2
1
Fork 0
mirror of https://github.com/yuzu-emu/yuzu.git synced 2024-07-04 23:31:19 +01:00

Merge pull request #860 from yuriks/y2r-color

Color support for Y2R
This commit is contained in:
Yuri Kunde Schlesner 2015-06-21 17:22:34 -07:00
commit dc09a2ecb5
5 changed files with 740 additions and 180 deletions

View file

@ -108,6 +108,7 @@ set(SRCS
hw/gpu.cpp
hw/hw.cpp
hw/lcd.cpp
hw/y2r.cpp
loader/3dsx.cpp
loader/elf.cpp
loader/loader.cpp
@ -233,6 +234,7 @@ set(HEADERS
hw/gpu.h
hw/hw.h
hw/lcd.h
hw/y2r.h
loader/3dsx.h
loader/elf.h
loader/loader.h

View file

@ -9,8 +9,8 @@
#include "core/hle/hle.h"
#include "core/hle/kernel/event.h"
#include "core/hle/service/y2r_u.h"
#include "core/hw/y2r.h"
#include "core/mem_map.h"
#include "core/memory.h"
#include "video_core/utils.h"
#include "video_core/video_core.h"
@ -20,75 +20,73 @@
namespace Y2R_U {
enum class InputFormat {
/// 8-bit input, with YUV components in separate planes and using 4:2:2 subsampling.
YUV422_Indiv8 = 0,
/// 8-bit input, with YUV components in separate planes and using 4:2:0 subsampling.
YUV420_Indiv8 = 1,
YUV422_INDIV_16 = 2,
YUV420_INDIV_16 = 3,
YUV422_BATCH = 4,
};
enum class OutputFormat {
Rgb32 = 0,
Rgb24 = 1,
Rgb16_555 = 2,
Rgb16_565 = 3,
};
enum class Rotation {
None = 0,
Clockwise_90 = 1,
Clockwise_180 = 2,
Clockwise_270 = 3,
};
enum class BlockAlignment {
/// Image is output in linear format suitable for use as a framebuffer.
Linear = 0,
/// Image is output in tiled PICA format, suitable for use as a texture.
Block8x8 = 1,
};
enum class StandardCoefficient {
ITU_Rec601 = 0,
ITU_Rec709 = 1,
ITU_Rec601_Scaling = 2,
ITU_Rec709_Scaling = 3,
};
static Kernel::SharedPtr<Kernel::Event> completion_event;
struct ConversionParameters {
InputFormat input_format;
OutputFormat output_format;
Rotation rotation;
BlockAlignment alignment;
BlockAlignment block_alignment;
u16 input_line_width;
u16 input_lines;
StandardCoefficient standard_coefficient;
u8 reserved;
u16 alpha;
};
static_assert(sizeof(ConversionParameters) == 12, "ConversionParameters struct has incorrect size");
// Input parameters for the Y (luma) plane
VAddr srcY_address;
u32 srcY_image_size;
u16 srcY_transfer_unit;
u16 srcY_stride;
static Kernel::SharedPtr<Kernel::Event> completion_event;
static ConversionConfiguration conversion;
// Output parameters for the conversion results
VAddr dst_address;
u32 dst_image_size;
u16 dst_transfer_unit;
u16 dst_stride;
static const CoefficientSet standard_coefficients[4] = {
{{ 0x100, 0x166, 0xB6, 0x58, 0x1C5, -0x166F, 0x10EE, -0x1C5B }}, // ITU_Rec601
{{ 0x100, 0x193, 0x77, 0x2F, 0x1DB, -0x1933, 0xA7C, -0x1D51 }}, // ITU_Rec709
{{ 0x12A, 0x198, 0xD0, 0x64, 0x204, -0x1BDE, 0x10F2, -0x229B }}, // ITU_Rec601_Scaling
{{ 0x12A, 0x1CA, 0x88, 0x36, 0x21C, -0x1F04, 0x99C, -0x2421 }}, // ITU_Rec709_Scaling
};
static ConversionParameters conversion_params;
ResultCode ConversionConfiguration::SetInputLineWidth(u16 width) {
if (width == 0 || width > 1024 || width % 8 != 0) {
return ResultCode(ErrorDescription::OutOfRange, ErrorModule::CAM,
ErrorSummary::InvalidArgument, ErrorLevel::Usage); // 0xE0E053FD
}
// Note: The hardware uses the register value 0 to represent a width of 1024, so for a width of
// 1024 the `camera` module would set the value 0 here, but we don't need to emulate this
// internal detail.
this->input_line_width = width;
return RESULT_SUCCESS;
}
ResultCode ConversionConfiguration::SetInputLines(u16 lines) {
if (lines == 0 || lines > 1024) {
return ResultCode(ErrorDescription::OutOfRange, ErrorModule::CAM,
ErrorSummary::InvalidArgument, ErrorLevel::Usage); // 0xE0E053FD
}
// Note: In what appears to be a bug, the `camera` module does not set the hardware register at
// all if `lines` is 1024, so the conversion uses the last value that was set. The intention
// was probably to set it to 0 like in SetInputLineWidth.
