xFF, sd_storage.cid.oemid & 0xFF,
sd_storage.cid.prod_name[0], sd_storage.cid.prod_name[1], sd_storage.cid.prod_name[2],
sd_storage.cid.prod_name[3], sd_storage.cid.prod_name[4],
sd_storage.cid.hwrev, sd_storage.cid.fwrev, sd_storage.cid.serial,
sd_storage.cid.month, sd_storage.cid.year);
u16 *sd_errors = sd_get_error_count();
gfx_printf("%kCard-Specific Data V%d.0:%k\n", 0xFF00DDFF, sd_storage.csd.structure + 1, 0xFFCCCCCC);
gfx_printf(
" Cmd Classes: %02X\n"
" Capacity: %d MiB\n"
" Bus Width: %d\n"
" Current Rate: %d MB/s (%d MHz)\n"
" Speed Class: %d\n"
" UHS Grade: U%d\n"
" Video Class: V%d\n"
" App perf class: A%d\n"
" Write Protect: %d\n"
" SDMMC Errors: %d %d %d\n\n",
sd_storage.csd.cmdclass, sd_storage.sec_cnt >> 11,
sd_storage.ssr.bus_width, sd_storage.csd.busspeed, sd_storage.csd.busspeed * 2,
sd_storage.ssr.speed_class, sd_storage.ssr.uhs_grade, sd_storage.ssr.video_class,
sd_storage.ssr.app_class, sd_storage.csd.write_protect,
sd_errors[0], sd_errors[1], sd_errors[2]); // SD_ERROR_INIT_FAIL, SD_ERROR_RW_FAIL, SD_ERROR_RW_RETRY.
int res = f_mount(&sd_fs, "", 1);
if (!res)
{
gfx_puts("Acquiring FAT volume info...\n\n");
f_getfree("", &sd_fs.free_clst, NULL);
gfx_printf("%kFound %s volume:%k\n Free: %d MiB\n Cluster: %d KiB\n",
0xFF00DDFF, sd_fs.fs_type == FS_EXFAT ? "exFAT" : "FAT32", 0xFFCCCCCC,
sd_fs.free_clst * sd_fs.csize >> SECTORS_TO_MIB_COEFF, (sd_fs.csize > 1) ? (sd_fs.csize >> 1) : 512);
f_mount(NULL, "", 1);
}
else
{
EPRINTFARGS("Failed to mount SD card (FatFS Error %d).\n"
"Make sure that a FAT partition exists..", res);
}
sdmmc_storage_end(&sd_storage);
}
else
{
EPRINTF("Failed to init SD card.");
if (!sdmmc_get_sd_inserted())
EPRINTF("Make sure that it is inserted.");
else
EPRINTF("SD Card Reader is not properly seated!");
}
btn_wait();
}
void print_fuel_gauge_info()
{
int value = 0;
gfx_printf("%kFuel Gauge Info:\n%k", 0xFF00DDFF, 0xFFCCCCCC);
max17050_get_property(MAX17050_RepSOC, &value);
gfx_printf("Capacity now: %3d%\n", value >> 8);
max17050_get_property(MAX17050_RepCap, &value);
gfx_printf("Capacity now: %4d mAh\n", value);
max17050_get_property(MAX17050_FullCAP, &value);
gfx_printf("Capacity full: %4d mAh\n", value);
max17050_get_property(MAX17050_DesignCap, &value);
gfx_printf("Capacity (design): %4d mAh\n", value);
max17050_get_property(MAX17050_Current, &value);
if (value >= 0)
gfx_printf("Current now: %d mA\n", value / 1000);
else
gfx_printf("Current now: -%d mA\n", ~value / 1000);
max17050_get_property(MAX17050_AvgCurrent, &value);
if (value >= 0)
gfx_printf("Current average: %d mA\n", value / 1000);
else
gfx_printf("Current average: -%d mA\n", ~value / 1000);
max17050_get_property(MAX17050_VCELL, &value);
gfx_printf("Voltage now: %4d mV\n", value);
max17050_get_property(MAX17050_OCVInternal, &value);
gfx_printf("Voltage open-circuit: %4d mV\n", value);
max17050_get_property(MAX17050_MinVolt, &value);
gfx_printf("Min voltage reached: %4d mV\n", value);
max17050_get_property(MAX17050_MaxVolt, &value);
gfx_printf("Max voltage reached: %4d mV\n", value);
max17050_get_property(MAX17050_V_empty, &value);
gfx_printf("Empty voltage (design): %4d mV\n", value);
max17050_get_property(MAX17050_TEMP, &value);
if (value >= 0)
gfx_printf("Battery temperature: %d.%d oC\n", value / 10, value % 10);
else
gfx_printf("Battery temperature: -%d.%d oC\n", ~value / 10, (~value) % 10);
}
void print_battery_charger_info()
{
int value = 0;
gfx_printf("%k\n\nBattery Charger Info:\n%k", 0xFF00DDFF, 0xFFCCCCCC);
bq24193_get_property(BQ24193_InputVoltageLimit, &value);
gfx_printf("Input voltage limit: %4d mV\n", value);
