2
1
Fork 0
mirror of https://github.com/yuzu-emu/yuzu.git synced 2024-07-04 23:31:19 +01:00

completely gutted/refactored threading code to be simpler

This commit is contained in:
bunnei 2014-05-15 18:27:08 -04:00
parent a7cc430aa4
commit 940330c6e1
2 changed files with 255 additions and 683 deletions

View file

@ -10,6 +10,7 @@
#include <string> #include <string>
#include "common/common.h" #include "common/common.h"
#include "common/thread_queue_list.h"
#include "core/core.h" #include "core/core.h"
#include "core/mem_map.h" #include "core/mem_map.h"
@ -18,698 +19,309 @@
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/thread.h" #include "core/hle/kernel/thread.h"
struct ThreadQueueList { // Enums
// Number of queues (number of priority levels starting at 0.)
static const int NUM_QUEUES = 128;
// Initial number of threads a single queue can handle.
static const int INITIAL_CAPACITY = 32;
struct Queue { enum ThreadPriority {
// Next ever-been-used queue (worse priority.) THREADPRIO_HIGHEST = 0,
Queue *next; THREADPRIO_DEFAULT = 16,
// First valid item in data. THREADPRIO_LOWEST = 31,
int first;
// One after last valid item in data.
int end;
// A too-large array with room on the front and end.
UID *data;
// Size of data array.
int capacity;
};
ThreadQueueList() {
memset(queues, 0, sizeof(queues));
first = invalid();
}
~ThreadQueueList() {
for (int i = 0; i < NUM_QUEUES; ++i) {
if (queues[i].data != NULL) {
free(queues[i].data);
}
}
}
// Only for debugging, returns priority level.
int contains(const UID uid) {
for (int i = 0; i < NUM_QUEUES; ++i) {
if (queues[i].data == NULL) {
continue;
}
Queue *cur = &queues[i];
for (int j = cur->first; j < cur->end; ++j) {
if (cur->data[j] == uid) {
return i;
}
}
}
return -1;
}
inline UID pop_first() {
Queue *cur = first;
while (cur != invalid()) {
if (cur->end - cur->first > 0) {
return cur->data[cur->first++];
}
cur = cur->next;
}
_dbg_assert_msg_(KERNEL, false, "ThreadQueueList should not be empty.");
return 0;
}
inline UID pop_first_better(u32 priority) {
Queue *cur = first;
Queue *stop = &queues[priority];
while (cur < stop) {
if (cur->end - cur->first > 0) {
return cur->data[cur->first++];
}
cur = cur->next;
}
return 0;
}
inline void push_front(u32 priority, const UID thread_id) {
Queue *cur = &queues[priority];
cur->data[--cur->first] = thread_id;
if (cur->first == 0) {
rebalance(priority);
}
}
inline void push_back(u32 priority, const UID thread_id)
{
Queue *cur = &queues[priority];
cur->data[cur->end++] = thread_id;
if (cur->end == cur->capacity) {
rebalance(priority);
}
}
inline void remove(u32 priority, const UID thread_id) {
Queue *cur = &queues[priority];
_dbg_assert_msg_(KERNEL, cur->next != NULL, "ThreadQueueList::Queue should already be linked up.");
for (int i = cur->first; i < cur->end; ++i) {
if (cur->data[i] == thread_id) {
int remaining = --cur->end - i;
if (remaining > 0) {
memmove(&cur->data[i], &cur->data[i + 1], remaining * sizeof(UID));
}
return;
}
}
// Wasn't there.