if (lines != 1024) {
this->input_lines = lines;
}
return RESULT_SUCCESS;
}
ResultCode ConversionConfiguration::SetStandardCoefficient(StandardCoefficient standard_coefficient) {
size_t index = static_cast<size_t>(standard_coefficient);
if (index >= 4) {
return ResultCode(ErrorDescription::InvalidEnumValue, ErrorModule::CAM,
ErrorSummary::InvalidArgument, ErrorLevel::Usage); // 0xE0E053ED
}
std::memcpy(coefficients.data(), standard_coefficients[index].data(), sizeof(coefficients));
return RESULT_SUCCESS;
}
static void SetInputFormat(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
conversion_params.input_format = static_cast<InputFormat>(cmd_buff[1]);
LOG_DEBUG(Service_Y2R, "called input_format=%u", conversion_params.input_format);
conversion.input_format = static_cast<InputFormat>(cmd_buff[1]);
LOG_DEBUG(Service_Y2R, "called input_format=%hhu", conversion.input_format);
cmd_buff[1] = RESULT_SUCCESS.raw;
}
@ -96,8 +94,8 @@ static void SetInputFormat(Service::Interface* self) {
static void SetOutputFormat(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
conversion_params.output_format = static_cast<OutputFormat>(cmd_buff[1]);
LOG_DEBUG(Service_Y2R, "called output_format=%u", conversion_params.output_format);
conversion.output_format = static_cast<OutputFormat>(cmd_buff[1]);
LOG_DEBUG(Service_Y2R, "called output_format=%hhu", conversion.output_format);
cmd_buff[1] = RESULT_SUCCESS.raw;
}
@ -105,8 +103,8 @@ static void SetOutputFormat(Service::Interface* self) {
static void SetRotation(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
conversion_params.rotation = static_cast<Rotation>(cmd_buff[1]);
LOG_DEBUG(Service_Y2R, "called rotation=%u", conversion_params.rotation);
conversion.rotation = static_cast<Rotation>(cmd_buff[1]);
LOG_DEBUG(Service_Y2R, "called rotation=%hhu", conversion.rotation);
cmd_buff[1] = RESULT_SUCCESS.raw;
}
@ -114,12 +112,20 @@ static void SetRotation(Service::Interface* self) {
static void SetBlockAlignment(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
conversion_params.alignment = static_cast<BlockAlignment>(cmd_buff[1]);
LOG_DEBUG(Service_Y2R, "called alignment=%u", conversion_params.alignment);
conversion.block_alignment = static_cast<BlockAlignment>(cmd_buff[1]);
LOG_DEBUG(Service_Y2R, "called alignment=%hhu", conversion.block_alignment);
cmd_buff[1] = RESULT_SUCCESS.raw;
}
static void SetTransferEndInterrupt(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
cmd_buff[0] = 0x000D0040;
cmd_buff[1] = RESULT_SUCCESS.raw;
LOG_DEBUG(Service_Y2R, "(STUBBED) called");
}
/**
* Y2R_U::GetTransferEndEvent service function
* Outputs:
@ -137,14 +143,59 @@ static void GetTransferEndEvent(Service::Interface* self) {
static void SetSendingY(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
conversion_params.srcY_address = cmd_buff[1];
conversion_params.srcY_image_size = cmd_buff[2];
conversion_params.srcY_transfer_unit = cmd_buff[3];
conversion_params.srcY_stride = cmd_buff[4];
conversion.src_Y.address = cmd_buff[1];
conversion.src_Y.image_size = cmd_buff[2];
conversion.src_Y.transfer_unit = cmd_buff[3];
conversion.src_Y.gap = cmd_buff[4];
u32 src_process_handle = cmd_buff[6];
LOG_DEBUG(Service_Y2R, "called image_size=0x%08X, transfer_unit=%hu, transfer_stride=%hu, "
"src_process_handle=0x%08X", conversion_params.srcY_image_size,
conversion_params.srcY_transfer_unit, conversion_params.srcY_stride, src_process_handle);
"src_process_handle=0x%08X", conversion.src_Y.image_size,
conversion.src_Y.transfer_unit, conversion.src_Y.gap, src_process_handle);
cmd_buff[1] = RESULT_SUCCESS.raw;
}
static void SetSendingU(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
conversion.src_U.address = cmd_buff[1];
conversion.src_U.image_size = cmd_buff[2];
conversion.src_U.transfer_unit = cmd_buff[3];
conversion.src_U.gap = cmd_buff[4];
u32 src_process_handle = cmd_buff[6];
LOG_DEBUG(Service_Y2R, "called image_size=0x%08X, transfer_unit=%hu, transfer_stride=%hu, "
"src_process_handle=0x%08X", conversion.src_U.image_size,
conversion.src_U.transfer_unit, conversion.src_U.gap, src_process_handle);
cmd_buff[1] = RESULT_SUCCESS.raw;
}
static void SetSendingV(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
conversion.src_V.address = cmd_buff[1];
conversion.src_V.image_size = cmd_buff[2];
conversion.src_V.transfer_unit = cmd_buff[3];
conversion.src_V.gap = cmd_buff[4];
u32 src_process_handle = cmd_buff[6];
