2
1
Fork 0
mirror of https://github.com/yuzu-emu/yuzu.git synced 2024-07-04 23:31:19 +01:00

Merge pull request #9697 from liamwhite/kcap

kernel: add KCapabilities
This commit is contained in:
bunnei 2023-01-31 10:51:10 -08:00 committed by GitHub
commit de28cd0c2d
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 738 additions and 0 deletions

View file

@ -182,6 +182,8 @@ add_library(core STATIC
hle/kernel/k_auto_object_container.cpp
hle/kernel/k_auto_object_container.h
hle/kernel/k_affinity_mask.h
hle/kernel/k_capabilities.cpp
hle/kernel/k_capabilities.h
hle/kernel/k_class_token.cpp
hle/kernel/k_class_token.h
hle/kernel/k_client_port.cpp

View file

@ -25,6 +25,26 @@ constexpr std::array<s32, Common::BitSize<u64>()> VirtualToPhysicalCoreMap{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
};
static constexpr inline size_t NumVirtualCores = Common::BitSize<u64>();
static constexpr inline u64 VirtualCoreMask = [] {
u64 mask = 0;
for (size_t i = 0; i < NumVirtualCores; ++i) {
mask |= (UINT64_C(1) << i);
}
return mask;
}();
static constexpr inline u64 ConvertVirtualCoreMaskToPhysical(u64 v_core_mask) {
u64 p_core_mask = 0;
while (v_core_mask != 0) {
const u64 next = std::countr_zero(v_core_mask);
v_core_mask &= ~(static_cast<u64>(1) << next);
p_core_mask |= (static_cast<u64>(1) << VirtualToPhysicalCoreMap[next]);
}
return p_core_mask;
}
// Cortex-A57 supports 4 memory watchpoints
constexpr u64 NUM_WATCHPOINTS = 4;

