2
1
Fork 0
mirror of https://github.com/yuzu-emu/yuzu.git synced 2024-07-04 23:31:19 +01:00

service/audren_u: Clean up work buffer calculations

"Unmagics" quite a few magic constants within this code, making it much
easier to understand. Particularly given this factors out specific
sections into their own self-contained lambda functions.
This commit is contained in:
Lioncash 2019-04-29 08:47:24 -04:00
parent 78574e7a47
commit de93507a5a

View file

@ -8,6 +8,7 @@
#include "audio_core/audio_renderer.h" #include "audio_core/audio_renderer.h"
#include "common/alignment.h" #include "common/alignment.h"
#include "common/bit_util.h"
#include "common/common_funcs.h" #include "common/common_funcs.h"
#include "common/logging/log.h" #include "common/logging/log.h"
#include "common/string_util.h" #include "common/string_util.h"
@ -263,63 +264,227 @@ void AudRenU::OpenAudioRenderer(Kernel::HLERequestContext& ctx) {
} }
void AudRenU::GetAudioRendererWorkBufferSize(Kernel::HLERequestContext& ctx) { void AudRenU::GetAudioRendererWorkBufferSize(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp{ctx};
auto params = rp.PopRaw<AudioCore::AudioRendererParameter>();
LOG_DEBUG(Service_Audio, "called"); LOG_DEBUG(Service_Audio, "called");
u64 buffer_sz = Common::AlignUp(4 * params.mix_buffer_count, 0x40); IPC::RequestParser rp{ctx};
buffer_sz += params.submix_count * 1024; const auto params = rp.PopRaw<AudioCore::AudioRendererParameter>();
buffer_sz += 0x940 * (params.submix_count + 1);
buffer_sz += 0x3F0 * params.voice_count;
buffer_sz += Common::AlignUp(8 * (params.submix_count + 1), 0x10);
buffer_sz += Common::AlignUp(8 * params.voice_count, 0x10);
buffer_sz += Common::AlignUp(
(0x3C0 * (params.sink_count + params.submix_count) + 4 * params.sample_count) *
(params.mix_buffer_count + 6),
0x40);
if (IsFeatureSupported(AudioFeatures::Splitter, params.revision)) { // Several calculations below align the sizes being calculated
const u32 count = params.submix_count + 1; // onto a 64 byte boundary.
u64 node_count = Common::AlignUp(count, 0x40); static constexpr u64 buffer_alignment_size = 64;
const u64 node_state_buffer_sz =
4 * (node_count * node_count) + 0xC * node_count + 2 * (node_count / 8); // Some calculations that calculate portions of the buffer
u64 edge_matrix_buffer_sz = 0; // that will contain information, on the other hand, align
node_count = Common::AlignUp(count * count, 0x40); // the result of some of their calcularions on a 16 byte boundary.
if (node_count >> 31 != 0) { static constexpr u64 info_field_alignment_size = 16;
edge_matrix_buffer_sz = (node_count | 7) / 8;
} else { // Size of the data structure representing the bulk of the voice-related state.
edge_matrix_buffer_sz = node_count / 8; static constexpr u64 voice_state_size = 0x100;
// Size of the upsampler manager data structure
constexpr u64 upsampler_manager_size = 0x48;
// Calculates the part of the size that relates to mix buffers.
const auto calculate_mix_buffer_sizes = [](const AudioCore::AudioRendererParameter& params) {
// As of 8.0.0 this is the maximum on voice channels.
constexpr u64 max_voice_channels = 6;
// The service expects the sample_count member of the parameters to either be
// a value of 160 or 240, so the maximum sample count is assumed in order
// to adequately handle all values at runtime.
constexpr u64 default_max_sample_count = 240;
const u64 total_mix_buffers = params.mix_buffer_count + max_voice_channels;
u64 size = 0;
size += total_mix_buffers * (sizeof(s32) * params.sample_count);
size += total_mix_buffers * (sizeof(s32) * default_max_sample_count);
size += u64{params.submix_count} + params.sink_count;
size = Common::AlignUp(size, buffer_alignment_size);
size += Common::AlignUp(params.unknown_30, buffer_alignment_size);
size += Common::AlignUp(sizeof(s32) * params.mix_buffer_count, buffer_alignment_size);
return size;
};
// Calculates the portion of the size related to the mix data (and the sorting thereof).
const auto calculate_mix_info_size = [this](const AudioCore::AudioRendererParameter& params) {
// The size of the mixing info data structure.
constexpr u64 mix_info_size = 0x940;
// Consists of total submixes with the final mix included.
const u64 total_mix_count = u64{params.submix_count} + 1;
// The total number of effects that may be available to the audio renderer at any time.
constexpr u64 max_effects = 256;
// Calculates the part of the size related to the audio node state.