}
inline void rotate(u32 priority) {
Queue *cur = &queues[priority];
_dbg_assert_msg_(KERNEL, cur->next != NULL, "ThreadQueueList::Queue should already be linked up.");
if (cur->end - cur->first > 1) {
cur->data[cur->end++] = cur->data[cur->first++];
if (cur->end == cur->capacity) {
rebalance(priority);
}
}
}
inline void clear() {
for (int i = 0; i < NUM_QUEUES; ++i) {
if (queues[i].data != NULL) {
free(queues[i].data);
}
}
memset(queues, 0, sizeof(queues));
first = invalid();
}
inline bool empty(u32 priority) const {
const Queue *cur = &queues[priority];
return cur->first == cur->end;
}
inline void prepare(u32 priority) {
Queue *cur = &queues[priority];
if (cur->next == NULL) {
link(priority, INITIAL_CAPACITY);
}
}
private:
Queue *invalid() const {
return (Queue *)-1;
}
void link(u32 priority, int size) {
_dbg_assert_msg_(KERNEL, queues[priority].data == NULL, "ThreadQueueList::Queue should only be initialized once.");
if (size <= INITIAL_CAPACITY) {
size = INITIAL_CAPACITY;
} else {
int goal = size;
size = INITIAL_CAPACITY;
while (size < goal)
size *= 2;
}
Queue *cur = &queues[priority];
cur->data = (UID*)malloc(sizeof(UID)* size);
cur->capacity = size;
cur->first = size / 2;
cur->end = size / 2;
for (int i = (int)priority - 1; i >= 0; --i) {
if (queues[i].next != NULL) {
cur->next = queues[i].next;
queues[i].next = cur;
return;
}
}
cur->next = first;
first = cur;
}
void rebalance(u32 priority) {
Queue *cur = &queues[priority];
int size = cur->end - cur->first;
if (size >= cur->capacity - 2) {
UID* new_data = (UID*)realloc(cur->data, cur->capacity * 2 * sizeof(UID));
if (new_data != NULL) {
cur->capacity *= 2;
cur->data = new_data;
}
}
int newFirst = (cur->capacity - size) / 2;
if (newFirst != cur->first) {
memmove(&cur->data[newFirst], &cur->data[cur->first], size * sizeof(UID));
cur->first = newFirst;
cur->end = newFirst + size;
}
}
// The first queue that's ever been used.
Queue* first;
// The priority level queues of thread ids.
Queue queues[NUM_QUEUES];
}; };
// Supposed to represent a real CTR struct... but not sure of the correct fields yet. enum ThreadStatus {
struct NativeThread { THREADSTATUS_RUNNING = 1,
//u32 Pointer to vtable THREADSTATUS_READY = 2,
//u32 Reference count THREADSTATUS_WAIT = 4,
//KProcess* Process the thread belongs to (virtual address) THREADSTATUS_SUSPEND = 8,
//u32 Thread id THREADSTATUS_DORMANT = 16,
//u32* ptr = *(KThread+0x8C) - 0xB0 THREADSTATUS_DEAD = 32,
//u32* End-address of the page for this thread allocated in the 0xFF4XX000 region. Thus, THREADSTATUS_WAITSUSPEND = THREADSTATUS_WAIT | THREADSTATUS_SUSPEND
// if the beginning of this mapped page is 0xFF401000, this ptr would be 0xFF402000. };
//KThread* Previous ? (virtual address)
//KThread* Next ? (virtual address)
u32_le native_size; enum WaitType {
char name[KERNELOBJECT_MAX_NAME_LENGTH + 1]; WAITTYPE_NONE,
WAITTYPE_SLEEP,
// Threading stuff WAITTYPE_SEMA,
u32_le status; WAITTYPE_EVENTFLAG,
u32_le entry_point; WAITTYPE_THREADEND,
u32_le initial_stack; WAITTYPE_VBLANK,
u32_le stack_top; WAITTYPE_MUTEX,
u32_le stack_size; WAITTYPE_SYNCH,
u32_le arg; NUM_WAITTYPES
u32_le processor_id;
s32_le initial_priority;
s32_le current_priority;
}; };
struct ThreadWaitInfo { typedef s32 Handle;
u32 wait_value;
u32 timeout_ptr;
};
class Thread : public KernelObject { class Thread : public KernelObject {
public: public:
/*const char *GetName() { return nt.name; }*/
const char *GetTypeName() { return "Thread"; }
//void GetQuickInfo(char *ptr, int size)
//{
// sprintf(ptr, "pc= %08x sp= %08x %s %s %s %s %s %s (wt=%i wid=%i wv= %08x )",
// context.pc, context.r[13], // 13 is stack pointer
// (nt.status & THREADSTATUS_RUNNING) ? "RUN" : "",
// (nt.status & THREADSTATUS_READY) ? "READY" : "",
// (nt.status & THREADSTATUS_WAIT) ? "WAIT" : "",
// (nt.status & THREADSTATUS_SUSPEND) ? "SUSPEND" : "",
// (nt.status & THREADSTATUS_DORMANT) ? "DORMANT" : "",
// (nt.status & THREADSTATUS_DEAD) ? "DEAD" : "",
// nt.waitType,
// nt.waitID,
// waitInfo.waitValue);
//}
//static u32 GetMissingErrorCode() { return SCE_KERNEL_ERROR_UNKNOWN_THID; } const char *GetName() { return name; }
const char *GetTypeName() { return "Thread"; }
static KernelIDType GetStaticIDType() { return KERNEL_ID_TYPE_THREAD; } static KernelIDType GetStaticIDType() { return KERNEL_ID_TYPE_THREAD; }
KernelIDType GetIDType() const { return KERNEL_ID_TYPE_THREAD; } KernelIDType GetIDType() const { return KERNEL_ID_TYPE_THREAD; }
bool SetupStack(u32 stack_top, int stack_size) { inline bool IsRunning() const { return (status & THREADSTATUS_RUNNING) != 0; }
current_stack.start = stack_top; inline bool IsStopped() const { return (status & THREADSTATUS_DORMANT) != 0; }
nt.initial_stack = current_stack.start; inline bool IsReady() const { return (status & THREADSTATUS_READY) != 0; }
nt.stack_size = stack_size; inline bool IsWaiting() const { return (status & THREADSTATUS_WAIT) != 0; }
return true; inline bool IsSuspended() const { return (status & THREADSTATUS_SUSPEND) != 0; }
}
//bool FillStack() {
// // Fill the stack.
