2
1
Fork 0
mirror of https://github.com/yuzu-emu/yuzu.git synced 2024-07-04 23:31:19 +01:00

renderer_vulkan: implement layer stack composition

This commit is contained in:
Liam 2024-01-18 11:44:13 -05:00
parent d4de04584f
commit 9bdf09bd76
22 changed files with 666 additions and 956 deletions

View file

@ -174,6 +174,9 @@ add_library(video_core STATIC
renderer_vulkan/present/fsr.h renderer_vulkan/present/fsr.h
renderer_vulkan/present/fxaa.cpp renderer_vulkan/present/fxaa.cpp
renderer_vulkan/present/fxaa.h renderer_vulkan/present/fxaa.h
renderer_vulkan/present/layer.cpp
renderer_vulkan/present/layer.h
renderer_vulkan/present/present_push_constants.h
renderer_vulkan/present/smaa.cpp renderer_vulkan/present/smaa.cpp
renderer_vulkan/present/smaa.h renderer_vulkan/present/smaa.h
renderer_vulkan/present/util.cpp renderer_vulkan/present/util.cpp

View file

@ -8,6 +8,7 @@
#include <vector> #include <vector>
#include "common/bit_field.h" #include "common/bit_field.h"
#include "common/common_funcs.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "common/scratch_buffer.h" #include "common/scratch_buffer.h"
#include "video_core/engines/engine_interface.h" #include "video_core/engines/engine_interface.h"

View file

@ -26,21 +26,11 @@
#endif #endif
#ifdef VULKAN
#define BINDING_COLOR_TEXTURE 1
#else // ^^^ Vulkan ^^^ // vvv OpenGL vvv
#define BINDING_COLOR_TEXTURE 0
#endif
layout (location = 0) in vec2 tex_coord; layout (location = 0) in vec2 tex_coord;
layout (location = 0) out vec4 frag_color; layout (location = 0) out vec4 frag_color;
layout (binding = BINDING_COLOR_TEXTURE) uniform sampler2D input_texture; layout (binding = 0) uniform sampler2D input_texture;
const bool ignore_alpha = true; const bool ignore_alpha = true;

View file

@ -3,22 +3,12 @@
#version 460 core #version 460 core
#ifdef VULKAN
#define BINDING_COLOR_TEXTURE 1
#else // ^^^ Vulkan ^^^ // vvv OpenGL vvv
#define BINDING_COLOR_TEXTURE 0
#endif
layout (location = 0) in vec2 frag_tex_coord; layout (location = 0) in vec2 frag_tex_coord;
layout (location = 0) out vec4 color; layout (location = 0) out vec4 color;
layout (binding = BINDING_COLOR_TEXTURE) uniform sampler2D color_texture; layout (binding = 0) uniform sampler2D color_texture;
vec4 cubic(float v) { vec4 cubic(float v) {
vec4 n = vec4(1.0, 2.0, 3.0, 4.0) - v; vec4 n = vec4(1.0, 2.0, 3.0, 4.0) - v;

View file

@ -7,21 +7,11 @@
#version 460 core #version 460 core
#ifdef VULKAN
#define BINDING_COLOR_TEXTURE 1
#else // ^^^ Vulkan ^^^ // vvv OpenGL vvv
#define BINDING_COLOR_TEXTURE 0
#endif
layout(location = 0) in vec2 frag_tex_coord; layout(location = 0) in vec2 frag_tex_coord;
layout(location = 0) out vec4 color; layout(location = 0) out vec4 color;
layout(binding = BINDING_COLOR_TEXTURE) uniform sampler2D color_texture; layout(binding = 0) uniform sampler2D color_texture;
const float offset[3] = float[](0.0, 1.3846153846, 3.2307692308); const float offset[3] = float[](0.0, 1.3846153846, 3.2307692308);
const float weight[3] = float[](0.2270270270, 0.3162162162, 0.0702702703); const float weight[3] = float[](0.2270270270, 0.3162162162, 0.0702702703);

View file

@ -7,7 +7,7 @@ layout (location = 0) in vec2 frag_tex_coord;
layout (location = 0) out vec4 color; layout (location = 0) out vec4 color;
layout (binding = 1) uniform sampler2D color_texture; layout (binding = 0) uniform sampler2D color_texture;
void main() { void main() {
color = texture(color_texture, frag_tex_coord); color = texture(color_texture, frag_tex_coord);

View file

@ -3,16 +3,37 @@
#version 460 core #version 460 core
layout (location = 0) in vec2 vert_position;
layout (location = 1) in vec2 vert_tex_coord;
layout (location = 0) out vec2 frag_tex_coord; layout (location = 0) out vec2 frag_tex_coord;
layout (set = 0, binding = 0) uniform MatrixBlock { struct ScreenRectVertex {
mat4 modelview_matrix; vec2 position;
vec2 tex_coord;
}; };
void main() { layout (push_constant) uniform PushConstants {
gl_Position = modelview_matrix * vec4(vert_position, 0.0, 1.0); mat4 modelview_matrix;
frag_tex_coord = vert_tex_coord; ScreenRectVertex vertices[4];
};
// Vulkan spec 15.8.1:
// Any member of a push constant block that is declared as an
// array must only be accessed with dynamically uniform indices.
ScreenRectVertex GetVertex(int index) {
switch (index) {
case 0:
default:
return vertices[0];
case 1:
return vertices[1];
case 2:
return vertices[2];
case 3:
return vertices[3];
}
}
void main() {
ScreenRectVertex vertex = GetVertex(gl_VertexIndex);
gl_Position = modelview_matrix * vec4(vertex.position, 0.0, 1.0);
frag_tex_coord = vertex.tex_coord;
} }

View file

@ -5,6 +5,7 @@
#extension GL_GOOGLE_include_directive : enable #extension GL_GOOGLE_include_directive : enable
#define VERSION 1
#define YUZU_USE_FP16 #define YUZU_USE_FP16
#include "opengl_present_scaleforce.frag" #include "opengl_present_scaleforce.frag"

View file

@ -5,4 +5,6 @@
#extension GL_GOOGLE_include_directive : enable #extension GL_GOOGLE_include_directive : enable
#define VERSION 1
#include "opengl_present_scaleforce.frag" #include "opengl_present_scaleforce.frag"

View file

@ -27,43 +27,29 @@ vk::ShaderModule SelectScaleForceShader(const Device& device) {
} // Anonymous namespace } // Anonymous namespace
std::unique_ptr<WindowAdaptPass> MakeNearestNeighbor(const Device& device, std::unique_ptr<WindowAdaptPass> MakeNearestNeighbor(const Device& device, VkFormat frame_format) {
const MemoryAllocator& memory_allocator, return std::make_unique<WindowAdaptPass>(device, frame_format,
size_t image_count, VkFormat frame_format) {
return std::make_unique<WindowAdaptPass>(device, memory_allocator, image_count, frame_format,
CreateNearestNeighborSampler(device), CreateNearestNeighborSampler(device),
BuildShader(device, VULKAN_PRESENT_FRAG_SPV)); BuildShader(device, VULKAN_PRESENT_FRAG_SPV));
} }
std::unique_ptr<WindowAdaptPass> MakeBilinear(const Device& device, std::unique_ptr<WindowAdaptPass> MakeBilinear(const Device& device, VkFormat frame_format) {
const MemoryAllocator& memory_allocator, return std::make_unique<WindowAdaptPass>(device, frame_format, CreateBilinearSampler(device),
size_t image_count, VkFormat frame_format) {
return std::make_unique<WindowAdaptPass>(device, memory_allocator, image_count, frame_format,
CreateBilinearSampler(device),
BuildShader(device, VULKAN_PRESENT_FRAG_SPV)); BuildShader(device, VULKAN_PRESENT_FRAG_SPV));
} }
std::unique_ptr<WindowAdaptPass> MakeBicubic(const Device& device, std::unique_ptr<WindowAdaptPass> MakeBicubic(const Device& device, VkFormat frame_format) {
const MemoryAllocator& memory_allocator, return std::make_unique<WindowAdaptPass>(device, frame_format, CreateBilinearSampler(device),
size_t image_count, VkFormat frame_format) {
return std::make_unique<WindowAdaptPass>(device, memory_allocator, image_count, frame_format,
CreateBilinearSampler(device),
BuildShader(device, PRESENT_BICUBIC_FRAG_SPV)); BuildShader(device, PRESENT_BICUBIC_FRAG_SPV));
} }
std::unique_ptr<WindowAdaptPass> MakeGaussian(const Device& device, std::unique_ptr<WindowAdaptPass> MakeGaussian(const Device& device, VkFormat frame_format) {
const MemoryAllocator& memory_allocator, return std::make_unique<WindowAdaptPass>(device, frame_format, CreateBilinearSampler(device),
size_t image_count, VkFormat frame_format) {
return std::make_unique<WindowAdaptPass>(device, memory_allocator, image_count, frame_format,
CreateBilinearSampler(device),
BuildShader(device, PRESENT_GAUSSIAN_FRAG_SPV)); BuildShader(device, PRESENT_GAUSSIAN_FRAG_SPV));
} }
std::unique_ptr<WindowAdaptPass> MakeScaleForce(const Device& device, std::unique_ptr<WindowAdaptPass> MakeScaleForce(const Device& device, VkFormat frame_format) {
const MemoryAllocator& memory_allocator, return std::make_unique<WindowAdaptPass>(device, frame_format, CreateBilinearSampler(device),
size_t image_count, VkFormat frame_format) {
return std::make_unique<WindowAdaptPass>(device, memory_allocator, image_count, frame_format,
CreateBilinearSampler(device),
SelectScaleForceShader(device)); SelectScaleForceShader(device));
} }