View file

@ -0,0 +1,358 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/hardware_properties.h"
#include "core/hle/kernel/k_capabilities.h"
#include "core/hle/kernel/k_memory_layout.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc_results.h"
#include "core/hle/kernel/svc_version.h"
namespace Kernel {
Result KCapabilities::InitializeForKIP(std::span<const u32> kern_caps, KPageTable* page_table) {
// We're initializing an initial process.
m_svc_access_flags.reset();
m_irq_access_flags.reset();
m_debug_capabilities = 0;
m_handle_table_size = 0;
m_intended_kernel_version = 0;
m_program_type = 0;
// Initial processes may run on all cores.
constexpr u64 VirtMask = Core::Hardware::VirtualCoreMask;
constexpr u64 PhysMask = Core::Hardware::ConvertVirtualCoreMaskToPhysical(VirtMask);
m_core_mask = VirtMask;
m_phys_core_mask = PhysMask;
// Initial processes may use any user priority they like.
m_priority_mask = ~0xFULL;
// Here, Nintendo sets the kernel version to the current kernel version.
// We will follow suit and set the version to the highest supported kernel version.
KernelVersion intended_kernel_version{};
intended_kernel_version.major_version.Assign(Svc::SupportedKernelMajorVersion);
intended_kernel_version.minor_version.Assign(Svc::SupportedKernelMinorVersion);
m_intended_kernel_version = intended_kernel_version.raw;
// Parse the capabilities array.
R_RETURN(this->SetCapabilities(kern_caps, page_table));
}
Result KCapabilities::InitializeForUser(std::span<const u32> user_caps, KPageTable* page_table) {
// We're initializing a user process.
m_svc_access_flags.reset();
m_irq_access_flags.reset();
m_debug_capabilities = 0;
m_handle_table_size = 0;
m_intended_kernel_version = 0;
m_program_type = 0;
// User processes must specify what cores/priorities they can use.
m_core_mask = 0;
m_priority_mask = 0;
// Parse the user capabilities array.
R_RETURN(this->SetCapabilities(user_caps, page_table));
}
Result KCapabilities::SetCorePriorityCapability(const u32 cap) {
// We can't set core/priority if we've already set them.
R_UNLESS(m_core_mask == 0, ResultInvalidArgument);
R_UNLESS(m_priority_mask == 0, ResultInvalidArgument);
// Validate the core/priority.
CorePriority pack{cap};
const u32 min_core = pack.minimum_core_id;
const u32 max_core = pack.maximum_core_id;
const u32 max_prio = pack.lowest_thread_priority;
const u32 min_prio = pack.highest_thread_priority;
R_UNLESS(min_core <= max_core, ResultInvalidCombination);
R_UNLESS(min_prio <= max_prio, ResultInvalidCombination);
R_UNLESS(max_core < Core::Hardware::NumVirtualCores, ResultInvalidCoreId);
ASSERT(max_prio < Common::BitSize<u64>());
// Set core mask.
for (auto core_id = min_core; core_id <= max_core; core_id++) {
m_core_mask |= (1ULL << core_id);
}
ASSERT((m_core_mask & Core::Hardware::VirtualCoreMask) == m_core_mask);
// Set physical core mask.
m_phys_core_mask = Core::Hardware::ConvertVirtualCoreMaskToPhysical(m_core_mask);
// Set priority mask.
for (auto prio = min_prio; prio <= max_prio; prio++) {
m_priority_mask |= (1ULL << prio);
}
// We must have some core/priority we can use.
R_UNLESS(m_core_mask != 0, ResultInvalidArgument);
R_UNLESS(m_priority_mask != 0, ResultInvalidArgument);
// Processes must not have access to kernel thread priorities.
R_UNLESS((m_priority_mask & 0xF) == 0, ResultInvalidArgument);
R_SUCCEED();
}
Result KCapabilities::SetSyscallMaskCapability(const u32 cap, u32& set_svc) {
// Validate the index.
SyscallMask pack{cap};
const u32 mask = pack.mask;
const u32 index = pack.index;
const u32 index_flag = (1U << index);
R_UNLESS((set_svc & index_flag) == 0, ResultInvalidCombination);
set_svc |= index_flag;
// Set SVCs.
for (size_t i = 0; i < decltype(SyscallMask::mask)::bits; i++) {
