2
1
Fork 0
mirror of https://github.com/yuzu-emu/yuzu.git synced 2024-07-04 23:31:19 +01:00
yuzu/src/core/memory.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

692 lines
25 KiB
C++
Raw Normal View History

chore: make yuzu REUSE compliant [REUSE] is a specification that aims at making file copyright information consistent, so that it can be both human and machine readable. It basically requires that all files have a header containing copyright and licensing information. When this isn't possible, like when dealing with binary assets, generated files or embedded third-party dependencies, it is permitted to insert copyright information in the `.reuse/dep5` file. Oh, and it also requires that all the licenses used in the project are present in the `LICENSES` folder, that's why the diff is so huge. This can be done automatically with `reuse download --all`. The `reuse` tool also contains a handy subcommand that analyzes the project and tells whether or not the project is (still) compliant, `reuse lint`. Following REUSE has a few advantages over the current approach: - Copyright information is easy to access for users / downstream - Files like `dist/license.md` do not need to exist anymore, as `.reuse/dep5` is used instead - `reuse lint` makes it easy to ensure that copyright information of files like binary assets / images is always accurate and up to date To add copyright information of files that didn't have it I looked up who committed what and when, for each file. As yuzu contributors do not have to sign a CLA or similar I couldn't assume that copyright ownership was of the "yuzu Emulator Project", so I used the name and/or email of the commit author instead. [REUSE]: https://reuse.software Follow-up to 01cf05bc75b1e47beb08937439f3ed9339e7b254
2022-05-15 01:06:02 +01:00
// SPDX-FileCopyrightText: 2014 Citra Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <cstddef>
#include <memory>
#include <optional>
#include <span>
2016-06-27 18:42:42 +01:00
#include <string>
#include <vector>
#include "common/scratch_buffer.h"
#include "common/typed_address.h"
#include "core/hle/result.h"
namespace Common {
enum class MemoryPermission : u32;
struct PageTable;
} // namespace Common
namespace Core {
class System;
class GPUDirtyMemoryManager;
} // namespace Core
namespace Kernel {
class KProcess;
} // namespace Kernel
namespace Tegra {
class MemoryManager;
}
namespace Core::Memory {
/**
* Page size used by the ARM architecture. This is the smallest granularity with which memory can
* be mapped.
*/
constexpr std::size_t YUZU_PAGEBITS = 12;
constexpr u64 YUZU_PAGESIZE = 1ULL << YUZU_PAGEBITS;
constexpr u64 YUZU_PAGEMASK = YUZU_PAGESIZE - 1;
/// Virtual user-space memory regions
enum : u64 {
/// TLS (Thread-Local Storage) related.
TLS_ENTRY_SIZE = 0x200,
/// Application stack
2018-03-31 20:03:28 +01:00
DEFAULT_STACK_SIZE = 0x100000,
};
/// Central class that handles all memory operations and state.
class Memory {
public:
explicit Memory(Core::System& system);
~Memory();
Memory(const Memory&) = delete;
Memory& operator=(const Memory&) = delete;
Memory(Memory&&) = default;
2021-08-05 21:11:14 +01:00
Memory& operator=(Memory&&) = delete;
/**
* Resets the state of the Memory system.
*/
void Reset();
/**
* Changes the currently active page table to that of the given process instance.
*
* @param process The process to use the page table of.
*/
void SetCurrentPageTable(Kernel::KProcess& process, u32 core_id);
/**
* Maps an allocated buffer onto a region of the emulated process address space.
*
* @param page_table The page table of the emulated process.
* @param base The address to start mapping at. Must be page-aligned.
* @param size The amount of bytes to map. Must be page-aligned.
* @param target Buffer with the memory backing the mapping. Must be of length at least
* `size`.
* @param perms The permissions to map the memory with.
*/
void MapMemoryRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size,
Common::PhysicalAddress target, Common::MemoryPermission perms);
/**
* Unmaps a region of the emulated process address space.
*
* @param page_table The page table of the emulated process.
* @param base The address to begin unmapping at.
* @param size The amount of bytes to unmap.
*/
void UnmapRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size);
/**
* Checks whether or not the supplied address is a valid virtual
* address for the current process.
*
* @param vaddr The virtual address to check the validity of.
*
* @returns True if the given virtual address is valid, false otherwise.