View file

@ -7,24 +7,12 @@
namespace Vulkan { namespace Vulkan {
std::unique_ptr<WindowAdaptPass> MakeNearestNeighbor(const Device& device, class MemoryAllocator;
const MemoryAllocator& memory_allocator,
size_t image_count, VkFormat frame_format);
std::unique_ptr<WindowAdaptPass> MakeBilinear(const Device& device, std::unique_ptr<WindowAdaptPass> MakeNearestNeighbor(const Device& device, VkFormat frame_format);
const MemoryAllocator& memory_allocator, std::unique_ptr<WindowAdaptPass> MakeBilinear(const Device& device, VkFormat frame_format);
size_t image_count, VkFormat frame_format); std::unique_ptr<WindowAdaptPass> MakeBicubic(const Device& device, VkFormat frame_format);
std::unique_ptr<WindowAdaptPass> MakeGaussian(const Device& device, VkFormat frame_format);
std::unique_ptr<WindowAdaptPass> MakeBicubic(const Device& device, std::unique_ptr<WindowAdaptPass> MakeScaleForce(const Device& device, VkFormat frame_format);
const MemoryAllocator& memory_allocator,
size_t image_count, VkFormat frame_format);
std::unique_ptr<WindowAdaptPass> MakeGaussian(const Device& device,
const MemoryAllocator& memory_allocator,
size_t image_count, VkFormat frame_format);
std::unique_ptr<WindowAdaptPass> MakeScaleForce(const Device& device,
const MemoryAllocator& memory_allocator,
size_t image_count, VkFormat frame_format);
} // namespace Vulkan } // namespace Vulkan

View file

@ -0,0 +1,336 @@
// SPDX-FileCopyrightText: Copyright 2024 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "video_core/renderer_vulkan/vk_rasterizer.h"
#include "common/settings.h"
#include "video_core/framebuffer_config.h"
#include "video_core/renderer_vulkan/present/fsr.h"
#include "video_core/renderer_vulkan/present/fxaa.h"
#include "video_core/renderer_vulkan/present/layer.h"
#include "video_core/renderer_vulkan/present/present_push_constants.h"
#include "video_core/renderer_vulkan/present/smaa.h"
#include "video_core/renderer_vulkan/present/util.h"
#include "video_core/renderer_vulkan/vk_blit_screen.h"
#include "video_core/textures/decoders.h"
namespace Vulkan {
namespace {
u32 GetBytesPerPixel(const Tegra::FramebufferConfig& framebuffer) {
using namespace VideoCore::Surface;
return BytesPerBlock(PixelFormatFromGPUPixelFormat(framebuffer.pixel_format));
}
std::size_t GetSizeInBytes(const Tegra::FramebufferConfig& framebuffer) {
return static_cast<std::size_t>(framebuffer.stride) *
static_cast<std::size_t>(framebuffer.height) * GetBytesPerPixel(framebuffer);
}
VkFormat GetFormat(const Tegra::FramebufferConfig& framebuffer) {
switch (framebuffer.pixel_format) {
case Service::android::PixelFormat::Rgba8888:
case Service::android::PixelFormat::Rgbx8888:
return VK_FORMAT_A8B8G8R8_UNORM_PACK32;
case Service::android::PixelFormat::Rgb565:
return VK_FORMAT_R5G6B5_UNORM_PACK16;
case Service::android::PixelFormat::Bgra8888:
return VK_FORMAT_B8G8R8A8_UNORM;
default:
UNIMPLEMENTED_MSG("Unknown framebuffer pixel format: {}",
static_cast<u32>(framebuffer.pixel_format));
return VK_FORMAT_A8B8G8R8_UNORM_PACK32;
}
}
} // Anonymous namespace
Layer::Layer(const Device& device_, MemoryAllocator& memory_allocator_, Scheduler& scheduler_,
Tegra::MaxwellDeviceMemoryManager& device_memory_, size_t image_count_,
VkExtent2D output_size, VkDescriptorSetLayout layout)
: device(device_), memory_allocator(memory_allocator_), scheduler(scheduler_),
device_memory(device_memory_), image_count(image_count_) {
CreateDescriptorPool();
CreateDescriptorSets(layout);
if (Settings::values.scaling_filter.GetValue() == Settings::ScalingFilter::Fsr) {
CreateFSR(output_size);
}
}
Layer::~Layer() {
ReleaseRawImages();
}
void Layer::ConfigureDraw(PresentPushConstants* out_push_constants,
VkDescriptorSet* out_descriptor_set, RasterizerVulkan& rasterizer,
VkSampler sampler, size_t image_index,
const Tegra::FramebufferConfig& framebuffer,
const Layout::FramebufferLayout& layout) {
const auto texture_info = rasterizer.AccelerateDisplay(
framebuffer, framebuffer.address + framebuffer.offset, framebuffer.stride);
const u32 texture_width = texture_info ? texture_info->width : framebuffer.width;
const u32 texture_height = texture_info ? texture_info->height : framebuffer.height;
const u32 scaled_width = texture_info ? texture_info->scaled_width : texture_width;
const u32 scaled_height = texture_info ? texture_info->scaled_height : texture_height;
const bool use_accelerated = texture_info.has_value();
RefreshResources(framebuffer);
SetAntiAliasPass();
// Finish any pending renderpass
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Wait(resource_ticks[image_index]);
SCOPE_EXIT({ resource_ticks[image_index] = scheduler.CurrentTick(); });
if (!use_accelerated) {
UpdateRawImage(framebuffer, image_index);
}
VkImage source_image = texture_info ? texture_info->image : *raw_images[image_index];
VkImageView source_image_view =
texture_info ? texture_info->image_view : *raw_image_views[image_index];
anti_alias->Draw(scheduler, image_index, &source_image, &source_image_view);
auto crop_rect = Tegra::NormalizeCrop(framebuffer, texture_width, texture_height);
const VkExtent2D render_extent{
.width = scaled_width,
.height = scaled_height,
};
if (fsr) {
source_image_view = fsr->Draw(scheduler, image_index, source_image, source_image_view,
render_extent, crop_rect);
crop_rect = {0, 0, 1, 1};
}
SetMatrixData(*out_push_constants, layout);
SetVertexData(*out_push_constants, layout, crop_rect);
UpdateDescriptorSet(source_image_view, sampler, image_index);
*out_descriptor_set = descriptor_sets[image_index];
}
void Layer::CreateDescriptorPool() {
descriptor_pool = CreateWrappedDescriptorPool(device, image_count, image_count);
}
void Layer::CreateDescriptorSets(VkDescriptorSetLayout layout) {
const std::vector layouts(image_count, layout);
descriptor_sets = CreateWrappedDescriptorSets(descriptor_pool, layouts);
}
void Layer::CreateStagingBuffer(const Tegra::FramebufferConfig& framebuffer) {
const VkBufferCreateInfo ci{
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.size = CalculateBufferSize(framebuffer),
.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT |
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr,
};
buffer = memory_allocator.CreateBuffer(ci, MemoryUsage::Upload);
}
void Layer::CreateRawImages(const Tegra::FramebufferConfig& framebuffer) {
const auto format = GetFormat(framebuffer);
resource_ticks.resize(image_count);
raw_images.resize(image_count);
raw_image_views.resize(image_count);
for (size_t i = 0; i < image_count; ++i) {
raw_images[i] =
CreateWrappedImage(memory_allocator, {framebuffer.width, framebuffer.height}, format);
raw_image_views[i] = CreateWrappedImageView(device, raw_images[i], format);
}
}
void Layer::CreateFSR(VkExtent2D output_size) {
fsr = std::make_unique<FSR>(device, memory_allocator, image_count, output_size);
}
void Layer::RefreshResources(const Tegra::FramebufferConfig& framebuffer) {
if (framebuffer.width == raw_width && framebuffer.height == raw_height &&
framebuffer.pixel_format == pixel_format && !raw_images.empty()) {
return;
}
raw_width = framebuffer.width;
raw_height = framebuffer.height;
pixel_format = framebuffer.pixel_format;
anti_alias.reset();
ReleaseRawImages();
CreateStagingBuffer(framebuffer);
CreateRawImages(framebuffer);
}
void Layer::SetAntiAliasPass() {
if (anti_alias && anti_alias_setting == Settings::values.anti_aliasing.GetValue()) {
return;
}
anti_alias_setting = Settings::values.anti_aliasing.GetValue();
const VkExtent2D render_area{
.width = Settings::values.resolution_info.ScaleUp(raw_width),
.height = Settings::values.resolution_info.ScaleUp(raw_height),
};
switch (anti_alias_setting) {
case Settings::AntiAliasing::Fxaa:
anti_alias = std::make_unique<FXAA>(device, memory_allocator, image_count, render_area);
break;
case Settings::AntiAliasing::Smaa:
anti_alias = std::make_unique<SMAA>(device, memory_allocator, image_count, render_area);
break;
default:
anti_alias = std::make_unique<NoAA>();
break;
}
}
void Layer::ReleaseRawImages() {
for (const u64 tick : resource_ticks) {
scheduler.Wait(tick);
}
raw_images.clear();
buffer.reset();
}
u64 Layer::CalculateBufferSize(const Tegra::FramebufferConfig& framebuffer) const {
return GetSizeInBytes(framebuffer) * image_count;
}
u64 Layer::GetRawImageOffset(const Tegra::FramebufferConfig& framebuffer,
size_t image_index) const {
return GetSizeInBytes(framebuffer) * image_index;
}
void Layer::SetMatrixData(PresentPushConstants& data,
const Layout::FramebufferLayout& layout) const {
data.modelview_matrix =
MakeOrthographicMatrix(static_cast<f32>(layout.width), static_cast<f32>(layout.height));
}
void Layer::SetVertexData(PresentPushConstants& data, const Layout::FramebufferLayout& layout,
const Common::Rectangle<f32>& crop) const {
// Map the coordinates to the screen.
const auto& screen = layout.screen;
const auto x = static_cast<f32>(screen.left);
const auto y = static_cast<f32>(screen.top);
const auto w = static_cast<f32>(screen.GetWidth());
const auto h = static_cast<f32>(screen.GetHeight());
data.vertices[0] = ScreenRectVertex(x, y, crop.left, crop.top);
data.vertices[1] = ScreenRectVertex(x + w, y, crop.right, crop.top);
data.vertices[2] = ScreenRectVertex(x, y + h, crop.left, crop.bottom);
data.vertices[3] = ScreenRectVertex(x + w, y + h, crop.right, crop.bottom);
}
void Layer::UpdateDescriptorSet(VkImageView image_view, VkSampler sampler, size_t image_index) {
const VkDescriptorImageInfo image_info{
.sampler = sampler,
.imageView = image_view,
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
};
const VkWriteDescriptorSet sampler_write{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.pNext = nullptr,
.dstSet = descriptor_sets[image_index],
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.pImageInfo = &image_info,
.pBufferInfo = nullptr,
.pTexelBufferView = nullptr,
};
device.GetLogical().UpdateDescriptorSets(std::array{sampler_write}, {});
}
void Layer::UpdateRawImage(const Tegra::FramebufferConfig& framebuffer, size_t image_index) {
const std::span<u8> mapped_span = buffer.Mapped();
const u64 image_offset = GetRawImageOffset(framebuffer, image_index);
const DAddr framebuffer_addr = framebuffer.address + framebuffer.offset;
const u8* const host_ptr = device_memory.GetPointer<u8>(framebuffer_addr);
// TODO(Rodrigo): Read this from HLE
constexpr u32 block_height_log2 = 4;
const u32 bytes_per_pixel = GetBytesPerPixel(framebuffer);
const u64 linear_size{GetSizeInBytes(framebuffer)};
const u64 tiled_size{Tegra::Texture::CalculateSize(
true, bytes_per_pixel, framebuffer.stride, framebuffer.height, 1, block_height_log2, 0)};
Tegra::Texture::UnswizzleTexture(
mapped_span.subspan(image_offset, linear_size), std::span(host_ptr, tiled_size),
bytes_per_pixel, framebuffer.width, framebuffer.height, 1, block_height_log2, 0);
const VkBufferImageCopy copy{
.bufferOffset = image_offset,
.bufferRowLength = 0,
.bufferImageHeight = 0,
.imageSubresource =
{
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.mipLevel = 0,
.baseArrayLayer = 0,
.layerCount = 1,
},
.imageOffset = {.x = 0, .y = 0, .z = 0},
.imageExtent =
{
.width = framebuffer.width,
.height = framebuffer.height,
.depth = 1,
},
};
scheduler.Record([this, copy, index = image_index](vk::CommandBuffer cmdbuf) {
const VkImage image = *raw_images[index];
const VkImageMemoryBarrier base_barrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = 0,
.dstAccessMask = 0,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = image,
.subresourceRange{
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
};
VkImageMemoryBarrier read_barrier = base_barrier;
read_barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
read_barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
read_barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
VkImageMemoryBarrier write_barrier = base_barrier;
write_barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
write_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
write_barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0,
read_barrier);
cmdbuf.CopyBufferToImage(*buffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, copy);
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
0, write_barrier);
});
}
} // namespace Vulkan