// if ((nt.attr & PSP_THREAD_ATTR_NO_FILLSTACK) == 0) {
// Memory::Memset(current_stack.start, 0xFF, nt.stack_size);
// }
// context.r[MIPS_REG_SP] = current_stack.start + nt.stack_size;
// current_stack.end = context.r[MIPS_REG_SP];
// // The k0 section is 256 bytes at the top of the stack.
// context.r[MIPS_REG_SP] -= 256;
// context.r[MIPS_REG_K0] = context.r[MIPS_REG_SP];
// u32 k0 = context.r[MIPS_REG_K0];
// Memory::Memset(k0, 0, 0x100);
// Memory::Write_U32(GetUID(), k0 + 0xc0);
// Memory::Write_U32(nt.initialStack, k0 + 0xc8);
// Memory::Write_U32(0xffffffff, k0 + 0xf8);
// Memory::Write_U32(0xffffffff, k0 + 0xfc);
// // After k0 comes the arguments, which is done by sceKernelStartThread().
// Memory::Write_U32(GetUID(), nt.initialStack);
// return true;
//}
//void FreeStack() {
// if (current_stack.start != 0) {
// DEBUG_LOG(KERNEL, "Freeing thread stack %s", nt.name);
// if ((nt.attr & PSP_THREAD_ATTR_CLEAR_STACK) != 0 && nt.initialStack != 0) {
// Memory::Memset(nt.initialStack, 0, nt.stack_size);
// }
// if (nt.attr & PSP_THREAD_ATTR_KERNEL) {
// kernelMemory.Free(current_stack.start);
// }
// else {
// userMemory.Free(current_stack.start);
// }
// current_stack.start = 0;
// }
//}
//bool PushExtendedStack(u32 size) {
// u32 stack = userMemory.Alloc(size, true, (std::string("extended/") + nt.name).c_str());
// if (stack == (u32)-1)
// return false;
// pushed_stacks.push_back(current_stack);
// current_stack.start = stack;
// current_stack.end = stack + size;
// nt.initialStack = current_stack.start;
// nt.stack_size = current_stack.end - current_stack.start;
// // We still drop the thread_id at the bottom and fill it, but there's no k0.
// Memory::Memset(current_stack.start, 0xFF, nt.stack_size);
// Memory::Write_U32(GetUID(), nt.initialStack);
// return true;
//}
//bool PopExtendedStack() {
// if (pushed_stacks.size() == 0) {
// return false;
// }
// userMemory.Free(current_stack.start);
// current_stack = pushed_stacks.back();
// pushed_stacks.pop_back();
// nt.initialStack = current_stack.start;
// nt.stack_size = current_stack.end - current_stack.start;
// return true;
//}
Thread() {
current_stack.start = 0;
}
// Can't use a destructor since savestates will call that too.
//void Cleanup() {
// // Callbacks are automatically deleted when their owning thread is deleted.
// for (auto it = callbacks.begin(), end = callbacks.end(); it != end; ++it)
// g_kernel_objects.Destroy<Callback>(*it);
// if (pushed_stacks.size() != 0)
// {
// WARN_LOG(KERNEL, "Thread ended within an extended stack");
// for (size_t i = 0; i < pushed_stacks.size(); ++i)
// userMemory.Free(pushed_stacks[i].start);
// }
// FreeStack();
//}
void setReturnValue(u32 retval);
void setReturnValue(u64 retval);
void resumeFromWait();
//bool isWaitingFor(WaitType type, int id);
//int getWaitID(WaitType type);
ThreadWaitInfo getWaitInfo();
// Utils
inline bool IsRunning() const { return (nt.status & THREADSTATUS_RUNNING) != 0; }
inline bool IsStopped() const { return (nt.status & THREADSTATUS_DORMANT) != 0; }
inline bool IsReady() const { return (nt.status & THREADSTATUS_READY) != 0; }
inline bool IsWaiting() const { return (nt.status & THREADSTATUS_WAIT) != 0; }
inline bool IsSuspended() const { return (nt.status & THREADSTATUS_SUSPEND) != 0; }
NativeThread nt;
ThreadWaitInfo waitInfo;
UID moduleId;
//bool isProcessingCallbacks;
//u32 currentMipscallId;
//UID currentCallbackId;
ThreadContext context; ThreadContext context;
std::vector<UID> callbacks; u32 status;
u32 entry_point;
u32 stack_top;
u32 stack_size;
std::list<u32> pending_calls; s32 initial_priority;
s32 current_priority;
struct StackInfo { s32 processor_id;
u32 start;
u32 end;
};
// This is a stack of... stacks, since sceKernelExtendThreadStack() can recurse.