LOG_DEBUG(Service_Y2R, "called image_size=0x%08X, transfer_unit=%hu, transfer_stride=%hu, "
"src_process_handle=0x%08X", conversion.src_V.image_size,
conversion.src_V.transfer_unit, conversion.src_V.gap, src_process_handle);
cmd_buff[1] = RESULT_SUCCESS.raw;
}
static void SetSendingYUYV(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
conversion.src_YUYV.address = cmd_buff[1];
conversion.src_YUYV.image_size = cmd_buff[2];
conversion.src_YUYV.transfer_unit = cmd_buff[3];
conversion.src_YUYV.gap = cmd_buff[4];
u32 src_process_handle = cmd_buff[6];
LOG_DEBUG(Service_Y2R, "called image_size=0x%08X, transfer_unit=%hu, transfer_stride=%hu, "
"src_process_handle=0x%08X", conversion.src_YUYV.image_size,
conversion.src_YUYV.transfer_unit, conversion.src_YUYV.gap, src_process_handle);
cmd_buff[1] = RESULT_SUCCESS.raw;
}
@ -152,14 +203,14 @@ static void SetSendingY(Service::Interface* self) {
static void SetReceiving(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
conversion_params.dst_address = cmd_buff[1];
conversion_params.dst_image_size = cmd_buff[2];
conversion_params.dst_transfer_unit = cmd_buff[3];
conversion_params.dst_stride = cmd_buff[4];
conversion.dst.address = cmd_buff[1];
conversion.dst.image_size = cmd_buff[2];
conversion.dst.transfer_unit = cmd_buff[3];
conversion.dst.gap = cmd_buff[4];
u32 dst_process_handle = cmd_buff[6];
LOG_DEBUG(Service_Y2R, "called image_size=0x%08X, transfer_unit=%hu, transfer_stride=%hu, "
"dst_process_handle=0x%08X", conversion_params.dst_image_size,
conversion_params.dst_transfer_unit, conversion_params.dst_stride,
"dst_process_handle=0x%08X", conversion.dst.image_size,
conversion.dst.transfer_unit, conversion.dst.gap,
dst_process_handle);
cmd_buff[1] = RESULT_SUCCESS.raw;
@ -168,17 +219,42 @@ static void SetReceiving(Service::Interface* self) {
static void SetInputLineWidth(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
conversion_params.input_line_width = cmd_buff[1];
LOG_DEBUG(Service_Y2R, "input_line_width=%u", conversion_params.input_line_width);
cmd_buff[1] = RESULT_SUCCESS.raw;
LOG_DEBUG(Service_Y2R, "called input_line_width=%u", cmd_buff[1]);
cmd_buff[1] = conversion.SetInputLineWidth(cmd_buff[1]).raw;
}
static void SetInputLines(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
conversion_params.input_lines = cmd_buff[1];
LOG_DEBUG(Service_Y2R, "input_line_number=%u", conversion_params.input_lines);
LOG_DEBUG(Service_Y2R, "called input_line_number=%u", cmd_buff[1]);
cmd_buff[1] = conversion.SetInputLines(cmd_buff[1]).raw;
}
static void SetCoefficient(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
const u16* coefficients = reinterpret_cast<const u16*>(&cmd_buff[1]);
std::memcpy(conversion.coefficients.data(), coefficients, sizeof(CoefficientSet));
LOG_DEBUG(Service_Y2R, "called coefficients=[%hX, %hX, %hX, %hX, %hX, %hX, %hX, %hX]",
coefficients[0], coefficients[1], coefficients[2], coefficients[3],
coefficients[4], coefficients[5], coefficients[6], coefficients[7]);
cmd_buff[1] = RESULT_SUCCESS.raw;
}
static void SetStandardCoefficient(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
LOG_DEBUG(Service_Y2R, "called standard_coefficient=%u", cmd_buff[1]);
cmd_buff[1] = conversion.SetStandardCoefficient((StandardCoefficient)cmd_buff[1]).raw;
}
static void SetAlpha(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
conversion.alpha = cmd_buff[1];
LOG_DEBUG(Service_Y2R, "called alpha=%hu", conversion.alpha);
cmd_buff[1] = RESULT_SUCCESS.raw;
}
@ -186,89 +262,13 @@ static void SetInputLines(Service::Interface* self) {
static void StartConversion(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
const u8* srcY_buffer = Memory::GetPointer(conversion_params.srcY_address);
u8* dst_buffer = Memory::GetPointer(conversion_params.dst_address);
HW::Y2R::PerformConversion(conversion);
// TODO: support color and other kinds of conversions
ASSERT(conversion_params.input_format == InputFormat::YUV422_Indiv8
|| conversion_params.input_format == InputFormat::YUV420_Indiv8);
ASSERT(conversion_params.output_format == OutputFormat::Rgb24);
ASSERT(conversion_params.rotation == Rotation::None);
const int bpp = 3;
switch (conversion_params.alignment) {
case BlockAlignment::Linear:
{
const size_t input_lines = conversion_params.input_lines;
const size_t input_line_width = conversion_params.input_line_width;
const size_t srcY_stride = conversion_params.srcY_stride;
const size_t dst_stride = conversion_params.dst_stride;