View file

@ -0,0 +1,92 @@
// SPDX-FileCopyrightText: Copyright 2024 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "common/math_util.h"
#include "video_core/host1x/gpu_device_memory_manager.h"
#include "video_core/vulkan_common/vulkan_wrapper.h"
namespace Layout {
struct FramebufferLayout;
}
namespace Tegra {
struct FramebufferConfig;
}
namespace Service::android {
enum class PixelFormat : u32;
}
namespace Settings {
enum class AntiAliasing : u32;
}
namespace Vulkan {
class AntiAliasPass;
class Device;
class FSR;
class MemoryAllocator;
struct PresentPushConstants;
class RasterizerVulkan;
class Scheduler;
class Layer final {
public:
explicit Layer(const Device& device, MemoryAllocator& memory_allocator, Scheduler& scheduler,
Tegra::MaxwellDeviceMemoryManager& device_memory, size_t image_count,
VkExtent2D output_size, VkDescriptorSetLayout layout);
~Layer();
void ConfigureDraw(PresentPushConstants* out_push_constants,
VkDescriptorSet* out_descriptor_set, RasterizerVulkan& rasterizer,
VkSampler sampler, size_t image_index,
const Tegra::FramebufferConfig& framebuffer,
const Layout::FramebufferLayout& layout);
private:
void CreateDescriptorPool();
void CreateDescriptorSets(VkDescriptorSetLayout layout);
void CreateStagingBuffer(const Tegra::FramebufferConfig& framebuffer);
void CreateRawImages(const Tegra::FramebufferConfig& framebuffer);
void CreateFSR(VkExtent2D output_size);
void RefreshResources(const Tegra::FramebufferConfig& framebuffer);
void SetAntiAliasPass();
void ReleaseRawImages();
u64 CalculateBufferSize(const Tegra::FramebufferConfig& framebuffer) const;
u64 GetRawImageOffset(const Tegra::FramebufferConfig& framebuffer, size_t image_index) const;
void SetMatrixData(PresentPushConstants& data, const Layout::FramebufferLayout& layout) const;
void SetVertexData(PresentPushConstants& data, const Layout::FramebufferLayout& layout,
const Common::Rectangle<f32>& crop) const;
void UpdateDescriptorSet(VkImageView image_view, VkSampler sampler, size_t image_index);
void UpdateRawImage(const Tegra::FramebufferConfig& framebuffer, size_t image_index);
private:
const Device& device;
MemoryAllocator& memory_allocator;
Scheduler& scheduler;
Tegra::MaxwellDeviceMemoryManager& device_memory;
const size_t image_count{};
vk::DescriptorPool descriptor_pool{};
vk::DescriptorSets descriptor_sets{};
vk::Buffer buffer{};
std::vector<vk::Image> raw_images{};
std::vector<vk::ImageView> raw_image_views{};
u32 raw_width{};
u32 raw_height{};
Service::android::PixelFormat pixel_format{};
Settings::AntiAliasing anti_alias_setting{};
std::unique_ptr<AntiAliasPass> anti_alias{};
std::unique_ptr<FSR> fsr{};
std::vector<u64> resource_ticks{};
};
} // namespace Vulkan

View file

@ -0,0 +1,34 @@
// SPDX-FileCopyrightText: Copyright 2024 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "common/common_types.h"
namespace Vulkan {
struct ScreenRectVertex {
ScreenRectVertex() = default;
explicit ScreenRectVertex(f32 x, f32 y, f32 u, f32 v) : position{{x, y}}, tex_coord{{u, v}} {}
std::array<f32, 2> position;
std::array<f32, 2> tex_coord;
};
static inline std::array<f32, 4 * 4> MakeOrthographicMatrix(f32 width, f32 height) {
// clang-format off
return { 2.f / width, 0.f, 0.f, 0.f,
0.f, 2.f / height, 0.f, 0.f,
0.f, 0.f, 1.f, 0.f,
-1.f, -1.f, 0.f, 1.f};
// clang-format on
}
struct PresentPushConstants {
std::array<f32, 4 * 4> modelview_matrix;
std::array<ScreenRectVertex, 4> vertices;
};
static_assert(sizeof(PresentPushConstants) <= 128, "Push constants are too large");
} // namespace Vulkan

View file

@ -113,16 +113,18 @@ vk::ImageView CreateWrappedImageView(const Device& device, vk::Image& image, VkF
}); });
} }
vk::RenderPass CreateWrappedRenderPass(const Device& device, VkFormat format) { vk::RenderPass CreateWrappedRenderPass(const Device& device, VkFormat format,
VkImageLayout initial_layout) {
const VkAttachmentDescription attachment{ const VkAttachmentDescription attachment{
.flags = VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT, .flags = VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT,
.format = format, .format = format,
.samples = VK_SAMPLE_COUNT_1_BIT, .samples = VK_SAMPLE_COUNT_1_BIT,
.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .loadOp = initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ? VK_ATTACHMENT_LOAD_OP_DONT_CARE
: VK_ATTACHMENT_LOAD_OP_LOAD,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE, .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE, .stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE,
.initialLayout = VK_IMAGE_LAYOUT_GENERAL, .initialLayout = initial_layout,
.finalLayout = VK_IMAGE_LAYOUT_GENERAL, .finalLayout = VK_IMAGE_LAYOUT_GENERAL,
}; };
@ -244,8 +246,7 @@ vk::DescriptorSetLayout CreateWrappedDescriptorSetLayout(
.binding = static_cast<u32>(i), .binding = static_cast<u32>(i),
.descriptorType = std::data(types)[i], .descriptorType = std::data(types)[i],
.descriptorCount = 1, .descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT | .stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT,
VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr, .pImmutableSamplers = nullptr,
}; };
} }
@ -285,7 +286,8 @@ vk::PipelineLayout CreateWrappedPipelineLayout(const Device& device,
vk::Pipeline CreateWrappedPipeline(const Device& device, vk::RenderPass& renderpass, vk::Pipeline CreateWrappedPipeline(const Device& device, vk::RenderPass& renderpass,
vk::PipelineLayout& layout, vk::PipelineLayout& layout,
std::tuple<vk::ShaderModule&, vk::ShaderModule&> shaders) { std::tuple<vk::ShaderModule&, vk::ShaderModule&> shaders,
bool enable_blending) {
const std::array<VkPipelineShaderStageCreateInfo, 2> shader_stages{{ const std::array<VkPipelineShaderStageCreateInfo, 2> shader_stages{{
{ {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
@ -363,7 +365,7 @@ vk::Pipeline CreateWrappedPipeline(const Device& device, vk::RenderPass& renderp
.alphaToOneEnable = VK_FALSE, .alphaToOneEnable = VK_FALSE,
}; };
constexpr VkPipelineColorBlendAttachmentState color_blend_attachment{ constexpr VkPipelineColorBlendAttachmentState color_blend_attachment_disabled{
.blendEnable = VK_FALSE, .blendEnable = VK_FALSE,
.srcColorBlendFactor = VK_BLEND_FACTOR_ZERO, .srcColorBlendFactor = VK_BLEND_FACTOR_ZERO,
.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO, .dstColorBlendFactor = VK_BLEND_FACTOR_ZERO,
@ -375,6 +377,18 @@ vk::Pipeline CreateWrappedPipeline(const Device& device, vk::RenderPass& renderp
VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT, VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT,
}; };
constexpr VkPipelineColorBlendAttachmentState color_blend_attachment_enabled{
.blendEnable = VK_TRUE,
.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA,
.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA,
.colorBlendOp = VK_BLEND_OP_ADD,
.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE,
.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO,
.alphaBlendOp = VK_BLEND_OP_ADD,
.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT,
};
const VkPipelineColorBlendStateCreateInfo color_blend_ci{ const VkPipelineColorBlendStateCreateInfo color_blend_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.pNext = nullptr, .pNext = nullptr,
@ -382,7 +396,8 @@ vk::Pipeline CreateWrappedPipeline(const Device& device, vk::RenderPass& renderp
.logicOpEnable = VK_FALSE, .logicOpEnable = VK_FALSE,
.logicOp = VK_LOGIC_OP_COPY, .logicOp = VK_LOGIC_OP_COPY,
.attachmentCount = 1, .attachmentCount = 1,
.pAttachments = &color_blend_attachment, .pAttachments =
enable_blending ? &color_blend_attachment_enabled : &color_blend_attachment_disabled,
.blendConstants = {0.0f, 0.0f, 0.0f, 0.0f}, .blendConstants = {0.0f, 0.0f, 0.0f, 0.0f},
}; };