// These are stacks that aren't "active" right now, but will pop off once the func returns.
std::vector<StackInfo> pushed_stacks;
StackInfo current_stack; WaitType wait_type;
// For thread end. char name[KERNELOBJECT_MAX_NAME_LENGTH+1];
std::vector<UID> waiting_threads;
// Key is the callback id it was for, or if no callback, the thread id.
std::map<UID, u64> paused_waits;
}; };
void ThreadContext::reset() {
for (int i = 0; i < 16; i++) {
reg[i] = 0;
}
cpsr = 0;
}
// Lists all thread ids that aren't deleted/etc. // Lists all thread ids that aren't deleted/etc.
std::vector<UID> g_thread_queue; std::vector<Handle> g_thread_queue;
// Lists only ready thread ids // Lists only ready thread ids.
ThreadQueueList g_thread_ready_queue; Common::ThreadQueueList<Handle> g_thread_ready_queue;
UID g_current_thread = 0; Handle g_current_thread_handle;
Thread* g_current_thread_ptr = NULL;
const char* g_hle_current_thread_name = NULL;
/// Creates a new thread Thread* g_current_thread;
Thread* __KernelCreateThread(UID& id, UID module_id, const char* name, u32 priority,
u32 entry_point, u32 arg, u32 stack_top, u32 processor_id, int stack_size) {
Thread *t = new Thread;
id = g_kernel_objects.Create(t);
g_thread_queue.push_back(id);
g_thread_ready_queue.prepare(priority);
memset(&t->nt, 0xCD, sizeof(t->nt));
t->nt.entry_point = entry_point;
t->nt.native_size = sizeof(t->nt);
t->nt.initial_priority = t->nt.current_priority = priority;
t->nt.status = THREADSTATUS_DORMANT;
t->nt.initial_stack = t->nt.stack_top = stack_top;
t->nt.stack_size = stack_size;
t->nt.processor_id = processor_id;
strncpy(t->nt.name, name, KERNELOBJECT_MAX_NAME_LENGTH);
t->nt.name[KERNELOBJECT_MAX_NAME_LENGTH] = '\0';
t->nt.stack_size = stack_size;
t->SetupStack(stack_top, stack_size);
return t;
}
UID __KernelCreateThread(UID module_id, const char* name, u32 priority, u32 entry_point, u32 arg,
u32 stack_top, u32 processor_id, int stack_size) {
UID id;
__KernelCreateThread(id, module_id, name, priority, entry_point, arg, stack_top, processor_id,
stack_size);
HLE::EatCycles(32000);
HLE::ReSchedule("thread created");
return id;
}
/// Resets the specified thread back to initial calling state
void __KernelResetThread(Thread *t, int lowest_priority) {
t->context.reset();
t->context.pc = t->nt.entry_point;
t->context.reg[13] = t->nt.initial_stack;
// If the thread would be better than lowestPriority, reset to its initial. Yes, kinda odd...
if (t->nt.current_priority < lowest_priority) {
t->nt.current_priority = t->nt.initial_priority;
}
memset(&t->waitInfo, 0, sizeof(t->waitInfo));
}
/// Returns the current executing thread
inline Thread *__GetCurrentThread() { inline Thread *__GetCurrentThread() {
return g_current_thread_ptr; return g_current_thread;
} }
/// Sets the current executing thread inline void __SetCurrentThread(Thread *t) {
inline void __SetCurrentThread(Thread *thread, UID thread_id, const char *name) { g_current_thread = t;
g_current_thread = thread_id; g_current_thread_handle = t->GetHandle();
g_current_thread_ptr = thread;
g_hle_current_thread_name = name;
} }
// TODO: Use __KernelChangeThreadState instead? It has other affects... ////////////////////////////////////////////////////////////////////////////////////////////////////
void __KernelChangeReadyState(Thread *thread, UID thread_id, bool ready) {
// Passing the id as a parameter is just an optimization, if it's wrong it will cause havoc.
