2
1
Fork 0
mirror of https://github.com/yuzu-emu/yuzu.git synced 2024-07-04 23:31:19 +01:00

Videocore: Address Feedback & CLANG Format.

This commit is contained in:
Fernando Sahmkow 2021-07-04 18:28:20 +02:00
parent 0e4d4b4beb
commit 35327dbde3
2 changed files with 74 additions and 77 deletions

View file

@ -468,7 +468,7 @@ private:
const u64 current_word = state_words[word_index] & bits;
if (clear) {
state_words[word_index] &= ~bits;
state_words[word_index] &= ~bits;
}
if constexpr (type == Type::CPU) {

View file

@ -14,8 +14,8 @@
#include <unordered_map>
#include <vector>
#include <boost/icl/interval_set.hpp>
#include <boost/container/small_vector.hpp>
#include <boost/icl/interval_set.hpp>
#include "common/common_types.h"
#include "common/div_ceil.h"
@ -333,10 +333,7 @@ private:
std::vector<BufferId> cached_write_buffer_ids;
// TODO: This data structure is not optimal and it should be reworked
IntervalSet uncommitted_ranges;
std::deque<IntervalSet> committed_ranges;
std::deque<boost::container::small_vector<BufferCopy, 4>> pending_downloads;
IntervalSet uncommitted_ranges;
size_t immediate_buffer_capacity = 0;
std::unique_ptr<u8[]> immediate_buffer_alloc;
@ -564,74 +561,75 @@ bool BufferCache<P>::ShouldWaitAsyncFlushes() const noexcept {
template <class P>
void BufferCache<P>::CommitAsyncFlushesHigh() {
const IntervalSet& intervals = uncommitted_ranges;
if (intervals.empty()) {
return;
}
MICROPROFILE_SCOPE(GPU_DownloadMemory);
const IntervalSet& intervals = uncommitted_ranges;
if (intervals.empty()) {
return;
}
MICROPROFILE_SCOPE(GPU_DownloadMemory);
boost::container::small_vector<std::pair<BufferCopy, BufferId>, 1> downloads;
u64 total_size_bytes = 0;
u64 largest_copy = 0;
for (auto& interval : intervals) {
const std::size_t size = interval.upper() - interval.lower();
const VAddr cpu_addr = interval.lower();
const VAddr cpu_addr_end = interval.upper();
ForEachBufferInRange(cpu_addr, size, [&](BufferId buffer_id, Buffer& buffer) {
boost::container::small_vector<BufferCopy, 1> copies;
buffer.ForEachDownloadRange(cpu_addr, size, false, [&](u64 range_offset, u64 range_size) {
VAddr cpu_addr_base = buffer.CpuAddr() + range_offset;
VAddr cpu_addr_end2 = cpu_addr_base + range_size;
const s64 difference = s64(cpu_addr_end2 - cpu_addr_end);
cpu_addr_end2 -= u64(std::max<s64>(difference, 0));
const s64 difference2 = s64(cpu_addr - cpu_addr_base);
cpu_addr_base += u64(std::max<s64>(difference2, 0));
const u64 new_size = cpu_addr_end2 - cpu_addr_base;
const u64 new_offset = cpu_addr_base - buffer.CpuAddr();
ASSERT(!IsRegionCpuModified(cpu_addr_base, new_size));
downloads.push_back({
BufferCopy{
.src_offset = new_offset,
.dst_offset = total_size_bytes,
.size = new_size,
},
buffer_id,
});
total_size_bytes += new_size;
buffer.UnmarkRegionAsGpuModified(cpu_addr_base, new_size);
largest_copy = std::max(largest_copy, new_size);
});
});
}
if (downloads.empty()) {
return;
}
if constexpr (USE_MEMORY_MAPS) {
auto download_staging = runtime.DownloadStagingBuffer(total_size_bytes);
for (auto& [copy, buffer_id] : downloads) {
// Have in mind the staging buffer offset for the copy
copy.dst_offset += download_staging.offset;
const std::array copies{copy};
runtime.CopyBuffer(download_staging.buffer, slot_buffers[buffer_id], copies);
}
runtime.Finish();
for (const auto& [copy, buffer_id] : downloads) {
const Buffer& buffer = slot_buffers[buffer_id];
const VAddr cpu_addr = buffer.CpuAddr() + copy.src_offset;
// Undo the modified offset
const u64 dst_offset = copy.dst_offset - download_staging.offset;
const u8* read_mapped_memory = download_staging.mapped_span.data() + dst_offset;
cpu_memory.WriteBlockUnsafe(cpu_addr, read_mapped_memory, copy.size);
}
