2
1
Fork 0
mirror of https://github.com/yuzu-emu/yuzu.git synced 2024-07-04 23:31:19 +01:00

MemoryManager: initial multi paging system implementation.

This commit is contained in:
Fernando Sahmkow 2022-02-05 18:15:26 +01:00
parent 98b5e236d4
commit 4d60410dd9
6 changed files with 346 additions and 212 deletions

View file

@ -19,6 +19,9 @@ MultiLevelPageTable<BaseAddr>::MultiLevelPageTable(std::size_t address_space_bit
std::size_t page_bits_)
: address_space_bits{address_space_bits_},
first_level_bits{first_level_bits_}, page_bits{page_bits_} {
if (page_bits == 0) {
return;
}
first_level_shift = address_space_bits - first_level_bits;
first_level_chunk_size = (1ULL << (first_level_shift - page_bits)) * sizeof(BaseAddr);
alloc_size = (1ULL << (address_space_bits - page_bits)) * sizeof(BaseAddr);

View file

@ -133,7 +133,8 @@ NvResult nvhost_as_gpu::AllocAsEx(const std::vector<u8>& input, std::vector<u8>&
const u64 end_big_pages{(vm.va_range_end - vm.va_range_split) >> vm.big_page_size_bits};
vm.big_page_allocator = std::make_unique<VM::Allocator>(start_big_pages, end_big_pages);
gmmu = std::make_shared<Tegra::MemoryManager>(system, 40, VM::PAGE_SIZE_BITS);
gmmu = std::make_shared<Tegra::MemoryManager>(system, 40, vm.big_page_size_bits,
VM::PAGE_SIZE_BITS);
system.GPU().InitAddressSpace(*gmmu);
vm.initialised = true;
@ -189,6 +190,7 @@ NvResult nvhost_as_gpu::AllocateSpace(const std::vector<u8>& input, std::vector<
.size = size,
.page_size = params.page_size,
.sparse = (params.flags & MappingFlags::Sparse) != MappingFlags::None,
.big_pages = params.page_size != VM::YUZU_PAGESIZE,
};
std::memcpy(output.data(), &params, output.size());
@ -209,7 +211,7 @@ void nvhost_as_gpu::FreeMappingLocked(u64 offset) {
// Sparse mappings shouldn't be fully unmapped, just returned to their sparse state
// Only FreeSpace can unmap them fully
if (mapping->sparse_alloc)
gmmu->MapSparse(offset, mapping->size);
gmmu->MapSparse(offset, mapping->size, mapping->big_page);
else
gmmu->Unmap(offset, mapping->size);
@ -294,8 +296,9 @@ NvResult nvhost_as_gpu::Remap(const std::vector<u8>& input, std::vector<u8>& out
return NvResult::BadValue;
}
const bool use_big_pages = alloc->second.big_pages;
if (!entry.handle) {
gmmu->MapSparse(virtual_address, size);
gmmu->MapSparse(virtual_address, size, use_big_pages);
} else {
auto handle{nvmap.GetHandle(entry.handle)};
if (!handle) {
@ -306,7 +309,7 @@ NvResult nvhost_as_gpu::Remap(const std::vector<u8>& input, std::vector<u8>& out
handle->address +
(static_cast<u64>(entry.handle_offset_big_pages) << vm.big_page_size_bits))};
gmmu->Map(virtual_address, cpu_address, size);
gmmu->Map(virtual_address, cpu_address, size, use_big_pages);
}
}
@ -345,7 +348,7 @@ NvResult nvhost_as_gpu::MapBufferEx(const std::vector<u8>& input, std::vector<u8
u64 gpu_address{static_cast<u64>(params.offset + params.buffer_offset)};
VAddr cpu_address{mapping->ptr + params.buffer_offset};
gmmu->Map(gpu_address, cpu_address, params.mapping_size);
gmmu->Map(gpu_address, cpu_address, params.mapping_size, mapping->big_page);
return NvResult::Success;
} catch ([[maybe_unused]] const std::out_of_range& e) {
@ -363,6 +366,17 @@ NvResult nvhost_as_gpu::MapBufferEx(const std::vector<u8>& input, std::vector<u8
VAddr cpu_address{static_cast<VAddr>(handle->address + params.buffer_offset)};
u64 size{params.mapping_size ? params.mapping_size : handle->orig_size};
bool big_page{[&]() {
if (Common::IsAligned(handle->align, vm.big_page_size))
return true;
else if (Common::IsAligned(handle->align, VM::YUZU_PAGESIZE))
return false;
else {
UNREACHABLE();
return false;
}
}()};
if ((params.flags & MappingFlags::Fixed) != MappingFlags::None) {
auto alloc{allocation_map.upper_bound(params.offset)};
@ -372,23 +386,14 @@ NvResult nvhost_as_gpu::MapBufferEx(const std::vector<u8>& input, std::vector<u8
return NvResult::BadValue;
}
gmmu->Map(params.offset, cpu_address, size);
const bool use_big_pages = alloc->second.big_pages && big_page;