_dbg_assert_msg_(KERNEL, thread->GetUID() == thread_id, "Incorrect thread_id");
int prio = thread->nt.current_priority;
if (thread->IsReady()) {
if (!ready)
g_thread_ready_queue.remove(prio, thread_id);
} else if (ready) {
if (thread->IsRunning()) {
g_thread_ready_queue.push_front(prio, thread_id);
} else {
g_thread_ready_queue.push_back(prio, thread_id);
}
thread->nt.status = THREADSTATUS_READY;
}
}
void __KernelChangeReadyState(UID thread_id, bool ready) {
u32 error;
Thread *thread = g_kernel_objects.Get<Thread>(thread_id, error);
if (thread) {
__KernelChangeReadyState(thread, thread_id, ready);
} else {
WARN_LOG(KERNEL, "Trying to change the ready state of an unknown thread?");
}
}
/// Returns NULL if the current thread is fine.
Thread* __KernelNextThread() {
UID best_thread;
// If the current thread is running, it's a valid candidate.
Thread *cur = __GetCurrentThread();
if (cur && cur->IsRunning()) {
best_thread = g_thread_ready_queue.pop_first_better(cur->nt.current_priority);
if (best_thread != 0) {
__KernelChangeReadyState(cur, g_current_thread, true);
}
} else {
best_thread = g_thread_ready_queue.pop_first();
}
// Assume g_thread_ready_queue has not become corrupt.
if (best_thread != 0) {
return g_kernel_objects.GetFast<Thread>(best_thread);
} else {
return NULL;
}
}
/// Saves the current CPU context /// Saves the current CPU context
void __KernelSaveContext(ThreadContext *ctx) { void __KernelSaveContext(ThreadContext &ctx) {
ctx->reg[0] = Core::g_app_core->GetReg(0); ctx.cpu_registers[0] = Core::g_app_core->GetReg(0);
ctx->reg[1] = Core::g_app_core->GetReg(1); ctx.cpu_registers[1] = Core::g_app_core->GetReg(1);
ctx->reg[2] = Core::g_app_core->GetReg(2); ctx.cpu_registers[2] = Core::g_app_core->GetReg(2);
ctx->reg[3] = Core::g_app_core->GetReg(3); ctx.cpu_registers[3] = Core::g_app_core->GetReg(3);
ctx->reg[4] = Core::g_app_core->GetReg(4); ctx.cpu_registers[4] = Core::g_app_core->GetReg(4);
ctx->reg[5] = Core::g_app_core->GetReg(5); ctx.cpu_registers[5] = Core::g_app_core->GetReg(5);
ctx->reg[6] = Core::g_app_core->GetReg(6); ctx.cpu_registers[6] = Core::g_app_core->GetReg(6);
ctx->reg[7] = Core::g_app_core->GetReg(7); ctx.cpu_registers[7] = Core::g_app_core->GetReg(7);
ctx->reg[8] = Core::g_app_core->GetReg(8); ctx.cpu_registers[8] = Core::g_app_core->GetReg(8);
ctx->reg[9] = Core::g_app_core->GetReg(9); ctx.cpu_registers[9] = Core::g_app_core->GetReg(9);
ctx->reg[10] = Core::g_app_core->GetReg(10); ctx.cpu_registers[10] = Core::g_app_core->GetReg(10);
ctx->reg[11] = Core::g_app_core->GetReg(11); ctx.cpu_registers[11] = Core::g_app_core->GetReg(11);
ctx->reg[12] = Core::g_app_core->GetReg(12); ctx.cpu_registers[12] = Core::g_app_core->GetReg(12);
ctx->reg[13] = Core::g_app_core->GetReg(13); ctx.sp = Core::g_app_core->GetReg(13);
ctx->reg[14] = Core::g_app_core->GetReg(14); ctx.lr = Core::g_app_core->GetReg(14);
ctx->reg[15] = Core::g_app_core->GetReg(15); ctx.pc = Core::g_app_core->GetPC();
ctx->pc = Core::g_app_core->GetPC(); ctx.cpsr = Core::g_app_core->GetCPSR();
ctx->cpsr = Core::g_app_core->GetCPSR();
} }
/// Loads a CPU context /// Loads a CPU context
void __KernelLoadContext(ThreadContext *ctx) { void __KernelLoadContext(const ThreadContext &ctx) {
Core::g_app_core->SetReg(0, ctx->reg[0]); Core::g_app_core->SetReg(0, ctx.cpu_registers[0]);
Core::g_app_core->SetReg(1, ctx->reg[1]); Core::g_app_core->SetReg(1, ctx.cpu_registers[1]);
Core::g_app_core->SetReg(2, ctx->reg[2]); Core::g_app_core->SetReg(2, ctx.cpu_registers[2]);
Core::g_app_core->SetReg(3, ctx->reg[3]); Core::g_app_core->SetReg(3, ctx.cpu_registers[3]);
Core::g_app_core->SetReg(4, ctx->reg[4]); Core::g_app_core->SetReg(4, ctx.cpu_registers[4]);