size_t srcY_offset = 0;
size_t dst_offset = 0;
for (size_t line = 0; line < input_lines; ++line) {
for (size_t i = 0; i < input_line_width; ++i) {
u8 Y = srcY_buffer[srcY_offset];
dst_buffer[dst_offset + 0] = Y;
dst_buffer[dst_offset + 1] = Y;
dst_buffer[dst_offset + 2] = Y;
srcY_offset += 1;
dst_offset += bpp;
}
srcY_offset += srcY_stride;
dst_offset += dst_stride;
}
break;
}
case BlockAlignment::Block8x8:
{
const size_t input_lines = conversion_params.input_lines;
const size_t input_line_width = conversion_params.input_line_width;
const size_t srcY_stride = conversion_params.srcY_stride;
const size_t dst_transfer_unit = conversion_params.dst_transfer_unit;
const size_t dst_stride = conversion_params.dst_stride;
size_t srcY_offset = 0;
size_t dst_tile_line_offs = 0;
const size_t tile_size = 8 * 8 * bpp;
for (size_t line = 0; line < input_lines;) {
size_t max_line = line + 8;
for (; line < max_line; ++line) {
for (size_t x = 0; x < input_line_width; ++x) {
size_t tile_x = x / 8;
size_t dst_tile_offs = dst_tile_line_offs + tile_x * tile_size;
size_t tile_i = VideoCore::MortonInterleave((u32)x, (u32)line);
size_t dst_offset = dst_tile_offs + tile_i * bpp;
u8 Y = srcY_buffer[srcY_offset];
dst_buffer[dst_offset + 0] = Y;
dst_buffer[dst_offset + 1] = Y;
dst_buffer[dst_offset + 2] = Y;
srcY_offset += 1;
}
srcY_offset += srcY_stride;
}
dst_tile_line_offs += dst_transfer_unit + dst_stride;
}
break;
}
}
// dst_image_size would seem to be perfect for this, but it doesn't include the stride :(
u32 total_output_size = conversion_params.input_lines *
(conversion_params.dst_transfer_unit + conversion_params.dst_stride);
// dst_image_size would seem to be perfect for this, but it doesn't include the gap :(
u32 total_output_size = conversion.input_lines *
(conversion.dst.transfer_unit + conversion.dst.gap);
VideoCore::g_renderer->hw_rasterizer->NotifyFlush(
Memory::VirtualToPhysicalAddress(conversion_params.dst_address), total_output_size);
Memory::VirtualToPhysicalAddress(conversion.dst.address), total_output_size);
LOG_DEBUG(Service_Y2R, "called");
completion_event->Signal();
@ -276,6 +276,14 @@ static void StartConversion(Service::Interface* self) {
cmd_buff[1] = RESULT_SUCCESS.raw;
}
static void StopConversion(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
cmd_buff[0] = 0x00270040;
cmd_buff[1] = RESULT_SUCCESS.raw;
LOG_DEBUG(Service_Y2R, "called");
}
/**
* Y2R_U::IsBusyConversion service function
* Outputs:
@ -290,6 +298,40 @@ static void IsBusyConversion(Service::Interface* self) {
LOG_DEBUG(Service_Y2R, "called");
}
/**
* Y2R_U::SetConversionParams service function
*/
static void SetConversionParams(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
auto params = reinterpret_cast<const ConversionParameters*>(&cmd_buff[1]);
LOG_DEBUG(Service_Y2R,
"called input_format=%hhu output_format=%hhu rotation=%hhu block_alignment=%hhu "
"input_line_width=%hu input_lines=%hu standard_coefficient=%hhu "
"reserved=%hhu alpha=%hX",
params->input_format, params->output_format, params->rotation, params->block_alignment,
params->input_line_width, params->input_lines, params->standard_coefficient,
params->reserved, params->alpha);
ResultCode result = RESULT_SUCCESS;
conversion.input_format = params->input_format;
conversion.output_format = params->output_format;
conversion.rotation = params->rotation;
conversion.block_alignment = params->block_alignment;
result = conversion.SetInputLineWidth(params->input_line_width);
if (result.IsError()) goto cleanup;
result = conversion.SetInputLines(params->input_lines);
if (result.IsError()) goto cleanup;
result = conversion.SetStandardCoefficient(params->standard_coefficient);
if (result.IsError()) goto cleanup;
conversion.alpha = params->alpha;
cleanup:
cmd_buff[0] = 0x00290040; // TODO verify
cmd_buff[1] = result.raw;
}
static void PingProcess(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
@ -298,27 +340,63 @@ static void PingProcess(Service::Interface* self) {
LOG_WARNING(Service_Y2R, "(STUBBED) called");
}
static void DriverInitialize(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
conversion.input_format = InputFormat::YUV422_Indiv8;
conversion.output_format = OutputFormat::RGBA8;
conversion.rotation = Rotation::None;
conversion.block_alignment = BlockAlignment::Linear;
conversion.coefficients.fill(0);
conversion.SetInputLineWidth(1024);
conversion.SetInputLines(1024);
conversion.alpha = 0;