const u32 svc_id = static_cast<u32>(decltype(SyscallMask::mask)::bits * index + i);
if (mask & (1U << i)) {
R_UNLESS(this->SetSvcAllowed(svc_id), ResultOutOfRange);
}
}
R_SUCCEED();
}
Result KCapabilities::MapRange_(const u32 cap, const u32 size_cap, KPageTable* page_table) {
const auto range_pack = MapRange{cap};
const auto size_pack = MapRangeSize{size_cap};
// Get/validate address/size
const u64 phys_addr = range_pack.address.Value() * PageSize;
// Validate reserved bits are unused.
R_UNLESS(size_pack.reserved.Value() == 0, ResultOutOfRange);
const size_t num_pages = size_pack.pages;
const size_t size = num_pages * PageSize;
R_UNLESS(num_pages != 0, ResultInvalidSize);
R_UNLESS(phys_addr < phys_addr + size, ResultInvalidAddress);
R_UNLESS(((phys_addr + size - 1) & ~PhysicalMapAllowedMask) == 0, ResultInvalidAddress);
// Do the mapping.
[[maybe_unused]] const KMemoryPermission perm = range_pack.read_only.Value()
? KMemoryPermission::UserRead
: KMemoryPermission::UserReadWrite;
if (MapRangeSize{size_cap}.normal) {
// R_RETURN(page_table->MapStatic(phys_addr, size, perm));
} else {
// R_RETURN(page_table->MapIo(phys_addr, size, perm));
}
UNIMPLEMENTED();
R_SUCCEED();
}
Result KCapabilities::MapIoPage_(const u32 cap, KPageTable* page_table) {
// Get/validate address/size
const u64 phys_addr = MapIoPage{cap}.address.Value() * PageSize;
const size_t num_pages = 1;
const size_t size = num_pages * PageSize;
R_UNLESS(num_pages != 0, ResultInvalidSize);
R_UNLESS(phys_addr < phys_addr + size, ResultInvalidAddress);
R_UNLESS(((phys_addr + size - 1) & ~PhysicalMapAllowedMask) == 0, ResultInvalidAddress);
// Do the mapping.
// R_RETURN(page_table->MapIo(phys_addr, size, KMemoryPermission_UserReadWrite));
UNIMPLEMENTED();
R_SUCCEED();
}
template <typename F>
Result KCapabilities::ProcessMapRegionCapability(const u32 cap, F f) {
// Define the allowed memory regions.
constexpr std::array<KMemoryRegionType, 4> MemoryRegions{
KMemoryRegionType_None,
KMemoryRegionType_KernelTraceBuffer,
KMemoryRegionType_OnMemoryBootImage,
KMemoryRegionType_DTB,
};
// Extract regions/read only.
const MapRegion pack{cap};
const std::array<RegionType, 3> types{pack.region0, pack.region1, pack.region2};
const std::array<u32, 3> ro{pack.read_only0, pack.read_only1, pack.read_only2};
for (size_t i = 0; i < types.size(); i++) {
const auto type = types[i];
const auto perm = ro[i] ? KMemoryPermission::UserRead : KMemoryPermission::UserReadWrite;
switch (type) {
case RegionType::NoMapping:
break;
case RegionType::KernelTraceBuffer:
case RegionType::OnMemoryBootImage:
case RegionType::DTB:
R_TRY(f(MemoryRegions[static_cast<u32>(type)], perm));
break;
default:
R_THROW(ResultNotFound);
}
}
R_SUCCEED();
}
Result KCapabilities::MapRegion_(const u32 cap, KPageTable* page_table) {
// Map each region into the process's page table.
R_RETURN(ProcessMapRegionCapability(
cap, [](KMemoryRegionType region_type, KMemoryPermission perm) -> Result {
// R_RETURN(page_table->MapRegion(region_type, perm));
UNIMPLEMENTED();
R_SUCCEED();
}));
}
Result KCapabilities::CheckMapRegion(KernelCore& kernel, const u32 cap) {
// Check that each region has a physical backing store.
R_RETURN(ProcessMapRegionCapability(
cap, [&](KMemoryRegionType region_type, KMemoryPermission perm) -> Result {
R_UNLESS(kernel.MemoryLayout().GetPhysicalMemoryRegionTree().FindFirstDerived(
region_type) != nullptr,
ResultOutOfRange);
R_SUCCEED();
}));
}
Result KCapabilities::SetInterruptPairCapability(const u32 cap) {
// Extract interrupts.
const InterruptPair pack{cap};
const std::array<u32, 2> ids{pack.interrupt_id0, pack.interrupt_id1};
for (size_t i = 0; i < ids.size(); i++) {
if (ids[i] != PaddingInterruptId) {
UNIMPLEMENTED();