View file

@ -20,7 +20,8 @@ void UploadImage(const Device& device, MemoryAllocator& allocator, Scheduler& sc
void ClearColorImage(vk::CommandBuffer& cmdbuf, VkImage image); void ClearColorImage(vk::CommandBuffer& cmdbuf, VkImage image);
vk::ImageView CreateWrappedImageView(const Device& device, vk::Image& image, VkFormat format); vk::ImageView CreateWrappedImageView(const Device& device, vk::Image& image, VkFormat format);
vk::RenderPass CreateWrappedRenderPass(const Device& device, VkFormat format); vk::RenderPass CreateWrappedRenderPass(const Device& device, VkFormat format,
VkImageLayout initial_layout = VK_IMAGE_LAYOUT_GENERAL);
vk::Framebuffer CreateWrappedFramebuffer(const Device& device, vk::RenderPass& render_pass, vk::Framebuffer CreateWrappedFramebuffer(const Device& device, vk::RenderPass& render_pass,
vk::ImageView& dest_image, VkExtent2D extent); vk::ImageView& dest_image, VkExtent2D extent);
vk::Sampler CreateWrappedSampler(const Device& device, VkFilter filter = VK_FILTER_LINEAR); vk::Sampler CreateWrappedSampler(const Device& device, VkFilter filter = VK_FILTER_LINEAR);
@ -37,7 +38,8 @@ vk::PipelineLayout CreateWrappedPipelineLayout(const Device& device,
vk::DescriptorSetLayout& layout); vk::DescriptorSetLayout& layout);
vk::Pipeline CreateWrappedPipeline(const Device& device, vk::RenderPass& renderpass, vk::Pipeline CreateWrappedPipeline(const Device& device, vk::RenderPass& renderpass,
vk::PipelineLayout& layout, vk::PipelineLayout& layout,
std::tuple<vk::ShaderModule&, vk::ShaderModule&> shaders); std::tuple<vk::ShaderModule&, vk::ShaderModule&> shaders,
bool enable_blending = false);
VkWriteDescriptorSet CreateWriteDescriptorSet(std::vector<VkDescriptorImageInfo>& images, VkWriteDescriptorSet CreateWriteDescriptorSet(std::vector<VkDescriptorImageInfo>& images,
VkSampler sampler, VkImageView view, VkSampler sampler, VkImageView view,
VkDescriptorSet set, u32 binding); VkDescriptorSet set, u32 binding);