*/
[[nodiscard]] bool IsValidVirtualAddress(Common::ProcessAddress vaddr) const;
/**
* Checks whether or not the supplied range of addresses are all valid
* virtual addresses for the current process.
*
* @param base The address to begin checking.
* @param size The amount of bytes to check.
*
* @returns True if all bytes in the given range are valid, false otherwise.
*/
[[nodiscard]] bool IsValidVirtualAddressRange(Common::ProcessAddress base, u64 size) const;
/**
* Gets a pointer to the given address.
*
* @param vaddr Virtual address to retrieve a pointer to.
*
* @returns The pointer to the given address, if the address is valid.
* If the address is not valid, nullptr will be returned.
*/
u8* GetPointer(Common::ProcessAddress vaddr);
u8* GetPointerSilent(Common::ProcessAddress vaddr);
template <typename T>
T* GetPointer(Common::ProcessAddress vaddr) {
return reinterpret_cast<T*>(GetPointer(vaddr));
}
/**
* Gets a pointer to the given address.
*
* @param vaddr Virtual address to retrieve a pointer to.
*
* @returns The pointer to the given address, if the address is valid.
* If the address is not valid, nullptr will be returned.
*/
[[nodiscard]] const u8* GetPointer(Common::ProcessAddress vaddr) const;
template <typename T>
const T* GetPointer(Common::ProcessAddress vaddr) const {
return reinterpret_cast<T*>(GetPointer(vaddr));
}
/**
* Reads an 8-bit unsigned value from the current process' address space
* at the given virtual address.
*
* @param addr The virtual address to read the 8-bit value from.
*
* @returns the read 8-bit unsigned value.
*/
u8 Read8(Common::ProcessAddress addr);
/**
* Reads a 16-bit unsigned value from the current process' address space
* at the given virtual address.
*
* @param addr The virtual address to read the 16-bit value from.
*
* @returns the read 16-bit unsigned value.
*/
u16 Read16(Common::ProcessAddress addr);
/**
* Reads a 32-bit unsigned value from the current process' address space
* at the given virtual address.
*
* @param addr The virtual address to read the 32-bit value from.
*
* @returns the read 32-bit unsigned value.
*/
u32 Read32(Common::ProcessAddress addr);
/**
* Reads a 64-bit unsigned value from the current process' address space
* at the given virtual address.
*
* @param addr The virtual address to read the 64-bit value from.
*
* @returns the read 64-bit value.
*/
u64 Read64(Common::ProcessAddress addr);
/**
* Writes an 8-bit unsigned integer to the given virtual address in
* the current process' address space.
*
* @param addr The virtual address to write the 8-bit unsigned integer to.
* @param data The 8-bit unsigned integer to write to the given virtual address.
*
* @post The memory at the given virtual address contains the specified data value.
*/
void Write8(Common::ProcessAddress addr, u8 data);
/**
* Writes a 16-bit unsigned integer to the given virtual address in
* the current process' address space.
*
* @param addr The virtual address to write the 16-bit unsigned integer to.
* @param data The 16-bit unsigned integer to write to the given virtual address.
*
* @post The memory range [addr, sizeof(data)) contains the given data value.
*/
void Write16(Common::ProcessAddress addr, u16 data);
/**
* Writes a 32-bit unsigned integer to the given virtual address in
* the current process' address space.
*
* @param addr The virtual address to write the 32-bit unsigned integer to.
* @param data The 32-bit unsigned integer to write to the given virtual address.
*
* @post The memory range [addr, sizeof(data)) contains the given data value.
*/
void Write32(Common::ProcessAddress addr, u32 data);
/**
* Writes a 64-bit unsigned integer to the given virtual address in
* the current process' address space.
*
* @param addr The virtual address to write the 64-bit unsigned integer to.
* @param data The 64-bit unsigned integer to write to the given virtual address.
*
* @post The memory range [addr, sizeof(data)) contains the given data value.
*/
void Write64(Common::ProcessAddress addr, u64 data);
/**
* Writes a 8-bit unsigned integer to the given virtual address in
* the current process' address space if and only if the address contains
* the expected value. This operation is atomic.
*
* @param addr The virtual address to write the 8-bit unsigned integer to.
* @param data The 8-bit unsigned integer to write to the given virtual address.
* @param expected The 8-bit unsigned integer to check against the given virtual address.