// R_UNLESS(Kernel::GetInterruptManager().IsInterruptDefined(ids[i]), ResultOutOfRange);
// R_UNLESS(this->SetInterruptPermitted(ids[i]), ResultOutOfRange);
}
}
R_SUCCEED();
}
Result KCapabilities::SetProgramTypeCapability(const u32 cap) {
// Validate.
const ProgramType pack{cap};
R_UNLESS(pack.reserved == 0, ResultReservedUsed);
m_program_type = pack.type;
R_SUCCEED();
}
Result KCapabilities::SetKernelVersionCapability(const u32 cap) {
// Ensure we haven't set our version before.
R_UNLESS(KernelVersion{m_intended_kernel_version}.major_version == 0, ResultInvalidArgument);
// Set, ensure that we set a valid version.
m_intended_kernel_version = cap;
R_UNLESS(KernelVersion{m_intended_kernel_version}.major_version != 0, ResultInvalidArgument);
R_SUCCEED();
}
Result KCapabilities::SetHandleTableCapability(const u32 cap) {
// Validate.
const HandleTable pack{cap};
R_UNLESS(pack.reserved == 0, ResultReservedUsed);
m_handle_table_size = pack.size;
R_SUCCEED();
}
Result KCapabilities::SetDebugFlagsCapability(const u32 cap) {
// Validate.
const DebugFlags pack{cap};
R_UNLESS(pack.reserved == 0, ResultReservedUsed);
DebugFlags debug_capabilities{m_debug_capabilities};
debug_capabilities.allow_debug.Assign(pack.allow_debug);
debug_capabilities.force_debug.Assign(pack.force_debug);
m_debug_capabilities = debug_capabilities.raw;
R_SUCCEED();
}
Result KCapabilities::SetCapability(const u32 cap, u32& set_flags, u32& set_svc,
KPageTable* page_table) {
// Validate this is a capability we can act on.
const auto type = GetCapabilityType(cap);
R_UNLESS(type != CapabilityType::Invalid, ResultInvalidArgument);
// If the type is padding, we have no work to do.
R_SUCCEED_IF(type == CapabilityType::Padding);
// Check that we haven't already processed this capability.
const auto flag = GetCapabilityFlag(type);
R_UNLESS(((set_flags & InitializeOnceFlags) & flag) == 0, ResultInvalidCombination);
set_flags |= flag;
// Process the capability.
switch (type) {
case CapabilityType::CorePriority:
R_RETURN(this->SetCorePriorityCapability(cap));
case CapabilityType::SyscallMask:
R_RETURN(this->SetSyscallMaskCapability(cap, set_svc));
case CapabilityType::MapIoPage:
R_RETURN(this->MapIoPage_(cap, page_table));
case CapabilityType::MapRegion:
R_RETURN(this->MapRegion_(cap, page_table));
case CapabilityType::InterruptPair:
R_RETURN(this->SetInterruptPairCapability(cap));
case CapabilityType::ProgramType:
R_RETURN(this->SetProgramTypeCapability(cap));
case CapabilityType::KernelVersion:
R_RETURN(this->SetKernelVersionCapability(cap));
case CapabilityType::HandleTable:
R_RETURN(this->SetHandleTableCapability(cap));
case CapabilityType::DebugFlags:
R_RETURN(this->SetDebugFlagsCapability(cap));
default:
R_THROW(ResultInvalidArgument);
}
}
Result KCapabilities::SetCapabilities(std::span<const u32> caps, KPageTable* page_table) {
u32 set_flags = 0, set_svc = 0;
for (size_t i = 0; i < caps.size(); i++) {
const u32 cap{caps[i]};
if (GetCapabilityType(cap) == CapabilityType::MapRange) {
// Check that the pair cap exists.
R_UNLESS((++i) < caps.size(), ResultInvalidCombination);
// Check the pair cap is a map range cap.
const u32 size_cap{caps[i]};
R_UNLESS(GetCapabilityType(size_cap) == CapabilityType::MapRange,
ResultInvalidCombination);
// Map the range.
R_TRY(this->MapRange_(cap, size_cap, page_table));
} else {
R_TRY(this->SetCapability(cap, set_flags, set_svc, page_table));
}
}
R_SUCCEED();
}
Result KCapabilities::CheckCapabilities(KernelCore& kernel, std::span<const u32> caps) {
for (auto cap : caps) {
// Check the capability refers to a valid region.
if (GetCapabilityType(cap) == CapabilityType::MapRegion) {
R_TRY(CheckMapRegion(kernel, cap));
}
}
R_SUCCEED();
}
} // namespace Kernel