gmmu->Map(params.offset, cpu_address, size, use_big_pages);
auto mapping{std::make_shared<Mapping>(cpu_address, params.offset, size, true, false,
alloc->second.sparse)};
auto mapping{std::make_shared<Mapping>(cpu_address, params.offset, size, true,
use_big_pages, alloc->second.sparse)};
alloc->second.mappings.push_back(mapping);
mapping_map[params.offset] = mapping;
} else {
bool big_page{[&]() {
if (Common::IsAligned(handle->align, vm.big_page_size))
return true;
else if (Common::IsAligned(handle->align, VM::YUZU_PAGESIZE))
return false;
else {
UNREACHABLE();
return false;
}
}()};
auto& allocator{big_page ? *vm.big_page_allocator : *vm.small_page_allocator};
u32 page_size{big_page ? vm.big_page_size : VM::YUZU_PAGESIZE};
@ -402,7 +407,7 @@ NvResult nvhost_as_gpu::MapBufferEx(const std::vector<u8>& input, std::vector<u8
return NvResult::InsufficientMemory;
}
gmmu->Map(params.offset, cpu_address, size);
gmmu->Map(params.offset, cpu_address, Common::AlignUp(size, page_size), big_page);
auto mapping{
std::make_shared<Mapping>(cpu_address, params.offset, size, false, big_page, false)};
@ -439,7 +444,7 @@ NvResult nvhost_as_gpu::UnmapBuffer(const std::vector<u8>& input, std::vector<u8
// Sparse mappings shouldn't be fully unmapped, just returned to their sparse state
// Only FreeSpace can unmap them fully
if (mapping->sparse_alloc) {
gmmu->MapSparse(params.offset, mapping->size);
gmmu->MapSparse(params.offset, mapping->size, mapping->big_page);
} else {
gmmu->Unmap(params.offset, mapping->size);
}

View file

@ -177,6 +177,7 @@ private:
std::list<std::shared_ptr<Mapping>> mappings;
u32 page_size;
bool sparse;
bool big_pages;
};
std::map<u64, std::shared_ptr<Mapping>>

View file

@ -9,6 +9,8 @@
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/service/nvdrv/core/container.h"
#include "core/hle/service/nvdrv/core/nvmap.h"
#include "core/hle/service/nvdrv/devices/nvmap.h"
@ -136,6 +138,10 @@ NvResult nvmap::IocAlloc(const std::vector<u8>& input, std::vector<u8>& output)
LOG_CRITICAL(Service_NVDRV, "Object failed to allocate, handle={:08X}", params.handle);
return result;
}
ASSERT(system.CurrentProcess()
->PageTable()
.LockForDeviceAddressSpace(handle_description->address, handle_description->size)
.IsSuccess());
std::memcpy(output.data(), &params, sizeof(params));
return result;
}
@ -256,6 +262,10 @@ NvResult nvmap::IocFree(const std::vector<u8>& input, std::vector<u8>& output) {
}
if (auto freeInfo{file.FreeHandle(params.handle, false)}) {
ASSERT(system.CurrentProcess()
->PageTable()
.UnlockForDeviceAddressSpace(freeInfo->address, freeInfo->size)
.IsSuccess());
params.address = freeInfo->address;
params.size = static_cast<u32>(freeInfo->size);
params.flags.raw = 0;

View file

@ -7,6 +7,7 @@
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/device_memory.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_process.h"
#include "core/memory.h"
@ -14,40 +15,69 @@
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_base.h"
#pragma optimize("", off)
namespace Tegra {
std::atomic<size_t> MemoryManager::unique_identifier_generator{};
MemoryManager::MemoryManager(Core::System& system_, u64 address_space_bits_, u64 page_bits_)
: system{system_}, address_space_bits{address_space_bits_}, page_bits{page_bits_}, entries{},
page_table{address_space_bits, address_space_bits + page_bits - 38, page_bits},
MemoryManager::MemoryManager(Core::System& system_, u64 address_space_bits_, u64 big_page_bits_,
u64 page_bits_)
: system{system_}, memory{system.Memory()}, device_memory{system.DeviceMemory()},
address_space_bits{address_space_bits_}, page_bits{page_bits_}, big_page_bits{big_page_bits_},
entries{}, big_entries{}, page_table{address_space_bits, address_space_bits + page_bits - 38,
page_bits != big_page_bits ? page_bits : 0},
unique_identifier{unique_identifier_generator.fetch_add(1, std::memory_order_acq_rel)} {
address_space_size = 1ULL << address_space_bits;
