mirror of
https://github.com/yuzu-emu/yuzu.git
synced 2024-07-04 23:31:19 +01:00
162 lines
5.1 KiB
C++
162 lines
5.1 KiB
C++
|
// Copyright 2020 yuzu Emulator Project
|
||
|
// Licensed under GPLv2 or any later version
|
||
|
// Refer to the license.txt file included.
|
||
|
|
||
|
#include "core/host_timing.h"
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <mutex>
|
||
|
#include <string>
|
||
|
#include <tuple>
|
||
|
|
||
|
#include "common/assert.h"
|
||
|
#include "common/thread.h"
|
||
|
#include "core/core_timing_util.h"
|
||
|
|
||
|
namespace Core::HostTiming {
|
||
|
|
||
|
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) {
|
||
|
return std::make_shared<EventType>(std::move(callback), std::move(name));
|
||
|
}
|
||
|
|
||
|
struct CoreTiming::Event {
|
||
|
u64 time;
|
||
|
u64 fifo_order;
|
||
|
u64 userdata;
|
||
|
std::weak_ptr<EventType> type;
|
||
|
|
||
|
// Sort by time, unless the times are the same, in which case sort by
|
||
|
// the order added to the queue
|
||
|
friend bool operator>(const Event& left, const Event& right) {
|
||
|
return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
|
||
|
}
|
||
|
|
||
|
friend bool operator<(const Event& left, const Event& right) {
|
||
|
return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
CoreTiming::CoreTiming() = default;
|
||
|
CoreTiming::~CoreTiming() = default;
|
||
|
|
||
|
void CoreTiming::ThreadEntry(CoreTiming& instance) {
|
||
|
instance.Advance();
|
||
|
}
|
||
|
|
||
|
void CoreTiming::Initialize() {
|
||
|
event_fifo_id = 0;
|
||
|
const auto empty_timed_callback = [](u64, s64) {};
|
||
|
ev_lost = CreateEvent("_lost_event", empty_timed_callback);
|
||
|
start_time = std::chrono::system_clock::now();
|
||
|
timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
|
||
|
}
|
||
|
|
||
|
void CoreTiming::Shutdown() {
|
||
|
std::unique_lock<std::mutex> guard(inner_mutex);
|
||
|
shutting_down = true;
|
||
|
if (!is_set) {
|
||
|
is_set = true;
|
||
|
condvar.notify_one();
|
||
|
}
|
||
|
inner_mutex.unlock();
|
||
|
timer_thread->join();
|
||
|
ClearPendingEvents();
|
||
|
}
|
||
|
|
||
|
void CoreTiming::ScheduleEvent(s64 ns_into_future, const std::shared_ptr<EventType>& event_type,
|
||
|
u64 userdata) {
|
||
|
std::lock_guard guard{inner_mutex};
|
||
|
const u64 timeout = static_cast<u64>(GetGlobalTimeNs().count() + ns_into_future);
|
||
|
|
||
|
event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type});
|
||
|
|
||
|
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||
|
if (!is_set) {
|
||
|
is_set = true;
|
||
|
condvar.notify_one();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata) {
|
||
|
std::lock_guard guard{inner_mutex};
|
||
|
|
||
|
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
|
||
|
return e.type.lock().get() == event_type.get() && e.userdata == userdata;
|
||
|
});
|
||
|
|
||
|
// Removing random items breaks the invariant so we have to re-establish it.
|
||
|
if (itr != event_queue.end()) {
|
||
|
event_queue.erase(itr, event_queue.end());
|
||
|
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
u64 CoreTiming::GetCPUTicks() const {
|
||
|
std::chrono::nanoseconds time_now = GetGlobalTimeNs();
|
||
|
return Core::Timing::nsToCycles(time_now);
|
||
|
}
|
||
|
|
||
|
u64 CoreTiming::GetClockTicks() const {
|
||
|
std::chrono::nanoseconds time_now = GetGlobalTimeNs();
|
||
|
return Core::Timing::nsToClockCycles(time_now);
|
||
|
}
|
||
|
|
||
|
void CoreTiming::ClearPendingEvents() {
|
||
|
event_queue.clear();
|
||
|
}
|
||
|
|
||
|
void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
|
||
|
std::lock_guard guard{inner_mutex};
|
||
|
|
||
|
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
|
||
|
return e.type.lock().get() == event_type.get();
|
||
|
});
|
||
|
|
||
|
// Removing random items breaks the invariant so we have to re-establish it.
|
||
|
if (itr != event_queue.end()) {
|
||
|
event_queue.erase(itr, event_queue.end());
|
||
|
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void CoreTiming::Advance() {
|
||
|
while (true) {
|
||
|
std::unique_lock<std::mutex> guard(inner_mutex);
|
||
|
|
||
|
global_timer = GetGlobalTimeNs().count();
|
||
|
|
||
|
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
|
||
|
Event evt = std::move(event_queue.front());
|
||
|
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||
|
event_queue.pop_back();
|
||
|
inner_mutex.unlock();
|
||
|
|
||
|
if (auto event_type{evt.type.lock()}) {
|
||
|
event_type->callback(evt.userdata, global_timer - evt.time);
|
||
|
}
|
||
|
|
||
|
inner_mutex.lock();
|
||
|
}
|
||
|
auto next_time = std::chrono::nanoseconds(event_queue.front().time - global_timer);
|
||
|
condvar.wait_for(guard, next_time, [this] { return is_set; });
|
||
|
is_set = false;
|
||
|
if (shutting_down) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
|
||
|
sys_time_point current = std::chrono::system_clock::now();
|
||
|
auto elapsed = current - start_time;
|
||
|
return std::chrono::duration_cast<std::chrono::nanoseconds>(elapsed);
|
||
|
}
|
||
|
|
||
|
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
|
||
|
sys_time_point current = std::chrono::system_clock::now();
|
||
|
auto elapsed = current - start_time;
|
||
|
return std::chrono::duration_cast<std::chrono::microseconds>(elapsed);
|
||
|
}
|
||
|
|
||
|
} // namespace Core::Timing
|