View file

@ -1,10 +1,11 @@
// SPDX-FileCopyrightText: Copyright 2024 yuzu Emulator Project // SPDX-FileCopyrightText: Copyright 2024 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later // SPDX-License-Identifier: GPL-2.0-or-later
#include <cstring>
#include "core/frontend/framebuffer_layout.h" #include "core/frontend/framebuffer_layout.h"
#include "video_core/framebuffer_config.h"
#include "video_core/host_shaders/vulkan_present_vert_spv.h" #include "video_core/host_shaders/vulkan_present_vert_spv.h"
#include "video_core/renderer_vulkan/present/layer.h"
#include "video_core/renderer_vulkan/present/present_push_constants.h"
#include "video_core/renderer_vulkan/present/util.h" #include "video_core/renderer_vulkan/present/util.h"
#include "video_core/renderer_vulkan/present/window_adapt_pass.h" #include "video_core/renderer_vulkan/present/window_adapt_pass.h"
#include "video_core/renderer_vulkan/vk_present_manager.h" #include "video_core/renderer_vulkan/vk_present_manager.h"
@ -14,501 +15,123 @@
namespace Vulkan { namespace Vulkan {
namespace { WindowAdaptPass::WindowAdaptPass(const Device& device_, VkFormat frame_format,
vk::Sampler&& sampler_, vk::ShaderModule&& fragment_shader_)
struct ScreenRectVertex {
ScreenRectVertex() = default;
explicit ScreenRectVertex(f32 x, f32 y, f32 u, f32 v) : position{{x, y}}, tex_coord{{u, v}} {}
std::array<f32, 2> position;
std::array<f32, 2> tex_coord;
static VkVertexInputBindingDescription GetDescription() {
return {
.binding = 0,
.stride = sizeof(ScreenRectVertex),
.inputRate = VK_VERTEX_INPUT_RATE_VERTEX,
};
}
static std::array<VkVertexInputAttributeDescription, 2> GetAttributes() {
return {{
{
.location = 0,
.binding = 0,
.format = VK_FORMAT_R32G32_SFLOAT,
.offset = offsetof(ScreenRectVertex, position),
},
{
.location = 1,
.binding = 0,
.format = VK_FORMAT_R32G32_SFLOAT,
.offset = offsetof(ScreenRectVertex, tex_coord),
},
}};
}
};
std::array<f32, 4 * 4> MakeOrthographicMatrix(f32 width, f32 height) {
// clang-format off
return { 2.f / width, 0.f, 0.f, 0.f,
0.f, 2.f / height, 0.f, 0.f,
0.f, 0.f, 1.f, 0.f,
-1.f, -1.f, 0.f, 1.f};
// clang-format on
}
} // Anonymous namespace
struct WindowAdaptPass::BufferData {
struct {
std::array<f32, 4 * 4> modelview_matrix;
} uniform;
std::array<ScreenRectVertex, 4> vertices;
};
WindowAdaptPass::WindowAdaptPass(const Device& device_, const MemoryAllocator& memory_allocator,
size_t num_images, VkFormat frame_format, vk::Sampler&& sampler_,
vk::ShaderModule&& fragment_shader_)
: device(device_), sampler(std::move(sampler_)), fragment_shader(std::move(fragment_shader_)) { : device(device_), sampler(std::move(sampler_)), fragment_shader(std::move(fragment_shader_)) {
CreateDescriptorPool(num_images);
CreateDescriptorSetLayout(); CreateDescriptorSetLayout();
CreateDescriptorSets(num_images);
CreatePipelineLayout(); CreatePipelineLayout();
CreateVertexShader(); CreateVertexShader();
CreateRenderPass(frame_format); CreateRenderPass(frame_format);
CreatePipeline(); CreatePipeline();
CreateBuffer(memory_allocator);
} }
WindowAdaptPass::~WindowAdaptPass() = default; WindowAdaptPass::~WindowAdaptPass() = default;
void WindowAdaptPass::Draw(Scheduler& scheduler, size_t image_index, VkImageView src_image_view, void WindowAdaptPass::Draw(RasterizerVulkan& rasterizer, Scheduler& scheduler, size_t image_index,
VkExtent2D src_image_extent, const Common::Rectangle<f32>& crop_rect, std::list<Layer>& layers,
std::span<const Tegra::FramebufferConfig> configs,
const Layout::FramebufferLayout& layout, Frame* dst) { const Layout::FramebufferLayout& layout, Frame* dst) {
ConfigureLayout(image_index, src_image_view, layout, crop_rect);
const VkFramebuffer host_framebuffer{*dst->framebuffer}; const VkFramebuffer host_framebuffer{*dst->framebuffer};
const VkRenderPass renderpass{*render_pass}; const VkRenderPass renderpass{*render_pass};
const VkPipeline graphics_pipeline{*pipeline}; const VkPipeline graphics_pipeline{*pipeline};
const VkPipelineLayout graphics_pipeline_layout{*pipeline_layout}; const VkPipelineLayout graphics_pipeline_layout{*pipeline_layout};
const VkDescriptorSet descriptor_set{descriptor_sets[image_index]};
const VkBuffer vertex_buffer{*buffer};
const VkExtent2D render_area{ const VkExtent2D render_area{
.width = dst->width, .width = dst->width,
.height = dst->height, .height = dst->height,
}; };
const size_t layer_count = configs.size();
std::vector<PresentPushConstants> push_constants(layer_count);
std::vector<VkDescriptorSet> descriptor_sets(layer_count);
auto layer_it = layers.begin();
for (size_t i = 0; i < layer_count; i++) {
layer_it->ConfigureDraw(&push_constants[i], &descriptor_sets[i], rasterizer, *sampler,
image_index, configs[i], layout);
layer_it++;
}
scheduler.Record([=](vk::CommandBuffer cmdbuf) { scheduler.Record([=](vk::CommandBuffer cmdbuf) {
const f32 bg_red = Settings::values.bg_red.GetValue() / 255.0f; const f32 bg_red = Settings::values.bg_red.GetValue() / 255.0f;
const f32 bg_green = Settings::values.bg_green.GetValue() / 255.0f; const f32 bg_green = Settings::values.bg_green.GetValue() / 255.0f;
const f32 bg_blue = Settings::values.bg_blue.GetValue() / 255.0f; const f32 bg_blue = Settings::values.bg_blue.GetValue() / 255.0f;
const VkClearValue clear_color{ const VkClearAttachment clear_attachment{
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.colorAttachment = 0,
.clearValue =
{
.color = {.float32 = {bg_red, bg_green, bg_blue, 1.0f}}, .color = {.float32 = {bg_red, bg_green, bg_blue, 1.0f}},
},
}; };
const VkRenderPassBeginInfo renderpass_bi{ const VkClearRect clear_rect{
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .rect =
.pNext = nullptr,
.renderPass = renderpass,
.framebuffer = host_framebuffer,
.renderArea =
{ {
.offset = {0, 0}, .offset = {0, 0},
.extent = render_area, .extent = render_area,
}, },
.clearValueCount = 1, .baseArrayLayer = 0,
.pClearValues = &clear_color, .layerCount = 1,
}; };
const VkViewport viewport{
.x = 0.0f, BeginRenderPass(cmdbuf, renderpass, host_framebuffer, render_area);
.y = 0.0f, cmdbuf.ClearAttachments({clear_attachment}, {clear_rect});
.width = static_cast<float>(render_area.width),
.height = static_cast<float>(render_area.height),
.minDepth = 0.0f,
.maxDepth = 1.0f,
};
const VkRect2D scissor{
.offset = {0, 0},
.extent = render_area,
};
cmdbuf.BeginRenderPass(renderpass_bi, VK_SUBPASS_CONTENTS_INLINE);
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, graphics_pipeline); cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, graphics_pipeline);
cmdbuf.SetViewport(0, viewport); for (size_t i = 0; i < layer_count; i++) {
cmdbuf.SetScissor(0, scissor); cmdbuf.PushConstants(graphics_pipeline_layout, VK_SHADER_STAGE_VERTEX_BIT,
cmdbuf.BindVertexBuffer(0, vertex_buffer, offsetof(BufferData, vertices)); push_constants[i]);
cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_GRAPHICS, graphics_pipeline_layout, 0, cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_GRAPHICS, graphics_pipeline_layout, 0,
descriptor_set, {}); descriptor_sets[i], {});
cmdbuf.Draw(4, 1, 0, 0); cmdbuf.Draw(4, 1, 0, 0);
}
cmdbuf.EndRenderPass(); cmdbuf.EndRenderPass();
}); });
} }
VkDescriptorSetLayout WindowAdaptPass::GetDescriptorSetLayout() {
return *descriptor_set_layout;
}
VkRenderPass WindowAdaptPass::GetRenderPass() { VkRenderPass WindowAdaptPass::GetRenderPass() {
return *render_pass; return *render_pass;
} }
void WindowAdaptPass::CreateDescriptorPool(size_t num_images) {
const std::array<VkDescriptorPoolSize, 2> pool_sizes{{
{
.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
.descriptorCount = static_cast<u32>(num_images),
},
{
.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = static_cast<u32>(num_images),
},
}};
const VkDescriptorPoolCreateInfo ci{
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.maxSets = static_cast<u32>(num_images),
.poolSizeCount = static_cast<u32>(pool_sizes.size()),
.pPoolSizes = pool_sizes.data(),
};
descriptor_pool = device.GetLogical().CreateDescriptorPool(ci);
}
void WindowAdaptPass::CreateDescriptorSetLayout() { void WindowAdaptPass::CreateDescriptorSetLayout() {
const std::array<VkDescriptorSetLayoutBinding, 2> layout_bindings{{ descriptor_set_layout =
{ CreateWrappedDescriptorSetLayout(device, {VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER});
.binding = 0, }
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
.descriptorCount = 1, void WindowAdaptPass::CreatePipelineLayout() {
const VkPushConstantRange range{
.stageFlags = VK_SHADER_STAGE_VERTEX_BIT, .stageFlags = VK_SHADER_STAGE_VERTEX_BIT,
.pImmutableSamplers = nullptr, .offset = 0,
}, .size = sizeof(PresentPushConstants),
{ };
.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
.pImmutableSamplers = nullptr,
},
}};
const VkDescriptorSetLayoutCreateInfo ci{ pipeline_layout = device.GetLogical().CreatePipelineLayout(VkPipelineLayoutCreateInfo{
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.pNext = nullptr, .pNext = nullptr,
.flags = 0, .flags = 0,
.bindingCount = static_cast<u32>(layout_bindings.size()), .setLayoutCount = 1,
.pBindings = layout_bindings.data(), .pSetLayouts = descriptor_set_layout.address(),
}; .pushConstantRangeCount = 1,
.pPushConstantRanges = &range,
descriptor_set_layout = device.GetLogical().CreateDescriptorSetLayout(ci); });
}
void WindowAdaptPass::CreateDescriptorSets(size_t num_images) {
const std::vector layouts(num_images, *descriptor_set_layout);
descriptor_sets = CreateWrappedDescriptorSets(descriptor_pool, layouts);
}
void WindowAdaptPass::CreateBuffer(const MemoryAllocator& memory_allocator) {
const VkBufferCreateInfo ci{
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.size = sizeof(BufferData),
.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT |
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr,
};
buffer = memory_allocator.CreateBuffer(ci, MemoryUsage::Upload);
}
void WindowAdaptPass::CreateRenderPass(VkFormat frame_format) {
const VkAttachmentDescription color_attachment{
.flags = 0,
.format = frame_format,
.samples = VK_SAMPLE_COUNT_1_BIT,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.finalLayout = VK_IMAGE_LAYOUT_GENERAL,
};
const VkAttachmentReference color_attachment_ref{
.attachment = 0,
.layout = VK_IMAGE_LAYOUT_GENERAL,
};
const VkSubpassDescription subpass_description{
.flags = 0,
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.inputAttachmentCount = 0,
.pInputAttachments = nullptr,
.colorAttachmentCount = 1,
.pColorAttachments = &color_attachment_ref,
.pResolveAttachments = nullptr,
.pDepthStencilAttachment = nullptr,
.preserveAttachmentCount = 0,
.pPreserveAttachments = nullptr,
};
const VkSubpassDependency dependency{
.srcSubpass = VK_SUBPASS_EXTERNAL,
.dstSubpass = 0,
.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
.srcAccessMask = 0,
.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
.dependencyFlags = 0,
};
const VkRenderPassCreateInfo renderpass_ci{
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.attachmentCount = 1,
.pAttachments = &color_attachment,
.subpassCount = 1,
.pSubpasses = &subpass_description,
.dependencyCount = 1,
.pDependencies = &dependency,
};
render_pass = device.GetLogical().CreateRenderPass(renderpass_ci);
} }
void WindowAdaptPass::CreateVertexShader() { void WindowAdaptPass::CreateVertexShader() {
vertex_shader = BuildShader(device, VULKAN_PRESENT_VERT_SPV); vertex_shader = BuildShader(device, VULKAN_PRESENT_VERT_SPV);
} }
void WindowAdaptPass::CreatePipelineLayout() { void WindowAdaptPass::CreateRenderPass(VkFormat frame_format) {
const VkPipelineLayoutCreateInfo ci{ render_pass = CreateWrappedRenderPass(device, frame_format, VK_IMAGE_LAYOUT_UNDEFINED);
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.setLayoutCount = 1,
.pSetLayouts = descriptor_set_layout.address(),
.pushConstantRangeCount = 0,
.pPushConstantRanges = nullptr,
};
pipeline_layout = device.GetLogical().CreatePipelineLayout(ci);
}
void WindowAdaptPass::SetUniformData(BufferData& data,
const Layout::FramebufferLayout& layout) const {
data.uniform.modelview_matrix =
MakeOrthographicMatrix(static_cast<f32>(layout.width), static_cast<f32>(layout.height));
}
void WindowAdaptPass::SetVertexData(BufferData& data, const Layout::FramebufferLayout& layout,
const Common::Rectangle<f32>& crop) const {
// Map the coordinates to the screen.
const auto& screen = layout.screen;
const auto x = static_cast<f32>(screen.left);
const auto y = static_cast<f32>(screen.top);
const auto w = static_cast<f32>(screen.GetWidth());
const auto h = static_cast<f32>(screen.GetHeight());
data.vertices[0] = ScreenRectVertex(x, y, crop.left, crop.top);
data.vertices[1] = ScreenRectVertex(x + w, y, crop.right, crop.top);
data.vertices[2] = ScreenRectVertex(x, y + h, crop.left, crop.bottom);
data.vertices[3] = ScreenRectVertex(x + w, y + h, crop.right, crop.bottom);
}
void WindowAdaptPass::UpdateDescriptorSet(size_t image_index, VkImageView image_view) {
const VkDescriptorBufferInfo buffer_info{
.buffer = *buffer,
.offset = offsetof(BufferData, uniform),
.range = sizeof(BufferData::uniform),
};
const VkWriteDescriptorSet ubo_write{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.pNext = nullptr,
.dstSet = descriptor_sets[image_index],
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
.pImageInfo = nullptr,
.pBufferInfo = &buffer_info,
.pTexelBufferView = nullptr,
};
const VkDescriptorImageInfo image_info{
.sampler = *sampler,
.imageView = image_view,
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
};
const VkWriteDescriptorSet sampler_write{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.pNext = nullptr,
.dstSet = descriptor_sets[image_index],
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.pImageInfo = &image_info,
.pBufferInfo = nullptr,
.pTexelBufferView = nullptr,
};
device.GetLogical().UpdateDescriptorSets(std::array{ubo_write, sampler_write}, {});
}
void WindowAdaptPass::ConfigureLayout(size_t image_index, VkImageView image_view,
const Layout::FramebufferLayout& layout,
const Common::Rectangle<f32>& crop_rect) {
BufferData data;
SetUniformData(data, layout);
SetVertexData(data, layout, crop_rect);
const std::span<u8> mapped_span = buffer.Mapped();
std::memcpy(mapped_span.data(), &data, sizeof(data));
UpdateDescriptorSet(image_index, image_view);
} }
void WindowAdaptPass::CreatePipeline() { void WindowAdaptPass::CreatePipeline() {
const std::array<VkPipelineShaderStageCreateInfo, 2> shader_stages{{ pipeline = CreateWrappedPipeline(device, render_pass, pipeline_layout,
{ std::tie(vertex_shader, fragment_shader), false);
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = *vertex_shader,
.pName = "main",
.pSpecializationInfo = nullptr,
},
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = *fragment_shader,
.pName = "main",
.pSpecializationInfo = nullptr,
},
}};
const auto vertex_binding_description = ScreenRectVertex::GetDescription();
const auto vertex_attrs_description = ScreenRectVertex::GetAttributes();
const VkPipelineVertexInputStateCreateInfo vertex_input_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.vertexBindingDescriptionCount = 1,
.pVertexBindingDescriptions = &vertex_binding_description,
.vertexAttributeDescriptionCount = u32{vertex_attrs_description.size()},
.pVertexAttributeDescriptions = vertex_attrs_description.data(),
};
const VkPipelineInputAssemblyStateCreateInfo input_assembly_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
.primitiveRestartEnable = VK_FALSE,
};
const VkPipelineViewportStateCreateInfo viewport_state_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.viewportCount = 1,
.pViewports = nullptr,
.scissorCount = 1,
.pScissors = nullptr,
};
const VkPipelineRasterizationStateCreateInfo rasterization_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.depthClampEnable = VK_FALSE,
.rasterizerDiscardEnable = VK_FALSE,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.frontFace = VK_FRONT_FACE_CLOCKWISE,
.depthBiasEnable = VK_FALSE,
.depthBiasConstantFactor = 0.0f,
.depthBiasClamp = 0.0f,
.depthBiasSlopeFactor = 0.0f,
.lineWidth = 1.0f,
};
const VkPipelineMultisampleStateCreateInfo multisampling_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT,
.sampleShadingEnable = VK_FALSE,
.minSampleShading = 0.0f,
.pSampleMask = nullptr,
.alphaToCoverageEnable = VK_FALSE,
.alphaToOneEnable = VK_FALSE,
};
const VkPipelineColorBlendAttachmentState color_blend_attachment{
.blendEnable = VK_FALSE,
.srcColorBlendFactor = VK_BLEND_FACTOR_ZERO,
.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO,
.colorBlendOp = VK_BLEND_OP_ADD,
.srcAlphaBlendFactor = VK_BLEND_FACTOR_ZERO,
.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO,
.alphaBlendOp = VK_BLEND_OP_ADD,
.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT,
};
const VkPipelineColorBlendStateCreateInfo color_blend_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.logicOpEnable = VK_FALSE,
.logicOp = VK_LOGIC_OP_COPY,
.attachmentCount = 1,
.pAttachments = &color_blend_attachment,
.blendConstants = {0.0f, 0.0f, 0.0f, 0.0f},
};
static constexpr std::array dynamic_states{
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
};
const VkPipelineDynamicStateCreateInfo dynamic_state_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.dynamicStateCount = static_cast<u32>(dynamic_states.size()),
.pDynamicStates = dynamic_states.data(),
};
const VkGraphicsPipelineCreateInfo pipeline_ci{
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stageCount = static_cast<u32>(shader_stages.size()),
.pStages = shader_stages.data(),
.pVertexInputState = &vertex_input_ci,
.pInputAssemblyState = &input_assembly_ci,
.pTessellationState = nullptr,
.pViewportState = &viewport_state_ci,
.pRasterizationState = &rasterization_ci,
.pMultisampleState = &multisampling_ci,
.pDepthStencilState = nullptr,
.pColorBlendState = &color_blend_ci,
.pDynamicState = &dynamic_state_ci,
.layout = *pipeline_layout,
.renderPass = *render_pass,
.subpass = 0,
.basePipelineHandle = 0,
.basePipelineIndex = 0,
};
pipeline = device.GetLogical().CreateGraphicsPipeline(pipeline_ci);
} }
} // namespace Vulkan } // namespace Vulkan