allocate_start = address_space_bits > 32 ? 1ULL << 32 : 0;
page_size = 1ULL << page_bits;
page_mask = page_size - 1ULL;
const u64 page_table_bits = address_space_bits - cpu_page_bits;
big_page_size = 1ULL << big_page_bits;
big_page_mask = big_page_size - 1ULL;
const u64 page_table_bits = address_space_bits - page_bits;
const u64 big_page_table_bits = address_space_bits - big_page_bits;
const u64 page_table_size = 1ULL << page_table_bits;
const u64 big_page_table_size = 1ULL << big_page_table_bits;
page_table_mask = page_table_size - 1;
big_page_table_mask = big_page_table_size - 1;
big_entries.resize(big_page_table_size / 32, 0);
big_page_table_cpu.resize(big_page_table_size);
big_page_table_physical.resize(big_page_table_size);
entries.resize(page_table_size / 32, 0);
}
MemoryManager::~MemoryManager() = default;
template <bool is_big_page>
MemoryManager::EntryType MemoryManager::GetEntry(size_t position) const {
position = position >> page_bits;
const u64 entry_mask = entries[position / 32];
const size_t sub_index = position % 32;
return static_cast<EntryType>((entry_mask >> (2 * sub_index)) & 0x03ULL);
if constexpr (is_big_page) {
position = position >> big_page_bits;
const u64 entry_mask = big_entries[position / 32];
const size_t sub_index = position % 32;
return static_cast<EntryType>((entry_mask >> (2 * sub_index)) & 0x03ULL);
} else {
position = position >> page_bits;
const u64 entry_mask = entries[position / 32];
const size_t sub_index = position % 32;
return static_cast<EntryType>((entry_mask >> (2 * sub_index)) & 0x03ULL);
}
}
template <bool is_big_page>
void MemoryManager::SetEntry(size_t position, MemoryManager::EntryType entry) {
position = position >> page_bits;
const u64 entry_mask = entries[position / 32];
const size_t sub_index = position % 32;
entries[position / 32] =
(~(3ULL << sub_index * 2) & entry_mask) | (static_cast<u64>(entry) << sub_index * 2);
if constexpr (is_big_page) {
position = position >> big_page_bits;
const u64 entry_mask = big_entries[position / 32];
const size_t sub_index = position % 32;
big_entries[position / 32] =
(~(3ULL << sub_index * 2) & entry_mask) | (static_cast<u64>(entry) << sub_index * 2);
} else {
position = position >> page_bits;
const u64 entry_mask = entries[position / 32];
const size_t sub_index = position % 32;
entries[position / 32] =
(~(3ULL << sub_index * 2) & entry_mask) | (static_cast<u64>(entry) << sub_index * 2);
}
}
template <MemoryManager::EntryType entry_type>
@ -59,48 +89,66 @@ GPUVAddr MemoryManager::PageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr cp
}
for (u64 offset{}; offset < size; offset += page_size) {
const GPUVAddr current_gpu_addr = gpu_addr + offset;
[[maybe_unused]] const auto current_entry_type = GetEntry(current_gpu_addr);
SetEntry(current_gpu_addr, entry_type);
[[maybe_unused]] const auto current_entry_type = GetEntry<false>(current_gpu_addr);
SetEntry<false>(current_gpu_addr, entry_type);
if (current_entry_type != entry_type) {
rasterizer->ModifyGPUMemory(unique_identifier, gpu_addr, page_size);
}
if constexpr (entry_type == EntryType::Mapped) {
const VAddr current_cpu_addr = cpu_addr + offset;
const auto index = PageEntryIndex(current_gpu_addr);
const u32 sub_value = static_cast<u32>(current_cpu_addr >> 12ULL);
if (current_entry_type == entry_type && sub_value != page_table[index]) {
rasterizer->InvalidateRegion(static_cast<VAddr>(page_table[index]) << 12ULL,
page_size);
}
page_table[index] = static_cast<u32>(current_cpu_addr >> 12ULL);
const auto index = PageEntryIndex<false>(current_gpu_addr);
const u32 sub_value = static_cast<u32>(current_cpu_addr >> cpu_page_bits);
page_table[index] = sub_value;
}
remaining_size -= page_size;
}
return gpu_addr;
}
template <MemoryManager::EntryType entry_type>
GPUVAddr MemoryManager::BigPageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr cpu_addr,
size_t size) {
u64 remaining_size{size};
for (u64 offset{}; offset < size; offset += big_page_size) {