Core::g_app_core->SetReg(5, ctx->reg[5]); Core::g_app_core->SetReg(5, ctx.cpu_registers[5]);
Core::g_app_core->SetReg(6, ctx->reg[6]); Core::g_app_core->SetReg(6, ctx.cpu_registers[6]);
Core::g_app_core->SetReg(7, ctx->reg[7]); Core::g_app_core->SetReg(7, ctx.cpu_registers[7]);
Core::g_app_core->SetReg(8, ctx->reg[8]); Core::g_app_core->SetReg(8, ctx.cpu_registers[8]);
Core::g_app_core->SetReg(9, ctx->reg[9]); Core::g_app_core->SetReg(9, ctx.cpu_registers[9]);
Core::g_app_core->SetReg(10, ctx->reg[10]); Core::g_app_core->SetReg(10, ctx.cpu_registers[10]);
Core::g_app_core->SetReg(11, ctx->reg[11]); Core::g_app_core->SetReg(11, ctx.cpu_registers[11]);
Core::g_app_core->SetReg(12, ctx->reg[12]); Core::g_app_core->SetReg(12, ctx.cpu_registers[12]);
Core::g_app_core->SetReg(13, ctx->reg[13]); Core::g_app_core->SetReg(13, ctx.sp);
Core::g_app_core->SetReg(14, ctx->reg[14]); Core::g_app_core->SetReg(14, ctx.lr);
Core::g_app_core->SetReg(15, ctx->reg[15]); //Core::g_app_core->SetReg(15, ctx.pc);
Core::g_app_core->SetPC(ctx->pc);
Core::g_app_core->SetCPSR(ctx->cpsr); Core::g_app_core->SetPC(ctx.pc);
Core::g_app_core->SetCPSR(ctx.cpsr);
} }
/// Switches thread context /// Resets a thread
void __KernelSwitchContext(Thread *target, const char *reason) { void __KernelResetThread(Thread *t, s32 lowest_priority) {
u32 old_pc = 0; memset(&t->context, 0, sizeof(ThreadContext));
UID old_uid = 0;
const char *old_name = g_hle_current_thread_name != NULL ? g_hle_current_thread_name : "(none)";
Thread *cur = __GetCurrentThread();
if (cur) { // It might just have been deleted. t->context.pc = t->entry_point;
__KernelSaveContext(&cur->context); t->context.sp = t->stack_top;
old_pc = Core::g_app_core->GetPC();
old_uid = cur->GetUID(); if (t->current_priority < lowest_priority) {
t->current_priority = t->initial_priority;
// Normally this is taken care of in __KernelNextThread().
if (cur->IsRunning())
__KernelChangeReadyState(cur, old_uid, true);
}
if (target) {
__SetCurrentThread(target, target->GetUID(), target->nt.name);
__KernelChangeReadyState(target, g_current_thread, false);
target->nt.status = (target->nt.status | THREADSTATUS_RUNNING) & ~THREADSTATUS_READY;
__KernelLoadContext(&target->context);
} else {
__SetCurrentThread(NULL, 0, NULL);
} }
t->wait_type = WAITTYPE_NONE;
} }
bool __KernelSwitchToThread(UID thread_id, const char *reason) { /// Creates a new thread
if (!reason) { Thread *__KernelCreateThread(Handle &handle, const char *name, u32 entry_point, s32 priority, s32 processor_id, u32 stack_top, int stack_size=0x4000) {
reason = "switch to thread"; static u32 _handle_count = 1;
}
if (g_current_thread == thread_id) { Thread *t = new Thread;
return false;
} handle = (_handle_count++);
u32 error;
Thread *t = g_kernel_objects.Get<Thread>(thread_id, error); g_thread_queue.push_back(handle);
if (!t) { g_thread_ready_queue.prepare(priority);
ERROR_LOG(KERNEL, "__KernelSwitchToThread: %x doesn't exist", thread_id);
HLE::ReSchedule("switch to deleted thread"); t->status = THREADSTATUS_DORMANT;
} else if (t->IsReady() || t->IsRunning()) { t->entry_point = entry_point;
Thread *current = __GetCurrentThread(); t->stack_top = stack_top;
if (current && current->IsRunning()) { t->stack_size = stack_size;
__KernelChangeReadyState(current, g_current_thread, true); t->initial_priority = t->current_priority = priority;
t->processor_id = processor_id;
t->wait_type = WAITTYPE_NONE;
strncpy(t->name, name, KERNELOBJECT_MAX_NAME_LENGTH);
t->name[KERNELOBJECT_MAX_NAME_LENGTH] = '\0';
return t;
}
/// Change a thread to "ready" state
void __KernelChangeReadyState(Thread *t, bool ready) {
Handle handle = t->GetHandle();
if (t->IsReady()) {
if (!ready) {