View file

@ -3,6 +3,8 @@
#pragma once #pragma once
#include <list>
#include "common/math_util.h" #include "common/math_util.h"
#include "video_core/vulkan_common/vulkan_wrapper.h" #include "video_core/vulkan_common/vulkan_wrapper.h"
@ -18,54 +20,39 @@ namespace Vulkan {
class Device; class Device;
struct Frame; struct Frame;
class MemoryAllocator; class Layer;
class Scheduler; class Scheduler;
class RasterizerVulkan;
class WindowAdaptPass final { class WindowAdaptPass final {
public: public:
explicit WindowAdaptPass(const Device& device, const MemoryAllocator& memory_allocator, explicit WindowAdaptPass(const Device& device, VkFormat frame_format, vk::Sampler&& sampler,
size_t num_images, VkFormat frame_format, vk::Sampler&& sampler,
vk::ShaderModule&& fragment_shader); vk::ShaderModule&& fragment_shader);
~WindowAdaptPass(); ~WindowAdaptPass();
void Draw(Scheduler& scheduler, size_t image_index, VkImageView src_image_view, void Draw(RasterizerVulkan& rasterizer, Scheduler& scheduler, size_t image_index,
VkExtent2D src_image_extent, const Common::Rectangle<f32>& crop_rect, std::list<Layer>& layers, std::span<const Tegra::FramebufferConfig> configs,
const Layout::FramebufferLayout& layout, Frame* dst); const Layout::FramebufferLayout& layout, Frame* dst);
VkDescriptorSetLayout GetDescriptorSetLayout();
VkRenderPass GetRenderPass(); VkRenderPass GetRenderPass();
private: private:
struct BufferData;
void SetUniformData(BufferData& data, const Layout::FramebufferLayout& layout) const;
void SetVertexData(BufferData& data, const Layout::FramebufferLayout& layout,
const Common::Rectangle<f32>& crop_rect) const;
void UpdateDescriptorSet(size_t image_index, VkImageView image_view);
void ConfigureLayout(size_t image_index, VkImageView image_view,
const Layout::FramebufferLayout& layout,
const Common::Rectangle<f32>& crop_rect);
void CreateDescriptorPool(size_t num_images);
void CreateDescriptorSetLayout(); void CreateDescriptorSetLayout();
void CreateDescriptorSets(size_t num_images);
void CreatePipelineLayout(); void CreatePipelineLayout();
void CreateVertexShader(); void CreateVertexShader();
void CreateRenderPass(VkFormat frame_format); void CreateRenderPass(VkFormat frame_format);
void CreatePipeline(); void CreatePipeline();
void CreateBuffer(const MemoryAllocator& memory_allocator);
private: private:
const Device& device; const Device& device;
vk::DescriptorPool descriptor_pool;
vk::DescriptorSetLayout descriptor_set_layout; vk::DescriptorSetLayout descriptor_set_layout;
vk::DescriptorSets descriptor_sets;
vk::PipelineLayout pipeline_layout; vk::PipelineLayout pipeline_layout;
vk::Sampler sampler; vk::Sampler sampler;
vk::ShaderModule vertex_shader; vk::ShaderModule vertex_shader;
vk::ShaderModule fragment_shader; vk::ShaderModule fragment_shader;
vk::RenderPass render_pass; vk::RenderPass render_pass;
vk::Pipeline pipeline; vk::Pipeline pipeline;
vk::Buffer buffer;
}; };
} // namespace Vulkan } // namespace Vulkan

View file

@ -125,9 +125,9 @@ void RendererVulkan::SwapBuffers(const Tegra::FramebufferConfig* framebuffer) {
return; return;
} }
RenderScreenshot(*framebuffer); RenderScreenshot(framebuffer);
Frame* frame = present_manager.GetRenderFrame(); Frame* frame = present_manager.GetRenderFrame();
blit_swapchain.DrawToFrame(rasterizer, frame, *framebuffer, blit_swapchain.DrawToFrame(rasterizer, frame, std::span(framebuffer, 1),
render_window.GetFramebufferLayout(), swapchain.GetImageCount(), render_window.GetFramebufferLayout(), swapchain.GetImageCount(),
swapchain.GetImageViewFormat()); swapchain.GetImageViewFormat());
scheduler.Flush(*frame->render_ready); scheduler.Flush(*frame->render_ready);
@ -163,7 +163,7 @@ void RendererVulkan::Report() const {
telemetry_session.AddField(field, "GPU_Vulkan_Extensions", extensions); telemetry_session.AddField(field, "GPU_Vulkan_Extensions", extensions);
} }
void Vulkan::RendererVulkan::RenderScreenshot(const Tegra::FramebufferConfig& framebuffer) { void Vulkan::RendererVulkan::RenderScreenshot(const Tegra::FramebufferConfig* framebuffer) {
if (!renderer_settings.screenshot_requested) { if (!renderer_settings.screenshot_requested) {
return; return;
} }
@ -228,7 +228,7 @@ void Vulkan::RendererVulkan::RenderScreenshot(const Tegra::FramebufferConfig& fr
}; };
}(); }();
blit_screenshot.DrawToFrame(rasterizer, &frame, framebuffer, layout, 1, blit_screenshot.DrawToFrame(rasterizer, &frame, std::span(framebuffer, 1), layout, 1,
VK_FORMAT_B8G8R8A8_UNORM); VK_FORMAT_B8G8R8A8_UNORM);
const auto buffer_size = static_cast<VkDeviceSize>(layout.width * layout.height * 4); const auto buffer_size = static_cast<VkDeviceSize>(layout.width * layout.height * 4);

View file

@ -59,7 +59,7 @@ public:
private: private:
void Report() const; void Report() const;
void RenderScreenshot(const Tegra::FramebufferConfig& framebuffer); void RenderScreenshot(const Tegra::FramebufferConfig* framebuffer);
Core::TelemetrySession& telemetry_session; Core::TelemetrySession& telemetry_session;
Tegra::MaxwellDeviceMemoryManager& device_memory; Tegra::MaxwellDeviceMemoryManager& device_memory;