View file

@ -0,0 +1,295 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <bitset>
#include <span>
#include "common/bit_field.h"
#include "common/common_types.h"
#include "core/hle/kernel/svc_types.h"
#include "core/hle/result.h"
namespace Kernel {
class KPageTable;
class KernelCore;
class KCapabilities {
public:
constexpr explicit KCapabilities() = default;
Result InitializeForKIP(std::span<const u32> kern_caps, KPageTable* page_table);
Result InitializeForUser(std::span<const u32> user_caps, KPageTable* page_table);
static Result CheckCapabilities(KernelCore& kernel, std::span<const u32> user_caps);
constexpr u64 GetCoreMask() const {
return m_core_mask;
}
constexpr u64 GetPhysicalCoreMask() const {
return m_phys_core_mask;
}
constexpr u64 GetPriorityMask() const {
return m_priority_mask;
}
constexpr s32 GetHandleTableSize() const {
return m_handle_table_size;
}
constexpr const Svc::SvcAccessFlagSet& GetSvcPermissions() const {
return m_svc_access_flags;
}
constexpr bool IsPermittedSvc(u32 id) const {
return (id < m_svc_access_flags.size()) && m_svc_access_flags[id];
}
constexpr bool IsPermittedInterrupt(u32 id) const {
return (id < m_irq_access_flags.size()) && m_irq_access_flags[id];
}
constexpr bool IsPermittedDebug() const {
return DebugFlags{m_debug_capabilities}.allow_debug.Value() != 0;
}
constexpr bool CanForceDebug() const {
return DebugFlags{m_debug_capabilities}.force_debug.Value() != 0;
}
constexpr u32 GetIntendedKernelMajorVersion() const {
return KernelVersion{m_intended_kernel_version}.major_version;
}
constexpr u32 GetIntendedKernelMinorVersion() const {
return KernelVersion{m_intended_kernel_version}.minor_version;
}
private:
static constexpr size_t InterruptIdCount = 0x400;
using InterruptFlagSet = std::bitset<InterruptIdCount>;
enum class CapabilityType : u32 {
CorePriority = (1U << 3) - 1,
SyscallMask = (1U << 4) - 1,
MapRange = (1U << 6) - 1,
MapIoPage = (1U << 7) - 1,
MapRegion = (1U << 10) - 1,
InterruptPair = (1U << 11) - 1,
ProgramType = (1U << 13) - 1,
KernelVersion = (1U << 14) - 1,
HandleTable = (1U << 15) - 1,
DebugFlags = (1U << 16) - 1,
Invalid = 0U,
Padding = ~0U,
};
using RawCapabilityValue = u32;
static constexpr CapabilityType GetCapabilityType(const RawCapabilityValue value) {
return static_cast<CapabilityType>((~value & (value + 1)) - 1);
}
static constexpr u32 GetCapabilityFlag(CapabilityType type) {
return static_cast<u32>(type) + 1;
}
template <CapabilityType Type>
static constexpr inline u32 CapabilityFlag = static_cast<u32>(Type) + 1;
template <CapabilityType Type>
static constexpr inline u32 CapabilityId = std::countr_zero(CapabilityFlag<Type>);
union CorePriority {
static_assert(CapabilityId<CapabilityType::CorePriority> + 1 == 4);
RawCapabilityValue raw;
BitField<0, 4, CapabilityType> id;
BitField<4, 6, u32> lowest_thread_priority;
BitField<10, 6, u32> highest_thread_priority;
BitField<16, 8, u32> minimum_core_id;
BitField<24, 8, u32> maximum_core_id;
};
union SyscallMask {
static_assert(CapabilityId<CapabilityType::SyscallMask> + 1 == 5);
RawCapabilityValue raw;
BitField<0, 5, CapabilityType> id;
BitField<5, 24, u32> mask;
BitField<29, 3, u32> index;
};
// #undef MESOSPHERE_ENABLE_LARGE_PHYSICAL_ADDRESS_CAPABILITIES
static constexpr u64 PhysicalMapAllowedMask = (1ULL << 36) - 1;
union MapRange {
static_assert(CapabilityId<CapabilityType::MapRange> + 1 == 7);
RawCapabilityValue raw;
BitField<0, 7, CapabilityType> id;
BitField<7, 24, u32> address;
BitField<31, 1, u32> read_only;
};
union MapRangeSize {
static_assert(CapabilityId<CapabilityType::MapRange> + 1 == 7);
RawCapabilityValue raw;
BitField<0, 7, CapabilityType> id;
BitField<7, 20, u32> pages;
BitField<27, 4, u32> reserved;
BitField<31, 1, u32> normal;
};
union MapIoPage {
static_assert(CapabilityId<CapabilityType::MapIoPage> + 1 == 8);
RawCapabilityValue raw;
BitField<0, 8, CapabilityType> id;
BitField<8, 24, u32> address;