bq24193_get_property(BQ24193_InputCurrentLimit, &value);
gfx_printf("Input current limit: %4d mA\n", value);
bq24193_get_property(BQ24193_SystemMinimumVoltage, &value);
gfx_printf("Min voltage limit: %4d mV\n", value);
bq24193_get_property(BQ24193_FastChargeCurrentLimit, &value);
gfx_printf("Fast charge current limit: %4d mA\n", value);
bq24193_get_property(BQ24193_ChargeVoltageLimit, &value);
gfx_printf("Charge voltage limit: %4d mV\n", value);
bq24193_get_property(BQ24193_ChargeStatus, &value);
gfx_printf("Charge status: ");
switch (value)
{
case 0:
gfx_printf("Not charging\n");
break;
case 1:
gfx_printf("Pre-charging\n");
break;
case 2:
gfx_printf("Fast charging\n");
break;
case 3:
gfx_printf("Charge terminated\n");
break;
default:
gfx_printf("Unknown (%d)\n", value);
break;
}
bq24193_get_property(BQ24193_TempStatus, &value);
gfx_printf("Temperature status: ");
switch (value)
{
case 0:
gfx_printf("Normal\n");
break;
case 2:
gfx_printf("Warm\n");
break;
case 3:
gfx_printf("Cool\n");
break;
case 5:
gfx_printf("Cold\n");
break;
case 6:
gfx_printf("Hot\n");
break;
default:
gfx_printf("Unknown (%d)\n", value);
break;
}
}
void print_battery_info()
{
gfx_clear_partial_grey(0x1B, 0, 1256);
gfx_con_setpos(0, 0);
print_fuel_gauge_info();
print_battery_charger_info();
u8 *buf = (u8 *)malloc(0x100 * 2);
gfx_printf("%k\n\nBattery Fuel Gauge Registers:\n%k", 0xFF00DDFF, 0xFFCCCCCC);
for (int i = 0; i < 0x200; i += 2)
{
i2c_recv_buf_small(buf + i, 2, I2C_1, MAXIM17050_I2C_ADDR, i >> 1);
usleep(2500);
}
gfx_hexdump(0, (u8 *)buf, 0x200);
gfx_puts("\nPress POWER to dump them to SD Card.\nPress VOL to go to the menu.\n");
u32 btn = btn_wait();
if (btn & BTN_POWER)
{
if (sd_mount())
{
char path[64];
emmcsn_path_impl(path, "/dumps", "fuel_gauge.bin", NULL);
if (sd_save_to_file((u8 *)buf, 0x200, path))
EPRINTF("\nError creating fuel.bin file.");
else
gfx_puts("\nDone!\n");
sd_end();
}
btn_wait();
}
free(buf);
}
void _ipatch_process(u32 offset, u32 value)
{
gfx_printf("%8x %8x", BOOTROM_BASE + offset, value);
u8 lo = value & 0xff;
switch (value >> 8)
{
case 0x20:
gfx_printf(" MOVS R0, #0x%02X", lo);
break;
case 0xDF:
gfx_printf(" SVC #0x%02X", lo);
break;
}
gfx_puts("\n");
}
void bootrom_ipatches_info()
{
gfx_clear_partial_grey(0x1B, 0, 1256);
gfx_con_setpos(0, 0);
static const u32 BOOTROM_SIZE = 0x18000;
u32 res = fuse_read_ipatch(_ipatch_process);
if (res != 0)
EPRINTFARGS("Failed to read ipatches. Error: %d", res);
gfx_puts("\nPress POWER to dump them to SD Card.\nPress VOL to go to the menu.\n");
u32 btn = btn_wait();
if (btn & BTN_POWER)
{
if (sd_mount())
{
char path[64];
u32 iram_evp_thunks[0x200];
u32 iram_evp_thunks_len = sizeof(iram_evp_thunks);
res = fuse_read_evp_thunk(iram_evp_thunks, &iram_evp_thunks_len);
if (res == 0)
{
emmcsn_path_impl(path, "/dumps", "evp_thunks.bin", NULL);
if (!sd_save_to_file((u8 *)iram_evp_thunks, iram_evp_thunks_len, path))
gfx_puts("\nevp_thunks.bin saved!\n");
}
else
EPRINTFARGS("Failed to read evp_thunks. Error: %d", res);
emmcsn_path_impl(path, "/dumps", "bootrom_patched.bin", NULL);
if (!sd_save_to_file((u8 *)BOOTROM_BASE, BOOTROM_SIZE, path))
gfx_puts("\nbootrom_patched.bin saved!\n");
u32 ipatch_backup[14];
memcpy(ipatch_backup, (void *)IPATCH_BASE, sizeof(ipatch_backup));
memset((void*)IPATCH_BASE, 0, sizeof(ipatch_backup));
emmcsn_path_impl(path, "/dumps", "bootrom_unpatched.bin", NULL);
if (!sd_save_to_file((u8 *)BOOTROM_BASE, BOOTROM_SIZE, path))
gfx_puts("\nbootrom_unpatched.bin saved!\n");
memcpy((void*)IPATCH_BASE, ipatch_backup, sizeof(ipatch_backup));
sd_end();
}
btn_wait();
}
}
#pragma GCC pop_options