const GPUVAddr current_gpu_addr = gpu_addr + offset;
[[maybe_unused]] const auto current_entry_type = GetEntry<true>(current_gpu_addr);
SetEntry<true>(current_gpu_addr, entry_type);
if (current_entry_type != entry_type) {
rasterizer->ModifyGPUMemory(unique_identifier, gpu_addr, big_page_size);
}
if constexpr (entry_type == EntryType::Mapped) {
const VAddr current_cpu_addr = cpu_addr + offset;
const auto index = PageEntryIndex<true>(current_gpu_addr);
const u32 sub_value = static_cast<u32>(current_cpu_addr >> cpu_page_bits);
big_page_table_cpu[index] = sub_value;
const PAddr phys_address =
device_memory.GetPhysicalAddr(memory.GetPointer(current_cpu_addr));
big_page_table_physical[index] = static_cast<u32>(phys_address);
}
remaining_size -= big_page_size;
}
return gpu_addr;
}
void MemoryManager::BindRasterizer(VideoCore::RasterizerInterface* rasterizer_) {
rasterizer = rasterizer_;
}
GPUVAddr MemoryManager::Map(GPUVAddr gpu_addr, VAddr cpu_addr, std::size_t size) {
GPUVAddr MemoryManager::Map(GPUVAddr gpu_addr, VAddr cpu_addr, std::size_t size,
bool is_big_pages) {
if (is_big_pages) [[likely]] {
return BigPageTableOp<EntryType::Mapped>(gpu_addr, cpu_addr, size);
}
return PageTableOp<EntryType::Mapped>(gpu_addr, cpu_addr, size);
}
GPUVAddr MemoryManager::MapSparse(GPUVAddr gpu_addr, std::size_t size) {
GPUVAddr MemoryManager::MapSparse(GPUVAddr gpu_addr, std::size_t size, bool is_big_pages) {
if (is_big_pages) [[likely]] {
return BigPageTableOp<EntryType::Reserved>(gpu_addr, 0, size);
}
return PageTableOp<EntryType::Reserved>(gpu_addr, 0, size);
}
GPUVAddr MemoryManager::MapAllocate(VAddr cpu_addr, std::size_t size, std::size_t align) {
return Map(*FindFreeRange(size, align), cpu_addr, size);
}
GPUVAddr MemoryManager::MapAllocate32(VAddr cpu_addr, std::size_t size) {
const std::optional<GPUVAddr> gpu_addr = FindFreeRange(size, 1, true);
ASSERT(gpu_addr);
return Map(*gpu_addr, cpu_addr, size);
}
void MemoryManager::Unmap(GPUVAddr gpu_addr, std::size_t size) {
if (size == 0) {
return;
@ -115,61 +163,24 @@ void MemoryManager::Unmap(GPUVAddr gpu_addr, std::size_t size) {
rasterizer->UnmapMemory(*cpu_addr, map_size);
}
BigPageTableOp<EntryType::Free>(gpu_addr, 0, size);
PageTableOp<EntryType::Free>(gpu_addr, 0, size);
}
std::optional<GPUVAddr> MemoryManager::AllocateFixed(GPUVAddr gpu_addr, std::size_t size) {
for (u64 offset{}; offset < size; offset += page_size) {
if (GetEntry(gpu_addr + offset) != EntryType::Free) {
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) const {
if (GetEntry<true>(gpu_addr) != EntryType::Mapped) [[unlikely]] {
if (GetEntry<false>(gpu_addr) != EntryType::Mapped) {
return std::nullopt;
}
const VAddr cpu_addr_base = static_cast<VAddr>(page_table[PageEntryIndex<false>(gpu_addr)])
<< cpu_page_bits;
return cpu_addr_base + (gpu_addr & page_mask);
}
return PageTableOp<EntryType::Reserved>(gpu_addr, 0, size);
}
GPUVAddr MemoryManager::Allocate(std::size_t size, std::size_t align) {
return *AllocateFixed(*FindFreeRange(size, align), size);
}
std::optional<GPUVAddr> MemoryManager::FindFreeRange(std::size_t size, std::size_t align,
bool start_32bit_address) const {
if (!align) {
align = page_size;
} else {
align = Common::AlignUp(align, page_size);
}
u64 available_size{};
GPUVAddr gpu_addr{start_32bit_address ? 0 : allocate_start};
while (gpu_addr + available_size < address_space_size) {
if (GetEntry(gpu_addr + available_size) == EntryType::Free) {
available_size += page_size;
if (available_size >= size) {
return gpu_addr;
}
} else {
gpu_addr += available_size + page_size;
available_size = 0;
const auto remainder{gpu_addr % align};
if (remainder) {
gpu_addr = (gpu_addr - remainder) + align;
}
}
}
return std::nullopt;
}
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) const {
if (GetEntry(gpu_addr) != EntryType::Mapped) {
return std::nullopt;
}
const VAddr cpu_addr_base = static_cast<VAddr>(page_table[PageEntryIndex(gpu_addr)]) << 12ULL;