// This will only be used if the audio revision supports the splitter.
const auto calculate_node_state_size = [](std::size_t num_nodes) {
// Internally within a nodestate, it appears to use a data structure
// similar to a std::bitset<64> twice.
constexpr u64 bit_size = Common::BitSize<u64>();
constexpr u64 num_bitsets = 2;
// Node state instances have three states internally for performing
// depth-first searches of nodes. Initialized, Found, and Done Sorting.
constexpr u64 num_states = 3;
u64 size = 0;
size += (num_nodes * num_nodes) * sizeof(s32);
size += num_states * (num_nodes * sizeof(s32));
size += num_bitsets * (Common::AlignUp(num_nodes, bit_size) / Common::BitSize<u8>());
return size;
};
// Calculates the part of the size related to the adjacency (aka edge) matrix.
const auto calculate_edge_matrix_size = [](std::size_t num_nodes) {
return (num_nodes * num_nodes) * sizeof(s32);
};
u64 size = 0;
size += Common::AlignUp(sizeof(void*) * total_mix_count, info_field_alignment_size);
size += Common::AlignUp(mix_info_size * total_mix_count, info_field_alignment_size);
size += Common::AlignUp(sizeof(s32) * max_effects * params.submix_count,
info_field_alignment_size);
if (IsFeatureSupported(AudioFeatures::Splitter, params.revision)) {
size += Common::AlignUp(calculate_node_state_size(total_mix_count) +
calculate_edge_matrix_size(total_mix_count),
info_field_alignment_size);
} }
buffer_sz += Common::AlignUp(node_state_buffer_sz + edge_matrix_buffer_sz, 0x10);
}
buffer_sz += 0x20 * (params.effect_count + 4 * params.voice_count) + 0x50; return size;
if (IsFeatureSupported(AudioFeatures::Splitter, params.revision)) { };
buffer_sz += 0xE0 * params.num_splitter_send_channels;
buffer_sz += 0x20 * params.splitter_count;
buffer_sz += Common::AlignUp(4 * params.num_splitter_send_channels, 0x10);
}
buffer_sz = Common::AlignUp(buffer_sz, 0x40) + 0x170 * params.sink_count;
u64 output_sz = buffer_sz + 0x280 * params.sink_count + 0x4B0 * params.effect_count +
((params.voice_count * 256) | 0x40);
if (params.performance_frame_count >= 1) { // Calculates the part of the size related to voice channel info.
output_sz = Common::AlignUp(((16 * params.sink_count + 16 * params.effect_count + const auto calculate_voice_info_size = [](const AudioCore::AudioRendererParameter& params) {
16 * params.voice_count + 16) + constexpr u64 voice_info_size = 0x220;
0x658) * constexpr u64 voice_resource_size = 0xD0;
(params.performance_frame_count + 1) +
0xc0, u64 size = 0;
0x40) + size += Common::AlignUp(sizeof(void*) * params.voice_count, info_field_alignment_size);
output_sz; size += Common::AlignUp(voice_info_size * params.voice_count, info_field_alignment_size);
} size +=
output_sz = Common::AlignUp(output_sz + 0x1807e, 0x1000); Common::AlignUp(voice_resource_size * params.voice_count, info_field_alignment_size);
size += Common::AlignUp(voice_state_size * params.voice_count, info_field_alignment_size);
return size;
};
// Calculates the part of the size related to memory pools.
const auto calculate_memory_pools_size = [](const AudioCore::AudioRendererParameter& params) {
const u64 num_memory_pools = sizeof(s32) * (u64{params.effect_count} + params.voice_count);
const u64 memory_pool_info_size = 0x20;
return Common::AlignUp(num_memory_pools * memory_pool_info_size, info_field_alignment_size);
};
// Calculates the part of the size related to the splitter context.