};
enum class RegionType : u32 {
NoMapping = 0,
KernelTraceBuffer = 1,
OnMemoryBootImage = 2,
DTB = 3,
};
union MapRegion {
static_assert(CapabilityId<CapabilityType::MapRegion> + 1 == 11);
RawCapabilityValue raw;
BitField<0, 11, CapabilityType> id;
BitField<11, 6, RegionType> region0;
BitField<17, 1, u32> read_only0;
BitField<18, 6, RegionType> region1;
BitField<24, 1, u32> read_only1;
BitField<25, 6, RegionType> region2;
BitField<31, 1, u32> read_only2;
};
union InterruptPair {
static_assert(CapabilityId<CapabilityType::InterruptPair> + 1 == 12);
RawCapabilityValue raw;
BitField<0, 12, CapabilityType> id;
BitField<12, 10, u32> interrupt_id0;
BitField<22, 10, u32> interrupt_id1;
};
union ProgramType {
static_assert(CapabilityId<CapabilityType::ProgramType> + 1 == 14);
RawCapabilityValue raw;
BitField<0, 14, CapabilityType> id;
BitField<14, 3, u32> type;
BitField<17, 15, u32> reserved;
};
union KernelVersion {
static_assert(CapabilityId<CapabilityType::KernelVersion> + 1 == 15);
RawCapabilityValue raw;
BitField<0, 15, CapabilityType> id;
BitField<15, 4, u32> major_version;
BitField<19, 13, u32> minor_version;
};
union HandleTable {
static_assert(CapabilityId<CapabilityType::HandleTable> + 1 == 16);
RawCapabilityValue raw;
BitField<0, 16, CapabilityType> id;
BitField<16, 10, u32> size;
BitField<26, 6, u32> reserved;
};
union DebugFlags {
static_assert(CapabilityId<CapabilityType::DebugFlags> + 1 == 17);
RawCapabilityValue raw;
BitField<0, 17, CapabilityType> id;
BitField<17, 1, u32> allow_debug;
BitField<18, 1, u32> force_debug;
BitField<19, 13, u32> reserved;
};
static_assert(sizeof(CorePriority) == 4);
static_assert(sizeof(SyscallMask) == 4);
static_assert(sizeof(MapRange) == 4);
static_assert(sizeof(MapRangeSize) == 4);
static_assert(sizeof(MapIoPage) == 4);
static_assert(sizeof(MapRegion) == 4);
static_assert(sizeof(InterruptPair) == 4);
static_assert(sizeof(ProgramType) == 4);
static_assert(sizeof(KernelVersion) == 4);
static_assert(sizeof(HandleTable) == 4);
static_assert(sizeof(DebugFlags) == 4);
static constexpr u32 InitializeOnceFlags =
CapabilityFlag<CapabilityType::CorePriority> | CapabilityFlag<CapabilityType::ProgramType> |
CapabilityFlag<CapabilityType::KernelVersion> |
CapabilityFlag<CapabilityType::HandleTable> | CapabilityFlag<CapabilityType::DebugFlags>;
static const u32 PaddingInterruptId = 0x3FF;
static_assert(PaddingInterruptId < InterruptIdCount);
private:
constexpr bool SetSvcAllowed(u32 id) {
if (id < m_svc_access_flags.size()) [[likely]] {
m_svc_access_flags[id] = true;
return true;
} else {
return false;
}
}
constexpr bool SetInterruptPermitted(u32 id) {
if (id < m_irq_access_flags.size()) [[likely]] {
m_irq_access_flags[id] = true;
return true;
} else {
return false;
}
}
Result SetCorePriorityCapability(const u32 cap);
Result SetSyscallMaskCapability(const u32 cap, u32& set_svc);
Result MapRange_(const u32 cap, const u32 size_cap, KPageTable* page_table);
Result MapIoPage_(const u32 cap, KPageTable* page_table);
Result MapRegion_(const u32 cap, KPageTable* page_table);
Result SetInterruptPairCapability(const u32 cap);
Result SetProgramTypeCapability(const u32 cap);
Result SetKernelVersionCapability(const u32 cap);
Result SetHandleTableCapability(const u32 cap);
Result SetDebugFlagsCapability(const u32 cap);
template <typename F>
static Result ProcessMapRegionCapability(const u32 cap, F f);
static Result CheckMapRegion(KernelCore& kernel, const u32 cap);
Result SetCapability(const u32 cap, u32& set_flags, u32& set_svc, KPageTable* page_table);
Result SetCapabilities(std::span<const u32> caps, KPageTable* page_table);
private:
Svc::SvcAccessFlagSet m_svc_access_flags{};
InterruptFlagSet m_irq_access_flags{};
u64 m_core_mask{};
u64 m_phys_core_mask{};
u64 m_priority_mask{};
u32 m_debug_capabilities{};
s32 m_handle_table_size{};
u32 m_intended_kernel_version{};
u32 m_program_type{};
};
} // namespace Kernel