*
* @post The memory range [addr, sizeof(data)) contains the given data value.
*/
bool WriteExclusive8(Common::ProcessAddress addr, u8 data, u8 expected);
/**
* Writes a 16-bit unsigned integer to the given virtual address in
* the current process' address space if and only if the address contains
* the expected value. This operation is atomic.
*
* @param addr The virtual address to write the 16-bit unsigned integer to.
* @param data The 16-bit unsigned integer to write to the given virtual address.
* @param expected The 16-bit unsigned integer to check against the given virtual address.
*
* @post The memory range [addr, sizeof(data)) contains the given data value.
*/
bool WriteExclusive16(Common::ProcessAddress addr, u16 data, u16 expected);
/**
* Writes a 32-bit unsigned integer to the given virtual address in
* the current process' address space if and only if the address contains
* the expected value. This operation is atomic.
*
* @param addr The virtual address to write the 32-bit unsigned integer to.
* @param data The 32-bit unsigned integer to write to the given virtual address.
* @param expected The 32-bit unsigned integer to check against the given virtual address.
*
* @post The memory range [addr, sizeof(data)) contains the given data value.
*/
bool WriteExclusive32(Common::ProcessAddress addr, u32 data, u32 expected);
/**
* Writes a 64-bit unsigned integer to the given virtual address in
* the current process' address space if and only if the address contains
* the expected value. This operation is atomic.
*
* @param addr The virtual address to write the 64-bit unsigned integer to.
* @param data The 64-bit unsigned integer to write to the given virtual address.
* @param expected The 64-bit unsigned integer to check against the given virtual address.
*
* @post The memory range [addr, sizeof(data)) contains the given data value.
*/
bool WriteExclusive64(Common::ProcessAddress addr, u64 data, u64 expected);
/**
* Writes a 128-bit unsigned integer to the given virtual address in
* the current process' address space if and only if the address contains
* the expected value. This operation is atomic.
*
* @param addr The virtual address to write the 128-bit unsigned integer to.
* @param data The 128-bit unsigned integer to write to the given virtual address.
* @param expected The 128-bit unsigned integer to check against the given virtual address.
*
* @post The memory range [addr, sizeof(data)) contains the given data value.
*/
bool WriteExclusive128(Common::ProcessAddress addr, u128 data, u128 expected);
/**
* Reads a null-terminated string from the given virtual address.
* This function will continually read characters until either:
*
* - A null character ('\0') is reached.
* - max_length characters have been read.
*
* @note The final null-terminating character (if found) is not included
* in the returned string.
*
* @param vaddr The address to begin reading the string from.
* @param max_length The maximum length of the string to read in characters.
*
* @returns The read string.
*/
std::string ReadCString(Common::ProcessAddress vaddr, std::size_t max_length);
/**
* Reads a contiguous block of bytes from the current process' address space.
*
* @param src_addr The virtual address to begin reading from.
* @param dest_buffer The buffer to place the read bytes into.
* @param size The amount of data to read, in bytes.
*
* @note If a size of 0 is specified, then this function reads nothing and
* no attempts to access memory are made at all.
*
* @pre dest_buffer must be at least size bytes in length, otherwise a
* buffer overrun will occur.
*
* @post The range [dest_buffer, size) contains the read bytes from the
* current process' address space.
*/
2023-07-15 03:19:59 +01:00
bool ReadBlock(Common::ProcessAddress src_addr, void* dest_buffer, std::size_t size);
2020-04-08 18:34:59 +01:00
/**
* Reads a contiguous block of bytes from the current process' address space.
* This unsafe version does not trigger GPU flushing.
*
* @param src_addr The virtual address to begin reading from.
* @param dest_buffer The buffer to place the read bytes into.
* @param size The amount of data to read, in bytes.
*
* @note If a size of 0 is specified, then this function reads nothing and
* no attempts to access memory are made at all.
*
* @pre dest_buffer must be at least size bytes in length, otherwise a
* buffer overrun will occur.
*
* @post The range [dest_buffer, size) contains the read bytes from the
* current process' address space.
*/
2023-07-15 03:19:59 +01:00
bool ReadBlockUnsafe(Common::ProcessAddress src_addr, void* dest_buffer, std::size_t size);
const u8* GetSpan(const VAddr src_addr, const std::size_t size) const;
u8* GetSpan(const VAddr src_addr, const std::size_t size);
/**
* Writes a range of bytes into the current process' address space at the specified
* virtual address.