ConversionBuffer zero_buffer = {};
conversion.src_Y = zero_buffer;
conversion.src_U = zero_buffer;
conversion.src_V = zero_buffer;
conversion.dst = zero_buffer;
completion_event->Clear();
cmd_buff[0] = 0x002B0040;
cmd_buff[1] = RESULT_SUCCESS.raw;
LOG_DEBUG(Service_Y2R, "called");
}
static void DriverFinalize(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
cmd_buff[0] = 0x002C0040;
cmd_buff[1] = RESULT_SUCCESS.raw;
LOG_DEBUG(Service_Y2R, "called");
}
const Interface::FunctionInfo FunctionTable[] = {
{0x00010040, SetInputFormat, "SetInputFormat"},
{0x00030040, SetOutputFormat, "SetOutputFormat"},
{0x00050040, SetRotation, "SetRotation"},
{0x00070040, SetBlockAlignment, "SetBlockAlignment"},
{0x000D0040, nullptr, "SetTransferEndInterrupt"},
{0x000D0040, SetTransferEndInterrupt, "SetTransferEndInterrupt"},
{0x000F0000, GetTransferEndEvent, "GetTransferEndEvent"},
{0x00100102, SetSendingY, "SetSendingY"},
{0x00110102, nullptr, "SetSendingU"},
{0x00120102, nullptr, "SetSendingV"},
{0x00110102, SetSendingU, "SetSendingU"},
{0x00120102, SetSendingV, "SetSendingV"},
{0x00130102, SetSendingYUYV, "SetSendingYUYV"},
{0x00180102, SetReceiving, "SetReceiving"},
{0x001A0040, SetInputLineWidth, "SetInputLineWidth"},
{0x001C0040, SetInputLines, "SetInputLines"},
{0x00200040, nullptr, "SetStandardCoefficient"},
{0x00220040, nullptr, "SetAlpha"},
{0x001E0100, SetCoefficient, "SetCoefficient"},
{0x00200040, SetStandardCoefficient, "SetStandardCoefficient"},
{0x00220040, SetAlpha, "SetAlpha"},
{0x00260000, StartConversion, "StartConversion"},
{0x00270000, nullptr, "StopConversion"},
{0x00270000, StopConversion, "StopConversion"},
{0x00280000, IsBusyConversion, "IsBusyConversion"},
{0x002901C0, SetConversionParams, "SetConversionParams"},
{0x002A0000, PingProcess, "PingProcess"},
{0x002B0000, nullptr, "DriverInitialize"},
{0x002C0000, nullptr, "DriverFinalize"},
{0x002B0000, DriverInitialize, "DriverInitialize"},
{0x002C0000, DriverFinalize, "DriverFinalize"},
};
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -326,7 +404,7 @@ const Interface::FunctionInfo FunctionTable[] = {
Interface::Interface() {
completion_event = Kernel::Event::Create(RESETTYPE_ONESHOT, "Y2R:Completed");
std::memset(&conversion_params, 0, sizeof(conversion_params));
std::memset(&conversion, 0, sizeof(conversion));
Register(FunctionTable);
}

View file

@ -4,6 +4,10 @@
#pragma once
#include <array>
#include "common/common_types.h"
#include "core/hle/service/service.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -11,6 +15,98 @@
namespace Y2R_U {
enum class InputFormat : u8 {
/// 8-bit input, with YUV components in separate planes and 4:2:2 subsampling.
YUV422_Indiv8 = 0,
/// 8-bit input, with YUV components in separate planes and 4:2:0 subsampling.
YUV420_Indiv8 = 1,
/// 16-bit input (only LSB used), with YUV components in separate planes and 4:2:2 subsampling.
YUV422_Indiv16 = 2,
/// 16-bit input (only LSB used), with YUV components in separate planes and 4:2:0 subsampling.
YUV420_Indiv16 = 3,
/// 8-bit input, with a single interleaved stream in YUYV format and 4:2:2 subsampling.
YUYV422_Interleaved = 4,
};
enum class OutputFormat : u8 {
RGBA8 = 0,
RGB8 = 1,
RGB5A1 = 2,
RGB565 = 3,
};
enum class Rotation : u8 {
None = 0,
Clockwise_90 = 1,
Clockwise_180 = 2,
Clockwise_270 = 3,
};
enum class BlockAlignment : u8 {
/// Image is output in linear format suitable for use as a framebuffer.
Linear = 0,
/// Image is output in tiled PICA format, suitable for use as a texture.
Block8x8 = 1,
};
enum class StandardCoefficient : u8 {
/// ITU Rec. BT.601 primaries, with PC ranges.
ITU_Rec601 = 0,
/// ITU Rec. BT.709 primaries, with PC ranges.
ITU_Rec709 = 1,
/// ITU Rec. BT.601 primaries, with TV ranges.
ITU_Rec601_Scaling = 2,
/// ITU Rec. BT.709 primaries, with TV ranges.
ITU_Rec709_Scaling = 3,
};
/**
* A set of coefficients configuring the RGB to YUV conversion. Coefficients 0-4 are unsigned 2.8
* fixed pointer numbers representing entries on the conversion matrix, while coefficient 5-7 are
* signed 11.5 fixed point numbers added as offsets to the RGB result.
*
* The overall conversion process formula is:
* ```
* R = trunc((c_0 * Y + c_1 * V) + c_5 + 0.75)
* G = trunc((c_0 * Y - c_3 * U - c_2 * V) + c_6 + 0.75)
* B = trunc((c_0 * Y + c_4 * U ) + c_7 + 0.75)
* ```
*/
using CoefficientSet = std::array<s16, 8>;
struct ConversionBuffer {
/// Current reading/writing address of this buffer.