View file

@ -1,65 +1,15 @@
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project // SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later // SPDX-License-Identifier: GPL-2.0-or-later
#include <algorithm> #include "video_core/framebuffer_config.h"
#include <array>
#include <cstring>
#include <memory>
#include <vector>
#include "common/assert.h"
#include "common/common_types.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/frontend/emu_window.h"
#include "video_core/gpu.h"
#include "video_core/host1x/gpu_device_memory_manager.h"
#include "video_core/renderer_vulkan/present/filters.h" #include "video_core/renderer_vulkan/present/filters.h"
#include "video_core/renderer_vulkan/present/fsr.h" #include "video_core/renderer_vulkan/present/layer.h"
#include "video_core/renderer_vulkan/present/fxaa.h"
#include "video_core/renderer_vulkan/present/smaa.h"
#include "video_core/renderer_vulkan/renderer_vulkan.h"
#include "video_core/renderer_vulkan/vk_blit_screen.h" #include "video_core/renderer_vulkan/vk_blit_screen.h"
#include "video_core/renderer_vulkan/vk_present_manager.h"
#include "video_core/renderer_vulkan/vk_scheduler.h" #include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_shader_util.h"
#include "video_core/surface.h"
#include "video_core/textures/decoders.h"
#include "video_core/vulkan_common/vulkan_device.h"
#include "video_core/vulkan_common/vulkan_memory_allocator.h"
#include "video_core/vulkan_common/vulkan_wrapper.h"
namespace Vulkan { namespace Vulkan {
namespace {
u32 GetBytesPerPixel(const Tegra::FramebufferConfig& framebuffer) {
using namespace VideoCore::Surface;
return BytesPerBlock(PixelFormatFromGPUPixelFormat(framebuffer.pixel_format));
}
std::size_t GetSizeInBytes(const Tegra::FramebufferConfig& framebuffer) {
return static_cast<std::size_t>(framebuffer.stride) *
static_cast<std::size_t>(framebuffer.height) * GetBytesPerPixel(framebuffer);
}
VkFormat GetFormat(const Tegra::FramebufferConfig& framebuffer) {
switch (framebuffer.pixel_format) {
case Service::android::PixelFormat::Rgba8888:
case Service::android::PixelFormat::Rgbx8888:
return VK_FORMAT_A8B8G8R8_UNORM_PACK32;
case Service::android::PixelFormat::Rgb565:
return VK_FORMAT_R5G6B5_UNORM_PACK16;
case Service::android::PixelFormat::Bgra8888:
return VK_FORMAT_B8G8R8A8_UNORM;
default:
UNIMPLEMENTED_MSG("Unknown framebuffer pixel format: {}",
static_cast<u32>(framebuffer.pixel_format));
return VK_FORMAT_A8B8G8R8_UNORM_PACK32;
}
}
} // Anonymous namespace
BlitScreen::BlitScreen(Tegra::MaxwellDeviceMemoryManager& device_memory_, const Device& device_, BlitScreen::BlitScreen(Tegra::MaxwellDeviceMemoryManager& device_memory_, const Device& device_,
MemoryAllocator& memory_allocator_, PresentManager& present_manager_, MemoryAllocator& memory_allocator_, PresentManager& present_manager_,
Scheduler& scheduler_) Scheduler& scheduler_)
@ -75,194 +25,35 @@ void BlitScreen::WaitIdle() {
device.GetLogical().WaitIdle(); device.GetLogical().WaitIdle();
} }
void BlitScreen::SetWindowAdaptPass(const Layout::FramebufferLayout& layout) { void BlitScreen::SetWindowAdaptPass() {
layers.clear();
scaling_filter = Settings::values.scaling_filter.GetValue(); scaling_filter = Settings::values.scaling_filter.GetValue();
const VkExtent2D adapt_size{
.width = layout.screen.GetWidth(),
.height = layout.screen.GetHeight(),
};
fsr.reset();
switch (scaling_filter) { switch (scaling_filter) {
case Settings::ScalingFilter::NearestNeighbor: case Settings::ScalingFilter::NearestNeighbor:
window_adapt = window_adapt = MakeNearestNeighbor(device, swapchain_view_format);
MakeNearestNeighbor(device, memory_allocator, image_count, swapchain_view_format);
break; break;
case Settings::ScalingFilter::Bicubic: case Settings::ScalingFilter::Bicubic:
window_adapt = MakeBicubic(device, memory_allocator, image_count, swapchain_view_format); window_adapt = MakeBicubic(device, swapchain_view_format);
break; break;
case Settings::ScalingFilter::Gaussian: case Settings::ScalingFilter::Gaussian:
window_adapt = MakeGaussian(device, memory_allocator, image_count, swapchain_view_format); window_adapt = MakeGaussian(device, swapchain_view_format);
break; break;
case Settings::ScalingFilter::ScaleForce: case Settings::ScalingFilter::ScaleForce:
window_adapt = MakeScaleForce(device, memory_allocator, image_count, swapchain_view_format); window_adapt = MakeScaleForce(device, swapchain_view_format);
break; break;
case Settings::ScalingFilter::Fsr: case Settings::ScalingFilter::Fsr:
fsr = std::make_unique<FSR>(device, memory_allocator, image_count, adapt_size);
[[fallthrough]];
case Settings::ScalingFilter::Bilinear: case Settings::ScalingFilter::Bilinear:
default: default:
window_adapt = MakeBilinear(device, memory_allocator, image_count, swapchain_view_format); window_adapt = MakeBilinear(device, swapchain_view_format);
break; break;
} }
} }
void BlitScreen::SetAntiAliasPass() {
if (anti_alias && anti_aliasing == Settings::values.anti_aliasing.GetValue()) {
return;
}
anti_aliasing = Settings::values.anti_aliasing.GetValue();
const VkExtent2D render_area{
.width = Settings::values.resolution_info.ScaleUp(raw_width),
.height = Settings::values.resolution_info.ScaleUp(raw_height),
};
switch (anti_aliasing) {
case Settings::AntiAliasing::Fxaa:
anti_alias = std::make_unique<FXAA>(device, memory_allocator, image_count, render_area);
break;
case Settings::AntiAliasing::Smaa:
anti_alias = std::make_unique<SMAA>(device, memory_allocator, image_count, render_area);
break;
default:
anti_alias = std::make_unique<NoAA>();
break;
}
}
void BlitScreen::Draw(RasterizerVulkan& rasterizer, const Tegra::FramebufferConfig& framebuffer,
const Layout::FramebufferLayout& layout, Frame* dst) {
const auto texture_info = rasterizer.AccelerateDisplay(
framebuffer, framebuffer.address + framebuffer.offset, framebuffer.stride);
const u32 texture_width = texture_info ? texture_info->width : framebuffer.width;
const u32 texture_height = texture_info ? texture_info->height : framebuffer.height;
const u32 scaled_width = texture_info ? texture_info->scaled_width : texture_width;
const u32 scaled_height = texture_info ? texture_info->scaled_height : texture_height;
const bool use_accelerated = texture_info.has_value();
RefreshResources(framebuffer);
SetAntiAliasPass();
// Finish any pending renderpass
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Wait(resource_ticks[image_index]);
SCOPE_EXIT({ resource_ticks[image_index] = scheduler.CurrentTick(); });
VkImage source_image = texture_info ? texture_info->image : *raw_images[image_index];
VkImageView source_image_view =
texture_info ? texture_info->image_view : *raw_image_views[image_index];
const std::span<u8> mapped_span = buffer.Mapped();
if (!use_accelerated) {
const u64 image_offset = GetRawImageOffset(framebuffer);
const DAddr framebuffer_addr = framebuffer.address + framebuffer.offset;
const u8* const host_ptr = device_memory.GetPointer<u8>(framebuffer_addr);
// TODO(Rodrigo): Read this from HLE
constexpr u32 block_height_log2 = 4;
const u32 bytes_per_pixel = GetBytesPerPixel(framebuffer);
const u64 linear_size{GetSizeInBytes(framebuffer)};
const u64 tiled_size{Tegra::Texture::CalculateSize(true, bytes_per_pixel,
framebuffer.stride, framebuffer.height,
1, block_height_log2, 0)};
Tegra::Texture::UnswizzleTexture(
mapped_span.subspan(image_offset, linear_size), std::span(host_ptr, tiled_size),
bytes_per_pixel, framebuffer.width, framebuffer.height, 1, block_height_log2, 0);
const VkBufferImageCopy copy{
.bufferOffset = image_offset,
.bufferRowLength = 0,
.bufferImageHeight = 0,
.imageSubresource =
{
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.mipLevel = 0,
.baseArrayLayer = 0,
.layerCount = 1,
},
.imageOffset = {.x = 0, .y = 0, .z = 0},
.imageExtent =
{
.width = framebuffer.width,
.height = framebuffer.height,
.depth = 1,
},
};
scheduler.Record([this, copy, index = image_index](vk::CommandBuffer cmdbuf) {
const VkImage image = *raw_images[index];
const VkImageMemoryBarrier base_barrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = 0,
.dstAccessMask = 0,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = image,
.subresourceRange{
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
};
VkImageMemoryBarrier read_barrier = base_barrier;
read_barrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
read_barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
read_barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VkImageMemoryBarrier write_barrier = base_barrier;
write_barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
write_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0,
read_barrier);
cmdbuf.CopyBufferToImage(*buffer, image, VK_IMAGE_LAYOUT_GENERAL, copy);
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
0, write_barrier);
});
}
anti_alias->Draw(scheduler, image_index, &source_image, &source_image_view);
const auto crop_rect = Tegra::NormalizeCrop(framebuffer, texture_width, texture_height);
const VkExtent2D render_extent{
.width = scaled_width,
.height = scaled_height,
};
if (fsr) {
const VkExtent2D adapt_size{
.width = layout.screen.GetWidth(),
.height = layout.screen.GetHeight(),
};
source_image_view = fsr->Draw(scheduler, image_index, source_image, source_image_view,
render_extent, crop_rect);
const Common::Rectangle<f32> output_crop{0, 0, 1, 1};
window_adapt->Draw(scheduler, image_index, source_image_view, adapt_size, output_crop,
layout, dst);
} else {
window_adapt->Draw(scheduler, image_index, source_image_view, render_extent, crop_rect,
layout, dst);
}
}
void BlitScreen::DrawToFrame(RasterizerVulkan& rasterizer, Frame* frame, void BlitScreen::DrawToFrame(RasterizerVulkan& rasterizer, Frame* frame,
const Tegra::FramebufferConfig& framebuffer, std::span<const Tegra::FramebufferConfig> framebuffers,
const Layout::FramebufferLayout& layout, size_t swapchain_images, const Layout::FramebufferLayout& layout,
size_t current_swapchain_image_count,
VkFormat current_swapchain_view_format) { VkFormat current_swapchain_view_format) {
bool resource_update_required = false; bool resource_update_required = false;
bool presentation_recreate_required = false; bool presentation_recreate_required = false;
@ -272,11 +63,10 @@ void BlitScreen::DrawToFrame(RasterizerVulkan& rasterizer, Frame* frame,
resource_update_required = true; resource_update_required = true;
} }
// Recreate dynamic resources if the the image count or input format changed // Recreate dynamic resources if the image count changed
const VkFormat old_framebuffer_format = const size_t old_swapchain_image_count =
std::exchange(framebuffer_view_format, GetFormat(framebuffer)); std::exchange(image_count, current_swapchain_image_count);
if (swapchain_images != image_count || old_framebuffer_format != framebuffer_view_format) { if (old_swapchain_image_count != current_swapchain_image_count) {
image_count = swapchain_images;
resource_update_required = true; resource_update_required = true;
} }
@ -294,11 +84,8 @@ void BlitScreen::DrawToFrame(RasterizerVulkan& rasterizer, Frame* frame,
// Wait for idle to ensure no resources are in use // Wait for idle to ensure no resources are in use
WaitIdle(); WaitIdle();
// Set new number of resource ticks
resource_ticks.resize(swapchain_images);
// Update window adapt pass // Update window adapt pass
SetWindowAdaptPass(layout); SetWindowAdaptPass();
// Update frame format if needed // Update frame format if needed
if (presentation_recreate_required) { if (presentation_recreate_required) {
@ -307,7 +94,21 @@ void BlitScreen::DrawToFrame(RasterizerVulkan& rasterizer, Frame* frame,
} }
} }
Draw(rasterizer, framebuffer, layout, frame); // Add additional layers if needed
const VkExtent2D window_size{
.width = layout.screen.GetWidth(),
.height = layout.screen.GetHeight(),
};
while (layers.size() < framebuffers.size()) {
layers.emplace_back(device, memory_allocator, scheduler, device_memory, image_count,
window_size, window_adapt->GetDescriptorSetLayout());
}
// Perform the draw
window_adapt->Draw(rasterizer, scheduler, image_index, layers, framebuffers, layout, frame);
// Advance to next image
if (++image_index >= image_count) { if (++image_index >= image_count) {
image_index = 0; image_index = 0;
} }
@ -321,7 +122,7 @@ vk::Framebuffer BlitScreen::CreateFramebuffer(const Layout::FramebufferLayout& l
if (!window_adapt || scaling_filter != Settings::values.scaling_filter.GetValue() || if (!window_adapt || scaling_filter != Settings::values.scaling_filter.GetValue() ||
format_updated) { format_updated) {
WaitIdle(); WaitIdle();
SetWindowAdaptPass(layout); SetWindowAdaptPass();
} }
const VkExtent2D extent{ const VkExtent2D extent{
.width = layout.width, .width = layout.width,
@ -345,115 +146,4 @@ vk::Framebuffer BlitScreen::CreateFramebuffer(const VkImageView& image_view, VkE
}); });
} }
void BlitScreen::RefreshResources(const Tegra::FramebufferConfig& framebuffer) {
if (framebuffer.width == raw_width && framebuffer.height == raw_height &&
framebuffer.pixel_format == pixel_format && !raw_images.empty()) {
return;
}
raw_width = framebuffer.width;
raw_height = framebuffer.height;
pixel_format = framebuffer.pixel_format;
anti_alias.reset();
ReleaseRawImages();
CreateStagingBuffer(framebuffer);
CreateRawImages(framebuffer);
}
void BlitScreen::ReleaseRawImages() {
for (const u64 tick : resource_ticks) {
scheduler.Wait(tick);
}
raw_images.clear();
buffer.reset();
}
void BlitScreen::CreateStagingBuffer(const Tegra::FramebufferConfig& framebuffer) {
const VkBufferCreateInfo ci{
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.size = CalculateBufferSize(framebuffer),
.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT |
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr,
};
buffer = memory_allocator.CreateBuffer(ci, MemoryUsage::Upload);
}
void BlitScreen::CreateRawImages(const Tegra::FramebufferConfig& framebuffer) {
raw_images.resize(image_count);
raw_image_views.resize(image_count);
const auto create_image = [&](bool used_on_framebuffer = false, u32 up_scale = 1,
u32 down_shift = 0) {
u32 extra_usages = used_on_framebuffer ? VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
: VK_IMAGE_USAGE_TRANSFER_DST_BIT;
return memory_allocator.CreateImage(VkImageCreateInfo{
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.imageType = VK_IMAGE_TYPE_2D,
.format = used_on_framebuffer ? VK_FORMAT_R16G16B16A16_SFLOAT : framebuffer_view_format,
.extent =
{
.width = (up_scale * framebuffer.width) >> down_shift,
.height = (up_scale * framebuffer.height) >> down_shift,
.depth = 1,
},
.mipLevels = 1,
.arrayLayers = 1,
.samples = VK_SAMPLE_COUNT_1_BIT,
.tiling = used_on_framebuffer ? VK_IMAGE_TILING_OPTIMAL : VK_IMAGE_TILING_LINEAR,
.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | extra_usages,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
});
};
const auto create_image_view = [&](vk::Image& image, bool used_on_framebuffer = false) {
return device.GetLogical().CreateImageView(VkImageViewCreateInfo{
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.image = *image,
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = used_on_framebuffer ? VK_FORMAT_R16G16B16A16_SFLOAT : framebuffer_view_format,
.components =
{
.r = VK_COMPONENT_SWIZZLE_IDENTITY,
.g = VK_COMPONENT_SWIZZLE_IDENTITY,
.b = VK_COMPONENT_SWIZZLE_IDENTITY,
.a = VK_COMPONENT_SWIZZLE_IDENTITY,
},
.subresourceRange =
{
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
});
};
for (size_t i = 0; i < image_count; ++i) {
raw_images[i] = create_image();
raw_image_views[i] = create_image_view(raw_images[i]);
}
}
u64 BlitScreen::CalculateBufferSize(const Tegra::FramebufferConfig& framebuffer) const {
return GetSizeInBytes(framebuffer) * image_count;
}
u64 BlitScreen::GetRawImageOffset(const Tegra::FramebufferConfig& framebuffer) const {
return GetSizeInBytes(framebuffer) * image_index;
}
} // namespace Vulkan } // namespace Vulkan