return cpu_addr_base + (gpu_addr & page_mask);
const VAddr cpu_addr_base =
static_cast<VAddr>(big_page_table_cpu[PageEntryIndex<true>(gpu_addr)]) << cpu_page_bits;
return cpu_addr_base + (gpu_addr & big_page_mask);
}
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr addr, std::size_t size) const {
@ -225,7 +236,7 @@ u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) {
return {};
}
return system.Memory().GetPointer(*address);
return memory.GetPointer(*address);
}
const u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) const {
@ -234,98 +245,161 @@ const u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) const {
return {};
}
return system.Memory().GetPointer(*address);
return memory.GetPointer(*address);
}
void MemoryManager::ReadBlockImpl(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size,
bool is_safe) const {
#pragma inline_recursion(on)
template <bool is_big_pages, typename FuncMapped, typename FuncReserved, typename FuncUnmapped>
inline void MemoryManager::MemoryOperation(GPUVAddr gpu_src_addr, std::size_t size,
FuncMapped&& func_mapped, FuncReserved&& func_reserved,
FuncUnmapped&& func_unmapped) const {
u64 used_page_size;
u64 used_page_mask;
u64 used_page_bits;
if constexpr (is_big_pages) {
used_page_size = big_page_size;
used_page_mask = big_page_mask;
used_page_bits = big_page_bits;
} else {
used_page_size = page_size;
used_page_mask = page_mask;
used_page_bits = page_bits;
}
std::size_t remaining_size{size};
std::size_t page_index{gpu_src_addr >> page_bits};
std::size_t page_offset{gpu_src_addr & page_mask};
std::size_t page_index{gpu_src_addr >> used_page_bits};
std::size_t page_offset{gpu_src_addr & used_page_mask};
GPUVAddr current_address = gpu_src_addr;
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
const auto page_addr{GpuToCpuAddress(page_index << page_bits)};
if (page_addr) {
const auto src_addr{*page_addr + page_offset};
if (is_safe) {
// Flush must happen on the rasterizer interface, such that memory is always
// synchronous when it is read (even when in asynchronous GPU mode).
// Fixes Dead Cells title menu.
rasterizer->FlushRegion(src_addr, copy_amount);
}
system.Memory().ReadBlockUnsafe(src_addr, dest_buffer, copy_amount);
} else {
std::memset(dest_buffer, 0, copy_amount);
std::min(static_cast<std::size_t>(used_page_size) - page_offset, remaining_size)};
auto entry = GetEntry<is_big_pages>(current_address);
if (entry == EntryType::Mapped) [[likely]] {
func_mapped(page_index, page_offset, copy_amount);
} else if (entry == EntryType::Reserved) {
func_reserved(page_index, page_offset, copy_amount);
} else [[unlikely]] {
func_unmapped(page_index, page_offset, copy_amount);
}
page_index++;
page_offset = 0;
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
remaining_size -= copy_amount;
current_address += copy_amount;
}
}
template <bool is_safe>
void MemoryManager::ReadBlockImpl(GPUVAddr gpu_src_addr, void* dest_buffer,
std::size_t size) const {
auto set_to_zero = [&]([[maybe_unused]] std::size_t page_index,
[[maybe_unused]] std::size_t offset, std::size_t copy_amount) {
std::memset(dest_buffer, 0, copy_amount);
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
};
auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
if constexpr (is_safe) {
rasterizer->FlushRegion(cpu_addr_base, copy_amount);
}
memory.ReadBlockUnsafe(cpu_addr_base, dest_buffer, copy_amount);
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
};
auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
if constexpr (is_safe) {
rasterizer->FlushRegion(cpu_addr_base, copy_amount);
}
memory.ReadBlockUnsafe(cpu_addr_base, dest_buffer, copy_amount);
// u8* physical = device_memory.GetPointer(big_page_table_physical[page_index] + offset);
// std::memcpy(dest_buffer, physical, copy_amount);
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
};
auto read_short_pages = [&](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
GPUVAddr base = (page_index << big_page_bits) + offset;