View file

@ -3,6 +3,8 @@
#pragma once
#include <bitset>
#include "common/common_funcs.h"
#include "common/common_types.h"
@ -592,4 +594,7 @@ struct CreateProcessParameter {
};
static_assert(sizeof(CreateProcessParameter) == 0x30);
constexpr size_t NumSupervisorCalls = 0xC0;
using SvcAccessFlagSet = std::bitset<NumSupervisorCalls>;
} // namespace Kernel::Svc

View file

@ -0,0 +1,58 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "common/bit_field.h"
#include "common/common_types.h"
#include "common/literals.h"
namespace Kernel::Svc {
constexpr inline u32 ConvertToSvcMajorVersion(u32 sdk) {
return sdk + 4;
}
constexpr inline u32 ConvertToSdkMajorVersion(u32 svc) {
return svc - 4;
}
constexpr inline u32 ConvertToSvcMinorVersion(u32 sdk) {
return sdk;
}
constexpr inline u32 ConvertToSdkMinorVersion(u32 svc) {
return svc;
}
union KernelVersion {
u32 value;
BitField<0, 4, u32> minor_version;
BitField<4, 13, u32> major_version;
};
constexpr inline u32 EncodeKernelVersion(u32 major, u32 minor) {
return decltype(KernelVersion::minor_version)::FormatValue(minor) |
decltype(KernelVersion::major_version)::FormatValue(major);
}
constexpr inline u32 GetKernelMajorVersion(u32 encoded) {
return std::bit_cast<decltype(KernelVersion::major_version)>(encoded).Value();
}
constexpr inline u32 GetKernelMinorVersion(u32 encoded) {
return std::bit_cast<decltype(KernelVersion::minor_version)>(encoded).Value();
}
// Nintendo doesn't support programs targeting SVC versions < 3.0.
constexpr inline u32 RequiredKernelMajorVersion = 3;
constexpr inline u32 RequiredKernelMinorVersion = 0;
constexpr inline u32 RequiredKernelVersion =
EncodeKernelVersion(RequiredKernelMajorVersion, RequiredKernelMinorVersion);
// This is the highest SVC version supported, to be updated on new kernel releases.
// NOTE: Official kernel versions have SVC major = SDK major + 4, SVC minor = SDK minor.
constexpr inline u32 SupportedKernelMajorVersion = ConvertToSvcMajorVersion(15);
constexpr inline u32 SupportedKernelMinorVersion = ConvertToSvcMinorVersion(3);
constexpr inline u32 SupportedKernelVersion =
EncodeKernelVersion(SupportedKernelMajorVersion, SupportedKernelMinorVersion);
} // namespace Kernel::Svc