g_thread_ready_queue.remove(t->current_priority, handle);
} }
__KernelSwitchContext(t, reason); } else if (ready) {
return true; if (t->IsRunning()) {
} else { g_thread_ready_queue.push_front(t->current_priority, handle);
HLE::ReSchedule("switch to waiting thread");
}
return false;
}
/// Sets up the root (primary) thread of execution
UID __KernelSetupRootThread(UID module_id, int arg, int prio, int stack_size) {
UID id;
Thread *thread = __KernelCreateThread(id, module_id, "root", prio, Core::g_app_core->GetPC(),
arg, Memory::SCRATCHPAD_VADDR_END, 0xFFFFFFFE, stack_size=stack_size);
if (thread->current_stack.start == 0) {
ERROR_LOG(KERNEL, "Unable to allocate stack for root thread.");
}
__KernelResetThread(thread, 0);
Thread *prev_thread = __GetCurrentThread();
if (prev_thread && prev_thread->IsRunning())
__KernelChangeReadyState(g_current_thread, true);
__SetCurrentThread(thread, id, "root");
thread->nt.status = THREADSTATUS_RUNNING; // do not schedule
strcpy(thread->nt.name, "root");
__KernelLoadContext(&thread->context);
// NOTE(bunnei): Not sure this is really correct, ignore args for now...
//Core::g_app_core->SetReg(0, args);
//Core::g_app_core->SetReg(13, (args + 0xf) & ~0xf); // Setup SP - probably not correct
//u32 location = Core::g_app_core->GetReg(13); // SP
//Core::g_app_core->SetReg(1, location);
//if (argp)
// Memory::Memcpy(location, argp, args);
//// Let's assume same as starting a new thread, 64 bytes for safety/kernel.
//Core::g_app_core->SetReg(13, Core::g_app_core->GetReg(13) - 64);
return id;
}
int __KernelRotateThreadReadyQueue(int priority) {
Thread *cur = __GetCurrentThread();
// 0 is special, it means "my current priority."
if (priority == 0) {
priority = cur->nt.current_priority;
}
//if (priority <= 0x07 || priority > 0x77)
// return SCE_KERNEL_ERROR_ILLEGAL_PRIORITY;
if (!g_thread_ready_queue.empty(priority)) {
// In other words, yield to everyone else.
if (cur->nt.current_priority == priority) {
g_thread_ready_queue.push_back(priority, g_current_thread);
cur->nt.status = (cur->nt.status & ~THREADSTATUS_RUNNING) | THREADSTATUS_READY;
// Yield the next thread of this priority to all other threads of same priority.
} else { } else {
g_thread_ready_queue.rotate(priority); g_thread_ready_queue.push_back(t->current_priority, handle);
}
t->status = THREADSTATUS_READY;
}
}
/// Changes a threads state
void __KernelChangeThreadState(Thread *t, ThreadStatus new_status) {
if (!t || t->status == new_status) {
return;
}
__KernelChangeReadyState(t, (new_status & THREADSTATUS_READY) != 0);
t->status = new_status;
if (new_status == THREADSTATUS_WAIT) {
if (t->wait_type == WAITTYPE_NONE) {
printf("ERROR: Waittype none not allowed here\n");
} }
} }
HLE::EatCycles(250);
HLE::ReSchedule("rotatethreadreadyqueue");
return 0;
} }
/// Switches CPU context to that of the specified thread
void __KernelSwitchContext(Thread* t, const char *reason) {
Thread *cur = __GetCurrentThread();
// Save context for current thread
if (cur) {
__KernelSaveContext(cur->context);
if (cur->IsRunning()) {
__KernelChangeReadyState(cur, true);
}
}
// Load context of new thread
if (t) {
__SetCurrentThread(t);
__KernelChangeReadyState(t, false);
t->status = (t->status | THREADSTATUS_RUNNING) & ~THREADSTATUS_READY;
t->wait_type = WAITTYPE_NONE;
__KernelLoadContext(t->context);
} else {
__SetCurrentThread(NULL);
}
}
/// Gets the next thread that is ready to be run by priority
Thread *__KernelNextThread() {
Handle next;
Thread *cur = __GetCurrentThread();
if (cur && cur->IsRunning()) {
next = g_thread_ready_queue.pop_first_better(cur->current_priority);
} else {
next = g_thread_ready_queue.pop_first();
}
if (next < 0) {
return NULL;
}
return g_kernel_objects.GetFast<Thread>(next);