VAddr address;
/// Remaining amount of bytes to be DMAed, does not include the inter-trasfer gap.
u32 image_size;
/// Size of a single DMA transfer.
u16 transfer_unit;
/// Amount of bytes to be skipped between copying each `transfer_unit` bytes.
u16 gap;
};
struct ConversionConfiguration {
InputFormat input_format;
OutputFormat output_format;
Rotation rotation;
BlockAlignment block_alignment;
u16 input_line_width;
u16 input_lines;
CoefficientSet coefficients;
u16 alpha;
/// Input parameters for the Y (luma) plane
ConversionBuffer src_Y, src_U, src_V, src_YUYV;
/// Output parameters for the conversion results
ConversionBuffer dst;
ResultCode SetInputLineWidth(u16 width);
ResultCode SetInputLines(u16 lines);
ResultCode SetStandardCoefficient(StandardCoefficient standard_coefficient);
};
class Interface : public Service::Interface {
public:
Interface();

369
src/core/hw/y2r.cpp Normal file
View file

@ -0,0 +1,369 @@
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <array>
#include <numeric>
#include "common/assert.h"
#include "common/color.h"
#include "common/common_types.h"
#include "common/math_util.h"
#include "common/vector_math.h"
#include "core/hle/service/y2r_u.h"
#include "core/memory.h"
namespace HW {
namespace Y2R {
using namespace Y2R_U;
static const size_t MAX_TILES = 1024 / 8;
static const size_t TILE_SIZE = 8 * 8;
using ImageTile = std::array<u32, TILE_SIZE>;
/// Converts a image strip from the source YUV format into individual 8x8 RGB32 tiles.
static void ConvertYUVToRGB(InputFormat input_format,
const u8* input_Y, const u8* input_U, const u8* input_V, ImageTile output[],
unsigned int width, unsigned int height, const CoefficientSet& coefficients) {
for (unsigned int y = 0; y < height; ++y) {
for (unsigned int x = 0; x < width; ++x) {
s32 Y, U, V;
switch (input_format) {
case InputFormat::YUV422_Indiv8:
case InputFormat::YUV422_Indiv16:
Y = input_Y[y * width + x];
U = input_U[(y * width + x) / 2];
V = input_V[(y * width + x) / 2];
break;
case InputFormat::YUV420_Indiv8:
case InputFormat::YUV420_Indiv16:
Y = input_Y[y * width + x];
U = input_U[((y / 2) * width + x) / 2];
V = input_V[((y / 2) * width + x) / 2];
break;
case InputFormat::YUYV422_Interleaved:
Y = input_Y[(y * width + x) * 2];
U = input_Y[(y * width + (x / 2) * 2) * 2 + 1];
V = input_Y[(y * width + (x / 2) * 2) * 2 + 3];
break;
}
// This conversion process is bit-exact with hardware, as far as could be tested.
auto& c = coefficients;
s32 cY = c[0]*Y;
s32 r = cY + c[1]*V;
s32 g = cY - c[3]*U - c[2]*V;
s32 b = cY + c[4]*U;
const s32 rounding_offset = 0x18;
r = (r >> 3) + c[5] + rounding_offset;
g = (g >> 3) + c[6] + rounding_offset;
b = (b >> 3) + c[7] + rounding_offset;
unsigned int tile = x / 8;
unsigned int tile_x = x % 8;
u32* out = &output[tile][y * 8 + tile_x];
using MathUtil::Clamp;
*out = ((u32)Clamp(r >> 5, 0, 0xFF) << 24) |
((u32)Clamp(g >> 5, 0, 0xFF) << 16) |
((u32)Clamp(b >> 5, 0, 0xFF) << 8);
}
}
}
/// Simulates an incoming CDMA transfer. The N parameter is used to automatically convert 16-bit formats to 8-bit.
template <size_t N>
static void ReceiveData(u8* output, ConversionBuffer& buf, size_t amount_of_data) {
const u8* input = Memory::GetPointer(buf.address);
size_t output_unit = buf.transfer_unit / N;
ASSERT(amount_of_data % output_unit == 0);
while (amount_of_data > 0) {
for (size_t i = 0; i < output_unit; ++i) {
output[i] = input[i * N];
}
output += output_unit;
input += buf.transfer_unit + buf.gap;
buf.address += buf.transfer_unit + buf.gap;
buf.image_size -= buf.transfer_unit;
amount_of_data -= output_unit;
}
}
/// Convert intermediate RGB32 format to the final output format while simulating an outgoing CDMA transfer.