*
* @param dest_addr The destination virtual address to begin writing the data at.
* @param src_buffer The data to write into the current process' address space.
* @param size The size of the data to write, in bytes.
*
* @post The address range [dest_addr, size) in the current process' address space
* contains the data that was within src_buffer.
*
* @post If an attempt is made to write into an unmapped region of memory, the writes
* will be ignored and an error will be logged.
*
* @post If a write is performed into a region of memory that is considered cached
* rasterizer memory, will cause the currently active rasterizer to be notified
* and will mark that region as invalidated to caches that the active
* graphics backend may be maintaining over the course of execution.
*/
2023-07-15 03:19:59 +01:00
bool WriteBlock(Common::ProcessAddress dest_addr, const void* src_buffer, std::size_t size);
2020-04-08 18:34:59 +01:00
/**
* Writes a range of bytes into the current process' address space at the specified
* virtual address.
* This unsafe version does not invalidate GPU Memory.
*
* @param dest_addr The destination virtual address to begin writing the data at.
* @param src_buffer The data to write into the current process' address space.
* @param size The size of the data to write, in bytes.
*
* @post The address range [dest_addr, size) in the current process' address space
* contains the data that was within src_buffer.
*
* @post If an attempt is made to write into an unmapped region of memory, the writes
* will be ignored and an error will be logged.
*
*/
2023-07-15 03:19:59 +01:00
bool WriteBlockUnsafe(Common::ProcessAddress dest_addr, const void* src_buffer,
std::size_t size);
/**
* Copies data within a process' address space to another location within the
* same address space.
*
* @param dest_addr The destination virtual address to begin copying the data into.
* @param src_addr The source virtual address to begin copying the data from.
* @param size The size of the data to copy, in bytes.
*
* @post The range [dest_addr, size) within the process' address space contains the
* same data within the range [src_addr, size).
*/
2023-07-15 03:19:59 +01:00
bool CopyBlock(Common::ProcessAddress dest_addr, Common::ProcessAddress src_addr,
std::size_t size);
2022-07-16 23:48:45 +01:00
/**
* Zeros a range of bytes within the current process' address space at the specified
* virtual address.
*
* @param dest_addr The destination virtual address to zero the data from.
* @param size The size of the range to zero out, in bytes.
*
* @post The range [dest_addr, size) within the process' address space contains the
* value 0.
*/
2023-07-15 03:19:59 +01:00
bool ZeroBlock(Common::ProcessAddress dest_addr, std::size_t size);
2022-07-16 23:48:45 +01:00
/**
* Invalidates a range of bytes within the current process' address space at the specified
* virtual address.
*
* @param dest_addr The destination virtual address to invalidate the data from.
* @param size The size of the range to invalidate, in bytes.
*
*/
Result InvalidateDataCache(Common::ProcessAddress dest_addr, std::size_t size);
/**
* Stores a range of bytes within the current process' address space at the specified
* virtual address.
*
* @param dest_addr The destination virtual address to store the data from.
* @param size The size of the range to store, in bytes.
*
*/
Result StoreDataCache(Common::ProcessAddress dest_addr, std::size_t size);
/**
* Flushes a range of bytes within the current process' address space at the specified
* virtual address.
*
* @param dest_addr The destination virtual address to flush the data from.
* @param size The size of the range to flush, in bytes.
*
*/
Result FlushDataCache(Common::ProcessAddress dest_addr, std::size_t size);
/**
* Marks each page within the specified address range as cached or uncached.
*
* @param vaddr The virtual address indicating the start of the address range.
* @param size The size of the address range in bytes.
* @param cached Whether or not any pages within the address range should be
* marked as cached or uncached.
*/
void RasterizerMarkRegionCached(Common::ProcessAddress vaddr, u64 size, bool cached);
/**
* Marks each page within the specified address range as debug or non-debug.
* Debug addresses are not accessible from fastmem pointers.
*
* @param vaddr The virtual address indicating the start of the address range.
* @param size The size of the address range in bytes.
* @param debug Whether or not any pages within the address range should be
* marked as debug or non-debug.