MemoryOperation<false>(base, copy_amount, mapped_normal, set_to_zero, set_to_zero);
};
MemoryOperation<true>(gpu_src_addr, size, mapped_big, set_to_zero, read_short_pages);
}
void MemoryManager::ReadBlock(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size) const {
ReadBlockImpl(gpu_src_addr, dest_buffer, size, true);
ReadBlockImpl<true>(gpu_src_addr, dest_buffer, size);
}
void MemoryManager::ReadBlockUnsafe(GPUVAddr gpu_src_addr, void* dest_buffer,
const std::size_t size) const {
ReadBlockImpl(gpu_src_addr, dest_buffer, size, false);
ReadBlockImpl<false>(gpu_src_addr, dest_buffer, size);
}
void MemoryManager::WriteBlockImpl(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size,
bool is_safe) {
std::size_t remaining_size{size};
std::size_t page_index{gpu_dest_addr >> page_bits};
std::size_t page_offset{gpu_dest_addr & page_mask};
while (remaining_size > 0) {
const std::size_t copy_amount{
std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
const auto page_addr{GpuToCpuAddress(page_index << page_bits)};
if (page_addr) {
const auto dest_addr{*page_addr + page_offset};
if (is_safe) {
// Invalidate must happen on the rasterizer interface, such that memory is always
// synchronous when it is written (even when in asynchronous GPU mode).
rasterizer->InvalidateRegion(dest_addr, copy_amount);
}
system.Memory().WriteBlockUnsafe(dest_addr, src_buffer, copy_amount);
}
page_index++;
page_offset = 0;
template <bool is_safe>
void MemoryManager::WriteBlockImpl(GPUVAddr gpu_dest_addr, const void* src_buffer,
std::size_t size) {
auto just_advance = [&]([[maybe_unused]] std::size_t page_index,
[[maybe_unused]] std::size_t offset, std::size_t copy_amount) {
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
remaining_size -= copy_amount;
}
};
auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
if constexpr (is_safe) {
rasterizer->InvalidateRegion(cpu_addr_base, copy_amount);
}
memory.WriteBlockUnsafe(cpu_addr_base, src_buffer, copy_amount);
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
};
auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
if constexpr (is_safe) {
rasterizer->InvalidateRegion(cpu_addr_base, copy_amount);
}
memory.WriteBlockUnsafe(cpu_addr_base, src_buffer, copy_amount);
/*u8* physical =
device_memory.GetPointer(big_page_table_physical[page_index] << cpu_page_bits) + offset;
std::memcpy(physical, src_buffer, copy_amount);*/
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
};
auto write_short_pages = [&](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
GPUVAddr base = (page_index << big_page_bits) + offset;
MemoryOperation<false>(base, copy_amount, mapped_normal, just_advance, just_advance);
};
MemoryOperation<true>(gpu_dest_addr, size, mapped_big, just_advance, write_short_pages);
}
void MemoryManager::WriteBlock(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size) {
WriteBlockImpl(gpu_dest_addr, src_buffer, size, true);
WriteBlockImpl<true>(gpu_dest_addr, src_buffer, size);
}
void MemoryManager::WriteBlockUnsafe(GPUVAddr gpu_dest_addr, const void* src_buffer,
std::size_t size) {
WriteBlockImpl(gpu_dest_addr, src_buffer, size, false);
WriteBlockImpl<false>(gpu_dest_addr, src_buffer, size);
}
void MemoryManager::FlushRegion(GPUVAddr gpu_addr, size_t size) const {
size_t remaining_size{size};
size_t page_index{gpu_addr >> page_bits};
size_t page_offset{gpu_addr & page_mask};
while (remaining_size > 0) {
const size_t num_bytes{std::min(page_size - page_offset, remaining_size)};
if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
rasterizer->FlushRegion(*page_addr + page_offset, num_bytes);
}
++page_index;
page_offset = 0;
remaining_size -= num_bytes;
}
auto do_nothing = [&]([[maybe_unused]] std::size_t page_index,
[[maybe_unused]] std::size_t offset,
[[maybe_unused]] std::size_t copy_amount) {};
auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
rasterizer->FlushRegion(cpu_addr_base, copy_amount);