static void SendData(const u32* input, ConversionBuffer& buf, int amount_of_data,
OutputFormat output_format, u8 alpha) {
u8* output = Memory::GetPointer(buf.address);
while (amount_of_data > 0) {
u8* unit_end = output + buf.transfer_unit;
while (output < unit_end) {
u32 color = *input++;
Math::Vec4<u8> col_vec{
(color >> 24) & 0xFF, (color >> 16) & 0xFF, (color >> 8) & 0xFF, alpha,
};
switch (output_format) {
case OutputFormat::RGBA8:
Color::EncodeRGBA8(col_vec, output);
output += 4;
break;
case OutputFormat::RGB8:
Color::EncodeRGB8(col_vec, output);
output += 3;
break;
case OutputFormat::RGB5A1:
Color::EncodeRGB5A1(col_vec, output);
output += 2;
break;
case OutputFormat::RGB565:
Color::EncodeRGB565(col_vec, output);
output += 2;
break;
}
amount_of_data -= 1;
}
output += buf.gap;
buf.address += buf.transfer_unit + buf.gap;
buf.image_size -= buf.transfer_unit;
}
}
static const u8 linear_lut[64] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
};
static const u8 morton_lut[64] = {
0, 1, 4, 5, 16, 17, 20, 21,
2, 3, 6, 7, 18, 19, 22, 23,
8, 9, 12, 13, 24, 25, 28, 29,
10, 11, 14, 15, 26, 27, 30, 31,
32, 33, 36, 37, 48, 49, 52, 53,
34, 35, 38, 39, 50, 51, 54, 55,
40, 41, 44, 45, 56, 57, 60, 61,
42, 43, 46, 47, 58, 59, 62, 63,
};
static void RotateTile0(const ImageTile& input, ImageTile& output, int height, const u8 out_map[64]) {
for (int i = 0; i < height * 8; ++i) {
output[out_map[i]] = input[i];
}
}
static void RotateTile90(const ImageTile& input, ImageTile& output, int height, const u8 out_map[64]) {
int out_i = 0;
for (int x = 0; x < 8; ++x) {
for (int y = height - 1; y >= 0; --y) {
output[out_map[out_i++]] = input[y * 8 + x];
}
}
}
static void RotateTile180(const ImageTile& input, ImageTile& output, int height, const u8 out_map[64]) {
int out_i = 0;
for (int i = height * 8 - 1; i >= 0; --i) {
output[out_map[out_i++]] = input[i];
}
}
static void RotateTile270(const ImageTile& input, ImageTile& output, int height, const u8 out_map[64]) {
int out_i = 0;
for (int x = 8-1; x >= 0; --x) {
for (int y = 0; y < height; ++y) {
output[out_map[out_i++]] = input[y * 8 + x];
}
}
}
static void WriteTileToOutput(u32* output, const ImageTile& tile, int height, int line_stride) {
for (int y = 0; y < height; ++y) {
for (int x = 0; x < 8; ++x) {
output[y * line_stride + x] = tile[y * 8 + x];
}
}
}
/**
* Performs a Y2R colorspace conversion.
*
* The Y2R hardware implements hardware-accelerated YUV to RGB colorspace conversions. It is most
* commonly used for video playback or to display camera input to the screen.
*
* The conversion process is quite configurable, and can be divided in distinct steps. From
* observation, it appears that the hardware buffers a single 8-pixel tall strip of image data
* internally and converts it in one go before writing to the output and loading the next strip.
*
* The steps taken to convert one strip of image data are:
*
* - The hardware receives data via CDMA (http://3dbrew.org/wiki/Corelink_DMA_Engines), which is
* presumably stored in one or more internal buffers. This process can be done in several separate
* transfers, as long as they don't exceed the size of the internal image buffer. This allows
* flexibility in input strides.
* - The input data is decoded into a YUV tuple. Several formats are suported, see the `InputFormat`
* enum.
* - The YUV tuple is converted, using fixed point calculations, to RGB. This step can be configured
* using a set of coefficients to support different colorspace standards. See `CoefficientSet`.
* - The strip can be optionally rotated 90, 180 or 270 degrees. Since each strip is processed
* independently, this notably rotates each *strip*, not the entire image. This means that for 90
* or 270 degree rotations, the output will be in terms of several 8 x height images, and for any
* non-zero rotation the strips will have to be re-arranged so that the parts of the image will
* not be shuffled together. This limitation makes this a feature of somewhat dubious utility. 90
* or 270 degree rotations in images with non-even height don't seem to work properly.
* - The data is converted to the output RGB format. See the `OutputFormat` enum.
* - The data can be output either linearly line-by-line or in the swizzled 8x8 tile format used by
* the PICA. This is decided by the `BlockAlignment` enum. If 8x8 alignment is used, then the
* image must have a height divisible by 8. The image width must always be divisible by 8.
* - The final data is then CDMAed out to main memory and the next image strip is processed. This
* offers the same flexibility as the input stage.
*
* In this implementation, to avoid the combinatorial explosion of parameter combinations, common
* intermediate formats are used and where possible tables or parameters are used instead of
* diverging code paths to keep the amount of branches in check. Some steps are also merged to
* increase efficiency.
*
* Output for all valid settings combinations matches hardware, however output in some edge-cases
* differs:
*
* - `Block8x8` alignment with non-mod8 height produces different garbage patterns on the last
* strip, especially when combined with rotation.
* - Hardware, when using `Linear` alignment with a non-even height and 90 or 270 degree rotation
* produces misaligned output on the last strip. This implmentation produces output with the
* correct "expected" alignment.
*
* Hardware behaves strangely (doesn't fire the completion interrupt, for example) in these cases,
* so they are believed to be invalid configurations anyway.