const auto calculate_splitter_context_size =
[this](const AudioCore::AudioRendererParameter& params) -> u64 {
if (!IsFeatureSupported(AudioFeatures::Splitter, params.revision)) {
return 0;
}
constexpr u64 splitter_info_size = 0x20;
constexpr u64 splitter_destination_data_size = 0xE0;
u64 size = 0;
size += params.num_splitter_send_channels;
size +=
Common::AlignUp(splitter_info_size * params.splitter_count, info_field_alignment_size);
size += Common::AlignUp(splitter_destination_data_size * params.num_splitter_send_channels,
info_field_alignment_size);
return size;
};
// Calculates the part of the size related to the upsampler info.
const auto calculate_upsampler_info_size = [](const AudioCore::AudioRendererParameter& params) {
constexpr u64 upsampler_info_size = 0x280;
// Yes, using the buffer size over info alignment size is intentional here.
return Common::AlignUp(upsampler_info_size * (u64{params.submix_count} + params.sink_count),
buffer_alignment_size);
};
// Calculates the part of the size related to effect info.
const auto calculate_effect_info_size = [](const AudioCore::AudioRendererParameter& params) {
constexpr u64 effect_info_size = 0x2B0;
return Common::AlignUp(effect_info_size * params.effect_count, info_field_alignment_size);
};
// Calculates the part of the size related to audio sink info.
const auto calculate_sink_info_size = [](const AudioCore::AudioRendererParameter& params) {
const u64 sink_info_size = 0x170;
return Common::AlignUp(sink_info_size * params.sink_count, info_field_alignment_size);
};
// Calculates the part of the size related to voice state info.
const auto calculate_voice_state_size = [](const AudioCore::AudioRendererParameter& params) {
const u64 voice_state_size = 0x100;
const u64 additional_size = buffer_alignment_size - 1;
return Common::AlignUp(voice_state_size * params.voice_count + additional_size,
info_field_alignment_size);
};
// Calculates the part of the size related to performance statistics.
const auto calculate_performance_size = [](const AudioCore::AudioRendererParameter& params) {
// Extra size value appended to the end of the calculation.
constexpr u64 appended = 128;
// Data structure sizes
constexpr u64 perf_statistics_size = 0x0C;
constexpr u64 header_size = 0x18;
constexpr u64 entry_size = 0x10;
constexpr u64 detail_size = 0x10;
constexpr u64 max_detail_entries = 100;
// + 1 to include the final mix, similar to calculating mix info.
const u64 entry_count = u64{params.effect_count} + params.submix_count + params.sink_count +
params.voice_count + 1;
const u64 size_per_frame =
header_size + (entry_size * entry_count) + (detail_size * max_detail_entries);
u64 size = 0;
size += Common::AlignUp(size_per_frame * params.performance_frame_count + 1,
buffer_alignment_size);
size += Common::AlignUp(perf_statistics_size, buffer_alignment_size);
size += appended;
return size;
};
// Calculates the part of the size that relates to the audio command buffer.
const auto calculate_command_buffer_size = [] {
constexpr u64 command_buffer_size = 0x18000;
constexpr u64 alignment = (buffer_alignment_size - 1) * 2;
return command_buffer_size + alignment;
};
u64 size = 0;
size += calculate_mix_buffer_sizes(params);
size += calculate_mix_info_size(params);
size += calculate_voice_info_size(params);
size += upsampler_manager_size;
size += calculate_memory_pools_size(params);
size += calculate_splitter_context_size(params);
size = Common::AlignUp(size, buffer_alignment_size);
size += calculate_upsampler_info_size(params);
size += calculate_effect_info_size(params);
size += calculate_sink_info_size(params);
size += calculate_voice_state_size(params);
size += calculate_performance_size(params);
size += calculate_command_buffer_size();
// finally, 4KB page align the size, and we're done.
size = Common::AlignUp(size, 4096);
IPC::ResponseBuilder rb{ctx, 4}; IPC::ResponseBuilder rb{ctx, 4};
rb.Push(RESULT_SUCCESS); rb.Push(RESULT_SUCCESS);
rb.Push<u64>(output_sz); rb.Push<u64>(size);
LOG_DEBUG(Service_Audio, "buffer_size=0x{:X}", output_sz); LOG_DEBUG(Service_Audio, "buffer_size=0x{:X}", size);
} }
void AudRenU::GetAudioDeviceService(Kernel::HLERequestContext& ctx) { void AudRenU::GetAudioDeviceService(Kernel::HLERequestContext& ctx) {