};
auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
rasterizer->FlushRegion(cpu_addr_base, copy_amount);
};
auto flush_short_pages = [&](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
GPUVAddr base = (page_index << big_page_bits) + offset;
MemoryOperation<false>(base, copy_amount, mapped_normal, do_nothing, do_nothing);
};
MemoryOperation<true>(gpu_addr, size, mapped_big, do_nothing, flush_short_pages);
}
void MemoryManager::CopyBlock(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, std::size_t size) {
@ -348,7 +422,7 @@ bool MemoryManager::IsGranularRange(GPUVAddr gpu_addr, std::size_t size) const {
}
bool MemoryManager::IsContinousRange(GPUVAddr gpu_addr, std::size_t size) const {
size_t page_index{gpu_addr >> page_bits};
size_t page_index{gpu_addr >> big_page_bits};
const size_t page_last{(gpu_addr + size + page_size - 1) >> page_bits};
std::optional<VAddr> old_page_addr{};
while (page_index != page_last) {
@ -371,7 +445,7 @@ bool MemoryManager::IsFullyMappedRange(GPUVAddr gpu_addr, std::size_t size) cons
size_t page_index{gpu_addr >> page_bits};
const size_t page_last{(gpu_addr + size + page_size - 1) >> page_bits};
while (page_index < page_last) {
if (GetEntry(page_index << page_bits) == EntryType::Free) {
if (GetEntry<false>(page_index << page_bits) == EntryType::Free) {
return false;
}
++page_index;
@ -379,47 +453,63 @@ bool MemoryManager::IsFullyMappedRange(GPUVAddr gpu_addr, std::size_t size) cons
return true;
}
#pragma inline_recursion(on)
std::vector<std::pair<GPUVAddr, std::size_t>> MemoryManager::GetSubmappedRange(
GPUVAddr gpu_addr, std::size_t size) const {
std::vector<std::pair<GPUVAddr, std::size_t>> result{};
size_t page_index{gpu_addr >> page_bits};
size_t remaining_size{size};
size_t page_offset{gpu_addr & page_mask};
std::optional<std::pair<GPUVAddr, std::size_t>> last_segment{};
std::optional<VAddr> old_page_addr{};
const auto extend_size = [this, &last_segment, &page_index, &page_offset](std::size_t bytes) {
if (!last_segment) {
const GPUVAddr new_base_addr = (page_index << page_bits) + page_offset;
last_segment = {new_base_addr, bytes};
} else {
last_segment->second += bytes;
}
};
const auto split = [&last_segment, &result] {
const auto split = [&last_segment, &result]([[maybe_unused]] std::size_t page_index,
[[maybe_unused]] std::size_t offset,
[[maybe_unused]] std::size_t copy_amount) {
if (last_segment) {
result.push_back(*last_segment);
last_segment = std::nullopt;
}
};
while (remaining_size > 0) {
const size_t num_bytes{std::min(page_size - page_offset, remaining_size)};
const auto page_addr{GpuToCpuAddress(page_index << page_bits)};
if (!page_addr || *page_addr == 0) {
split();
} else if (old_page_addr) {
if (*old_page_addr + page_size != *page_addr) {
split();
const auto extend_size_big = [this, &split, &old_page_addr,
&last_segment](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
if (old_page_addr) {
if (*old_page_addr != cpu_addr_base) {
split(0, 0, 0);
}
extend_size(num_bytes);
} else {
extend_size(num_bytes);
}
++page_index;
page_offset = 0;
remaining_size -= num_bytes;
old_page_addr = page_addr;
}
split();
old_page_addr = {cpu_addr_base + copy_amount};
if (!last_segment) {
const GPUVAddr new_base_addr = (page_index << big_page_bits) + offset;
last_segment = {new_base_addr, copy_amount};
} else {
last_segment->second += copy_amount;
}
};
const auto extend_size_short = [this, &split, &old_page_addr,
&last_segment](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
if (old_page_addr) {
if (*old_page_addr != cpu_addr_base) {
split(0, 0, 0);
}
}
old_page_addr = {cpu_addr_base + copy_amount};
if (!last_segment) {
const GPUVAddr new_base_addr = (page_index << page_bits) + offset;
last_segment = {new_base_addr, copy_amount};
} else {
last_segment->second += copy_amount;
}
};
auto do_short_pages = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
GPUVAddr base = (page_index << big_page_bits) + offset;