*/
void PerformConversion(ConversionConfiguration& cvt) {
ASSERT(cvt.input_line_width % 8 == 0);
ASSERT(cvt.block_alignment != BlockAlignment::Block8x8 || cvt.input_lines % 8 == 0);
// Tiles per row
size_t num_tiles = cvt.input_line_width / 8;
ASSERT(num_tiles < MAX_TILES);
// Buffer used as a CDMA source/target.
std::unique_ptr<u8[]> data_buffer(new u8[cvt.input_line_width * 8 * 4]);
// Intermediate storage for decoded 8x8 image tiles. Always stored as RGB32.
std::unique_ptr<ImageTile[]> tiles(new ImageTile[num_tiles]);
ImageTile tmp_tile;
// LUT used to remap writes to a tile. Used to allow linear or swizzled output without
// requiring two different code paths.
const u8* tile_remap;
switch (cvt.block_alignment) {
case BlockAlignment::Linear:
tile_remap = linear_lut; break;
case BlockAlignment::Block8x8:
tile_remap = morton_lut; break;
}
for (unsigned int y = 0; y < cvt.input_lines; y += 8) {
unsigned int row_height = std::min(cvt.input_lines - y, 8u);
// Total size in pixels of incoming data required for this strip.
const size_t row_data_size = row_height * cvt.input_line_width;
u8* input_Y = data_buffer.get();
u8* input_U = input_Y + 8 * cvt.input_line_width;
u8* input_V = input_U + 8 * cvt.input_line_width / 2;
switch (cvt.input_format) {
case InputFormat::YUV422_Indiv8:
ReceiveData<1>(input_Y, cvt.src_Y, row_data_size);
ReceiveData<1>(input_U, cvt.src_U, row_data_size / 2);
ReceiveData<1>(input_V, cvt.src_V, row_data_size / 2);
break;
case InputFormat::YUV420_Indiv8:
ReceiveData<1>(input_Y, cvt.src_Y, row_data_size);
ReceiveData<1>(input_U, cvt.src_U, row_data_size / 4);
ReceiveData<1>(input_V, cvt.src_V, row_data_size / 4);
break;
case InputFormat::YUV422_Indiv16:
ReceiveData<2>(input_Y, cvt.src_Y, row_data_size);
ReceiveData<2>(input_U, cvt.src_U, row_data_size / 2);
ReceiveData<2>(input_V, cvt.src_V, row_data_size / 2);
break;
case InputFormat::YUV420_Indiv16:
ReceiveData<2>(input_Y, cvt.src_Y, row_data_size);
ReceiveData<2>(input_U, cvt.src_U, row_data_size / 4);
ReceiveData<2>(input_V, cvt.src_V, row_data_size / 4);
break;
case InputFormat::YUYV422_Interleaved:
input_U = nullptr;
input_V = nullptr;
ReceiveData<1>(input_Y, cvt.src_YUYV, row_data_size * 2);
break;
}
// Note(yuriks): If additional optimization is required, input_format can be moved to a
// template parameter, so that its dispatch can be moved to outside the inner loop.
ConvertYUVToRGB(cvt.input_format, input_Y, input_U, input_V, tiles.get(),
cvt.input_line_width, row_height, cvt.coefficients);
u32* output_buffer = reinterpret_cast<u32*>(data_buffer.get());
for (int i = 0; i < num_tiles; ++i) {
int image_strip_width, output_stride;
switch (cvt.rotation) {
case Rotation::None:
RotateTile0(tiles[i], tmp_tile, row_height, tile_remap);
image_strip_width = cvt.input_line_width;
output_stride = 8;
break;
case Rotation::Clockwise_90:
RotateTile90(tiles[i], tmp_tile, row_height, tile_remap);
image_strip_width = 8;
output_stride = 8 * row_height;
break;
case Rotation::Clockwise_180:
// For 180 and 270 degree rotations we also invert the order of tiles in the strip,
// since the rotates are done individually on each tile.
RotateTile180(tiles[num_tiles - i - 1], tmp_tile, row_height, tile_remap);
image_strip_width = cvt.input_line_width;
output_stride = 8;
break;
case Rotation::Clockwise_270:
RotateTile270(tiles[num_tiles - i - 1], tmp_tile, row_height, tile_remap);
image_strip_width = 8;
output_stride = 8 * row_height;
break;
}
switch (cvt.block_alignment) {
case BlockAlignment::Linear:
WriteTileToOutput(output_buffer, tmp_tile, row_height, image_strip_width);
output_buffer += output_stride;
break;
case BlockAlignment::Block8x8:
WriteTileToOutput(output_buffer, tmp_tile, 8, 8);
output_buffer += TILE_SIZE;
break;
}
}
// Note(yuriks): If additional optimization is required, output_format can be moved to a
// template parameter, so that its dispatch can be moved to outside the inner loop.
SendData(reinterpret_cast<u32*>(data_buffer.get()), cvt.dst, (int)row_data_size, cvt.output_format, (u8)cvt.alpha);
}
}
}
}

15
src/core/hw/y2r.h Normal file
View file

@ -0,0 +1,15 @@
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
namespace Y2R_U {
struct ConversionConfiguration;
}
namespace HW {
namespace Y2R {
void PerformConversion(Y2R_U::ConversionConfiguration& cvt);
}
}