} else {
const std::span<u8> immediate_buffer = ImmediateBuffer(largest_copy);
for (const auto& [copy, buffer_id] : downloads) {
Buffer& buffer = slot_buffers[buffer_id];
buffer.ImmediateDownload(copy.src_offset, immediate_buffer.subspan(0, copy.size));
const VAddr cpu_addr = buffer.CpuAddr() + copy.src_offset;
cpu_memory.WriteBlockUnsafe(cpu_addr, immediate_buffer.data(), copy.size);
}
}
boost::container::small_vector<std::pair<BufferCopy, BufferId>, 1> downloads;
u64 total_size_bytes = 0;
u64 largest_copy = 0;
for (auto& interval : intervals) {
const std::size_t size = interval.upper() - interval.lower();
const VAddr cpu_addr = interval.lower();
const VAddr cpu_addr_end = interval.upper();
ForEachBufferInRange(cpu_addr, size, [&](BufferId buffer_id, Buffer& buffer) {
boost::container::small_vector<BufferCopy, 1> copies;
buffer.ForEachDownloadRange(
cpu_addr, size, false, [&](u64 range_offset, u64 range_size) {
VAddr cpu_addr_base = buffer.CpuAddr() + range_offset;
VAddr cpu_addr_end2 = cpu_addr_base + range_size;
const s64 difference = s64(cpu_addr_end2 - cpu_addr_end);
cpu_addr_end2 -= u64(std::max<s64>(difference, 0));
const s64 difference2 = s64(cpu_addr - cpu_addr_base);
cpu_addr_base += u64(std::max<s64>(difference2, 0));
const u64 new_size = cpu_addr_end2 - cpu_addr_base;
const u64 new_offset = cpu_addr_base - buffer.CpuAddr();
ASSERT(!IsRegionCpuModified(cpu_addr_base, new_size));
downloads.push_back({
BufferCopy{
.src_offset = new_offset,
.dst_offset = total_size_bytes,
.size = new_size,
},
buffer_id,
});
total_size_bytes += new_size;
buffer.UnmarkRegionAsGpuModified(cpu_addr_base, new_size);
largest_copy = std::max(largest_copy, new_size);
});
});
}
if (downloads.empty()) {
return;
}
if constexpr (USE_MEMORY_MAPS) {
auto download_staging = runtime.DownloadStagingBuffer(total_size_bytes);
for (auto& [copy, buffer_id] : downloads) {
// Have in mind the staging buffer offset for the copy
copy.dst_offset += download_staging.offset;
const std::array copies{copy};
runtime.CopyBuffer(download_staging.buffer, slot_buffers[buffer_id], copies);
}
runtime.Finish();
for (const auto& [copy, buffer_id] : downloads) {
const Buffer& buffer = slot_buffers[buffer_id];
const VAddr cpu_addr = buffer.CpuAddr() + copy.src_offset;
// Undo the modified offset
const u64 dst_offset = copy.dst_offset - download_staging.offset;
const u8* read_mapped_memory = download_staging.mapped_span.data() + dst_offset;
cpu_memory.WriteBlockUnsafe(cpu_addr, read_mapped_memory, copy.size);
}
} else {
const std::span<u8> immediate_buffer = ImmediateBuffer(largest_copy);
for (const auto& [copy, buffer_id] : downloads) {
Buffer& buffer = slot_buffers[buffer_id];
buffer.ImmediateDownload(copy.src_offset, immediate_buffer.subspan(0, copy.size));
const VAddr cpu_addr = buffer.CpuAddr() + copy.src_offset;
cpu_memory.WriteBlockUnsafe(cpu_addr, immediate_buffer.data(), copy.size);
}
}
}
template <class P>
@ -644,9 +642,7 @@ void BufferCache<P>::CommitAsyncFlushes() {
}
template <class P>
void BufferCache<P>::PopAsyncFlushes() {
}
void BufferCache<P>::PopAsyncFlushes() {}
template <class P>
bool BufferCache<P>::IsRegionGpuModified(VAddr addr, size_t size) {
@ -1055,7 +1051,8 @@ void BufferCache<P>::MarkWrittenBuffer(BufferId buffer_id, VAddr cpu_addr, u32 s
Buffer& buffer = slot_buffers[buffer_id];
buffer.MarkRegionAsGpuModified(cpu_addr, size);
const bool is_accuracy_high = Settings::values.gpu_accuracy.GetValue() == Settings::GPUAccuracy::High;
const bool is_accuracy_high =
Settings::values.gpu_accuracy.GetValue() == Settings::GPUAccuracy::High;
const bool is_async = Settings::values.use_asynchronous_gpu_emulation.GetValue();
if (!is_async && !is_accuracy_high) {
return;