MemoryOperation<false>(base, copy_amount, extend_size_short, split, split);
};
MemoryOperation<true>(gpu_addr, size, extend_size_big, split, do_short_pages);
split(0, 0, 0);
return result;
}

View file

@ -10,21 +10,26 @@
#include "common/common_types.h"
#include "common/multi_level_page_table.h"
#include "common/virtual_buffer.h"
namespace VideoCore {
class RasterizerInterface;
}
namespace Core {
class DeviceMemory;
namespace Memory {
class Memory;
} // namespace Memory
class System;
}
} // namespace Core
namespace Tegra {
class MemoryManager final {
public:
explicit MemoryManager(Core::System& system_, u64 address_space_bits_ = 40,
u64 page_bits_ = 16);
u64 big_page_bits_ = 16, u64 page_bits_ = 12);
~MemoryManager();
size_t GetID() const {
@ -93,12 +98,8 @@ public:
std::vector<std::pair<GPUVAddr, std::size_t>> GetSubmappedRange(GPUVAddr gpu_addr,
std::size_t size) const;
GPUVAddr Map(GPUVAddr gpu_addr, VAddr cpu_addr, std::size_t size);
GPUVAddr MapSparse(GPUVAddr gpu_addr, std::size_t size);
[[nodiscard]] GPUVAddr MapAllocate(VAddr cpu_addr, std::size_t size, std::size_t align);
[[nodiscard]] GPUVAddr MapAllocate32(VAddr cpu_addr, std::size_t size);
[[nodiscard]] std::optional<GPUVAddr> AllocateFixed(GPUVAddr gpu_addr, std::size_t size);
[[nodiscard]] GPUVAddr Allocate(std::size_t size, std::size_t align);
GPUVAddr Map(GPUVAddr gpu_addr, VAddr cpu_addr, std::size_t size, bool is_big_pages = true);
GPUVAddr MapSparse(GPUVAddr gpu_addr, std::size_t size, bool is_big_pages = true);
void Unmap(GPUVAddr gpu_addr, std::size_t size);
void FlushRegion(GPUVAddr gpu_addr, size_t size) const;
@ -107,26 +108,42 @@ private:
[[nodiscard]] std::optional<GPUVAddr> FindFreeRange(std::size_t size, std::size_t align,
bool start_32bit_address = false) const;
void ReadBlockImpl(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size,
bool is_safe) const;
void WriteBlockImpl(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size,
bool is_safe);
template <bool is_big_pages, typename FuncMapped, typename FuncReserved, typename FuncUnmapped>
inline void MemoryOperation(GPUVAddr gpu_src_addr, std::size_t size, FuncMapped&& func_mapped,
FuncReserved&& func_reserved, FuncUnmapped&& func_unmapped) const;
template <bool is_safe>
void ReadBlockImpl(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size) const;
template <bool is_safe>
void WriteBlockImpl(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size);
template <bool is_big_page>
[[nodiscard]] inline std::size_t PageEntryIndex(GPUVAddr gpu_addr) const {
return (gpu_addr >> page_bits) & page_table_mask;
if constexpr (is_big_page) {
return (gpu_addr >> big_page_bits) & big_page_table_mask;
} else {
return (gpu_addr >> page_bits) & page_table_mask;
}
}
Core::System& system;
Core::Memory::Memory& memory;
Core::DeviceMemory& device_memory;
const u64 address_space_bits;
const u64 page_bits;
u64 address_space_size;
u64 allocate_start;
u64 page_size;
u64 page_mask;
u64 page_table_mask;
static constexpr u64 cpu_page_bits{12};
const u64 big_page_bits;
u64 big_page_size;
u64 big_page_mask;
u64 big_page_table_mask;
VideoCore::RasterizerInterface* rasterizer = nullptr;
enum class EntryType : u64 {
@ -136,15 +153,23 @@ private:
};
std::vector<u64> entries;
std::vector<u64> big_entries;
template <EntryType entry_type>
GPUVAddr PageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr cpu_addr, size_t size);
EntryType GetEntry(size_t position) const;
template <EntryType entry_type>
GPUVAddr BigPageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr cpu_addr, size_t size);
void SetEntry(size_t position, EntryType entry);
template <bool is_big_page>
inline EntryType GetEntry(size_t position) const;
template <bool is_big_page>
inline void SetEntry(size_t position, EntryType entry);
Common::MultiLevelPageTable<u32> page_table;
Common::VirtualBuffer<u32> big_page_table_cpu;
Common::VirtualBuffer<u32> big_page_table_physical;
const size_t unique_identifier;