}
/// Calls a thread by marking it as "ready" (note: will not actually execute until current thread yields)
void __KernelCallThread(Thread *t) {
// Stop waiting
if (t->wait_type != WAITTYPE_NONE) {
t->wait_type = WAITTYPE_NONE;
}
__KernelChangeThreadState(t, THREADSTATUS_READY);
}
/// Sets up the primary application thread
Handle __KernelSetupMainThread(s32 priority, int stack_size) {
Handle handle;
// Initialize new "main" thread
Thread *t = __KernelCreateThread(handle, "main", Core::g_app_core->GetPC(), priority,
0xFFFFFFFE, Memory::SCRATCHPAD_VADDR_END, stack_size);
__KernelResetThread(t, 0);
// If running another thread already, set it to "ready" state
Thread *cur = __GetCurrentThread();
if (cur && cur->IsRunning()) {
__KernelChangeReadyState(cur, true);
}
// Run new "main" thread
__SetCurrentThread(t);
t->status = THREADSTATUS_RUNNING;
__KernelLoadContext(t->context);
return handle;
}
/// Resumes a thread from waiting by marking it as "ready"
void __KernelResumeThreadFromWait(Handle handle) {
u32 error;
Thread *t = g_kernel_objects.Get<Thread>(handle, error);
if (t) {
t->status &= ~THREADSTATUS_WAIT;
if (!(t->status & (THREADSTATUS_WAITSUSPEND | THREADSTATUS_DORMANT | THREADSTATUS_DEAD))) {
__KernelChangeReadyState(t, true);
}
}
}
/// Puts a thread in the wait state for the given type/reason
void __KernelWaitCurThread(WaitType wait_type, const char *reason) {
Thread *t = __GetCurrentThread();
t->wait_type = wait_type;
__KernelChangeThreadState(t, ThreadStatus(THREADSTATUS_WAIT | (t->status & THREADSTATUS_SUSPEND)));
}
/// Reschedules to the next available thread (call after current thread is suspended)
void __KernelReschedule(const char *reason) {
Thread *next = __KernelNextThread();
if (next > 0) {
__KernelSwitchContext(next, reason);
}
}
void __KernelThreadingInit() { void __KernelThreadingInit() {
} }

View file

@ -7,50 +7,10 @@
#include "common/common_types.h" #include "common/common_types.h"
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
enum ThreadStatus {
THREADSTATUS_RUNNING = 1,
THREADSTATUS_READY = 2,
THREADSTATUS_WAIT = 4,
THREADSTATUS_SUSPEND = 8,
THREADSTATUS_DORMANT = 16,
THREADSTATUS_DEAD = 32,
THREADSTATUS_WAITSUSPEND = THREADSTATUS_WAIT | THREADSTATUS_SUSPEND
};
struct ThreadContext {
void reset();
u32 reg[16];
u32 cpsr;
u32 pc;
};
class Thread; class Thread;
Thread* __KernelCreateThread(UID& id, UID module_id, const char* name, u32 priority, u32 entrypoint, /// Sets up the primary application thread
u32 arg, u32 stack_top, u32 processor_id, int stack_size=0x4000); Handle __KernelSetupMainThread(s32 priority, int stack_size=0x4000);
UID __KernelCreateThread(UID module_id, const char* name, u32 priority, u32 entry_point, u32 arg,
u32 stack_top, u32 processor_id, int stack_size=0x4000);
void __KernelResetThread(Thread *t, int lowest_priority);
void __KernelChangeReadyState(Thread *thread, UID thread_id, bool ready);
void __KernelChangeReadyState(UID thread_id, bool ready);
Thread* __KernelNextThread();
void __KernelSaveContext(ThreadContext *ctx);
void __KernelLoadContext(ThreadContext *ctx);
void __KernelSwitchContext(Thread *target, const char *reason);
bool __KernelSwitchToThread(UID thread_id, const char *reason);
UID __KernelSetupRootThread(UID module_id, int arg, int prio, int stack_size=0x4000);
int __KernelRotateThreadReadyQueue(int priority=0);
void __KernelThreadingInit(); void __KernelThreadingInit();
void __KernelThreadingShutdown(); void __KernelThreadingShutdown();
//const char *__KernelGetThreadName(SceUID threadID);
//
//void __KernelSaveContext(ThreadContext *ctx);
//void __KernelLoadContext(ThreadContext *ctx);
//void __KernelSwitchContext(Thread *target, const char *reason);