View file

@ -3,10 +3,12 @@
#pragma once #pragma once
#include <list>
#include <memory> #include <memory>
#include "core/frontend/framebuffer_layout.h" #include "core/frontend/framebuffer_layout.h"
#include "video_core/host1x/gpu_device_memory_manager.h" #include "video_core/host1x/gpu_device_memory_manager.h"
#include "video_core/renderer_vulkan/present/layer.h"
#include "video_core/vulkan_common/vulkan_memory_allocator.h" #include "video_core/vulkan_common/vulkan_memory_allocator.h"
#include "video_core/vulkan_common/vulkan_wrapper.h" #include "video_core/vulkan_common/vulkan_wrapper.h"
@ -14,32 +16,17 @@ namespace Core {
class System; class System;
} }
namespace Core::Frontend {
class EmuWindow;
}
namespace Tegra { namespace Tegra {
struct FramebufferConfig; struct FramebufferConfig;
} }
namespace VideoCore {
class RasterizerInterface;
}
namespace Service::android {
enum class PixelFormat : u32;
}
namespace Settings { namespace Settings {
enum class AntiAliasing : u32;
enum class ScalingFilter : u32; enum class ScalingFilter : u32;
} // namespace Settings } // namespace Settings
namespace Vulkan { namespace Vulkan {
class AntiAliasPass;
class Device; class Device;
class FSR;
class RasterizerVulkan; class RasterizerVulkan;
class Scheduler; class Scheduler;
class PresentManager; class PresentManager;
@ -64,8 +51,8 @@ public:
~BlitScreen(); ~BlitScreen();
void DrawToFrame(RasterizerVulkan& rasterizer, Frame* frame, void DrawToFrame(RasterizerVulkan& rasterizer, Frame* frame,
const Tegra::FramebufferConfig& framebuffer, std::span<const Tegra::FramebufferConfig> framebuffers,
const Layout::FramebufferLayout& layout, size_t swapchain_images, const Layout::FramebufferLayout& layout, size_t current_swapchain_image_count,
VkFormat current_swapchain_view_format); VkFormat current_swapchain_view_format);
[[nodiscard]] vk::Framebuffer CreateFramebuffer(const Layout::FramebufferLayout& layout, [[nodiscard]] vk::Framebuffer CreateFramebuffer(const Layout::FramebufferLayout& layout,
@ -74,50 +61,22 @@ public:
private: private:
void WaitIdle(); void WaitIdle();
void SetWindowAdaptPass(const Layout::FramebufferLayout& layout); void SetWindowAdaptPass();
void SetAntiAliasPass();
void Draw(RasterizerVulkan& rasterizer, const Tegra::FramebufferConfig& framebuffer,
const Layout::FramebufferLayout& layout, Frame* dst);
vk::Framebuffer CreateFramebuffer(const VkImageView& image_view, VkExtent2D extent, vk::Framebuffer CreateFramebuffer(const VkImageView& image_view, VkExtent2D extent,
VkRenderPass render_pass); VkRenderPass render_pass);
void RefreshResources(const Tegra::FramebufferConfig& framebuffer);
void ReleaseRawImages();
void CreateStagingBuffer(const Tegra::FramebufferConfig& framebuffer);
void CreateRawImages(const Tegra::FramebufferConfig& framebuffer);
u64 CalculateBufferSize(const Tegra::FramebufferConfig& framebuffer) const;
u64 GetRawImageOffset(const Tegra::FramebufferConfig& framebuffer) const;
Tegra::MaxwellDeviceMemoryManager& device_memory; Tegra::MaxwellDeviceMemoryManager& device_memory;
const Device& device; const Device& device;
MemoryAllocator& memory_allocator; MemoryAllocator& memory_allocator;
PresentManager& present_manager; PresentManager& present_manager;
Scheduler& scheduler; Scheduler& scheduler;
std::size_t image_count; std::size_t image_count{};
std::size_t image_index{}; std::size_t image_index{};
VkFormat swapchain_view_format{};
vk::Buffer buffer;
std::vector<u64> resource_ticks;
std::vector<vk::Image> raw_images;
std::vector<vk::ImageView> raw_image_views;
u32 raw_width = 0;
u32 raw_height = 0;
Service::android::PixelFormat pixel_format{};
VkFormat framebuffer_view_format;
VkFormat swapchain_view_format;
Settings::AntiAliasing anti_aliasing{};
Settings::ScalingFilter scaling_filter{}; Settings::ScalingFilter scaling_filter{};
std::unique_ptr<WindowAdaptPass> window_adapt{};
std::unique_ptr<FSR> fsr; std::list<Layer> layers{};
std::unique_ptr<AntiAliasPass> anti_alias;
std::unique_ptr<WindowAdaptPass> window_adapt;
}; };
} // namespace Vulkan } // namespace Vulkan