*/
void MarkRegionDebug(Common::ProcessAddress vaddr, u64 size, bool debug);
void SetGPUDirtyManagers(std::span<Core::GPUDirtyMemoryManager> managers);
void InvalidateRegion(Common::ProcessAddress dest_addr, size_t size);
bool InvalidateNCE(Common::ProcessAddress vaddr, size_t size);
void FlushRegion(Common::ProcessAddress dest_addr, size_t size);
private:
Core::System& system;
struct Impl;
std::unique_ptr<Impl> impl;
};
enum GuestMemoryFlags : u32 {
Read = 1 << 0,
Write = 1 << 1,
Safe = 1 << 2,
Cached = 1 << 3,
SafeRead = Read | Safe,
SafeWrite = Write | Safe,
SafeReadWrite = SafeRead | SafeWrite,
SafeReadCachedWrite = SafeReadWrite | Cached,
UnsafeRead = Read,
UnsafeWrite = Write,
UnsafeReadWrite = UnsafeRead | UnsafeWrite,
UnsafeReadCachedWrite = UnsafeReadWrite | Cached,
};
namespace {
template <typename M, typename T, GuestMemoryFlags FLAGS>
class GuestMemory {
using iterator = T*;
using const_iterator = const T*;
using value_type = T;
using element_type = T;
using iterator_category = std::contiguous_iterator_tag;
public:
GuestMemory() = delete;
2023-08-10 01:58:47 +01:00
explicit GuestMemory(M& memory, u64 addr, std::size_t size,
Common::ScratchBuffer<T>* backup = nullptr)
2023-08-10 01:58:47 +01:00
: m_memory{memory}, m_addr{addr}, m_size{size} {
static_assert(FLAGS & GuestMemoryFlags::Read || FLAGS & GuestMemoryFlags::Write);
if constexpr (FLAGS & GuestMemoryFlags::Read) {
Read(addr, size, backup);
}
}
~GuestMemory() = default;
T* data() noexcept {
2023-08-10 01:58:47 +01:00
return m_data_span.data();
}
const T* data() const noexcept {
2023-08-10 01:58:47 +01:00
return m_data_span.data();
}
size_t size() const noexcept {
return m_size;
}
size_t size_bytes() const noexcept {
return this->size() * sizeof(T);
}
[[nodiscard]] T* begin() noexcept {
2023-08-10 01:58:47 +01:00
return this->data();
}
[[nodiscard]] const T* begin() const noexcept {
2023-08-10 01:58:47 +01:00
return this->data();
}
[[nodiscard]] T* end() noexcept {
2023-08-10 01:58:47 +01:00
return this->data() + this->size();
}
[[nodiscard]] const T* end() const noexcept {
2023-08-10 01:58:47 +01:00
return this->data() + this->size();
}
T& operator[](size_t index) noexcept {
2023-08-10 01:58:47 +01:00
return m_data_span[index];
}
const T& operator[](size_t index) const noexcept {
2023-08-10 01:58:47 +01:00
return m_data_span[index];
}
2023-08-10 01:58:47 +01:00
void SetAddressAndSize(u64 addr, std::size_t size) noexcept {
m_addr = addr;
m_size = size;
m_addr_changed = true;
}
2023-08-10 01:58:47 +01:00
std::span<T> Read(u64 addr, std::size_t size,
Common::ScratchBuffer<T>* backup = nullptr) noexcept {
2023-08-10 01:58:47 +01:00
m_addr = addr;
m_size = size;
if (m_size == 0) {
m_is_data_copy = true;
return {};
}
2023-08-10 01:58:47 +01:00
if (this->TrySetSpan()) {
if constexpr (FLAGS & GuestMemoryFlags::Safe) {
2023-08-10 01:58:47 +01:00
m_memory.FlushRegion(m_addr, this->size_bytes());
}
} else {
if (backup) {
2023-08-10 01:58:47 +01:00
backup->resize_destructive(this->size());
m_data_span = *backup;
} else {
2023-08-10 01:58:47 +01:00
m_data_copy.resize(this->size());
m_data_span = std::span(m_data_copy);
}
2023-08-10 01:58:47 +01:00
m_is_data_copy = true;
m_span_valid = true;
if constexpr (FLAGS & GuestMemoryFlags::Safe) {
2023-08-10 01:58:47 +01:00
m_memory.ReadBlock(m_addr, this->data(), this->size_bytes());
} else {
2023-08-10 01:58:47 +01:00
m_memory.ReadBlockUnsafe(m_addr, this->data(), this->size_bytes());
}
}
2023-08-10 01:58:47 +01:00
return m_data_span;
}
void Write(std::span<T> write_data) noexcept {
if constexpr (FLAGS & GuestMemoryFlags::Cached) {
2023-08-10 01:58:47 +01:00
m_memory.WriteBlockCached(m_addr, write_data.data(), this->size_bytes());
} else if constexpr (FLAGS & GuestMemoryFlags::Safe) {
2023-08-10 01:58:47 +01:00
m_memory.WriteBlock(m_addr, write_data.data(), this->size_bytes());
} else {
2023-08-10 01:58:47 +01:00
m_memory.WriteBlockUnsafe(m_addr, write_data.data(), this->size_bytes());
}
}
bool TrySetSpan() noexcept {
2023-08-10 01:58:47 +01:00
if (u8* ptr = m_memory.GetSpan(m_addr, this->size_bytes()); ptr) {
m_data_span = {reinterpret_cast<T*>(ptr), this->size()};
m_span_valid = true;
return true;
}
return false;
}
protected:
bool IsDataCopy() const noexcept {
2023-08-10 01:58:47 +01:00
return m_is_data_copy;
}
bool AddressChanged() const noexcept {
2023-08-10 01:58:47 +01:00
return m_addr_changed;
}
2023-08-10 01:58:47 +01:00
M& m_memory;
u64 m_addr{};
size_t m_size{};
std::span<T> m_data_span{};
std::vector<T> m_data_copy{};
bool m_span_valid{false};
bool m_is_data_copy{false};
bool m_addr_changed{false};
};
template <typename M, typename T, GuestMemoryFlags FLAGS>
class GuestMemoryScoped : public GuestMemory<M, T, FLAGS> {
public:
GuestMemoryScoped() = delete;
2023-08-10 01:58:47 +01:00
explicit GuestMemoryScoped(M& memory, u64 addr, std::size_t size,
Common::ScratchBuffer<T>* backup = nullptr)
2023-08-10 01:58:47 +01:00
: GuestMemory<M, T, FLAGS>(memory, addr, size, backup) {
if constexpr (!(FLAGS & GuestMemoryFlags::Read)) {
if (!this->TrySetSpan()) {
if (backup) {
2023-08-10 01:58:47 +01:00
this->m_data_span = *backup;
this->m_span_valid = true;
this->m_is_data_copy = true;
}
}
}
}
~GuestMemoryScoped() {
if constexpr (FLAGS & GuestMemoryFlags::Write) {
2023-08-10 01:58:47 +01:00
if (this->size() == 0) [[unlikely]] {
return;
}
if (this->AddressChanged() || this->IsDataCopy()) {
2023-08-10 01:58:47 +01:00
ASSERT(this->m_span_valid);
if constexpr (FLAGS & GuestMemoryFlags::Cached) {
2023-08-10 01:58:47 +01:00
this->m_memory.WriteBlockCached(this->m_addr, this->data(), this->size_bytes());
} else if constexpr (FLAGS & GuestMemoryFlags::Safe) {
2023-08-10 01:58:47 +01:00
this->m_memory.WriteBlock(this->m_addr, this->data(), this->size_bytes());
} else {
2023-08-10 01:58:47 +01:00
this->m_memory.WriteBlockUnsafe(this->m_addr, this->data(), this->size_bytes());
}
} else if constexpr (FLAGS & GuestMemoryFlags::Safe) {
2023-08-10 01:58:47 +01:00
this->m_memory.InvalidateRegion(this->m_addr, this->size_bytes());
}
}
}
};
} // namespace
template <typename T, GuestMemoryFlags FLAGS>
using CpuGuestMemory = GuestMemory<Memory, T, FLAGS>;
template <typename T, GuestMemoryFlags FLAGS>
using CpuGuestMemoryScoped = GuestMemoryScoped<Memory, T, FLAGS>;
template <typename T, GuestMemoryFlags FLAGS>
using GpuGuestMemory = GuestMemory<Tegra::MemoryManager, T, FLAGS>;
template <typename T, GuestMemoryFlags FLAGS>
using GpuGuestMemoryScoped = GuestMemoryScoped<Tegra::MemoryManager, T, FLAGS>;
} // namespace Core::Memory