2
1
Fork 0
mirror of https://github.com/yuzu-emu/yuzu.git synced 2024-07-04 23:31:19 +01:00

SVC: Correct svcWaitForAddress and svcSignalToAddress.

This commit is contained in:
Fernando Sahmkow 2020-03-03 17:19:44 -04:00
parent 1e987dbe8d
commit e4b175ade2
4 changed files with 169 additions and 76 deletions

View file

@ -7,11 +7,15 @@
#include "common/assert.h" #include "common/assert.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "core/arm/exclusive_monitor.h"
#include "core/core.h" #include "core/core.h"
#include "core/hle/kernel/address_arbiter.h" #include "core/hle/kernel/address_arbiter.h"
#include "core/hle/kernel/errors.h" #include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/scheduler.h" #include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h" #include "core/hle/kernel/thread.h"
#include "core/hle/kernel/time_manager.h"
#include "core/hle/result.h" #include "core/hle/result.h"
#include "core/memory.h" #include "core/memory.h"
@ -20,6 +24,7 @@ namespace Kernel {
// Wake up num_to_wake (or all) threads in a vector. // Wake up num_to_wake (or all) threads in a vector.
void AddressArbiter::WakeThreads(const std::vector<std::shared_ptr<Thread>>& waiting_threads, void AddressArbiter::WakeThreads(const std::vector<std::shared_ptr<Thread>>& waiting_threads,
s32 num_to_wake) { s32 num_to_wake) {
auto& time_manager = system.Kernel().TimeManager();
// Only process up to 'target' threads, unless 'target' is <= 0, in which case process // Only process up to 'target' threads, unless 'target' is <= 0, in which case process
// them all. // them all.
std::size_t last = waiting_threads.size(); std::size_t last = waiting_threads.size();
@ -29,12 +34,20 @@ void AddressArbiter::WakeThreads(const std::vector<std::shared_ptr<Thread>>& wai
// Signal the waiting threads. // Signal the waiting threads.
for (std::size_t i = 0; i < last; i++) { for (std::size_t i = 0; i < last; i++) {
if (waiting_threads[i]->GetStatus() != ThreadStatus::WaitArb) {
last++;
last = std::min(waiting_threads.size(), last);
continue;
}
time_manager.CancelTimeEvent(waiting_threads[i].get());
ASSERT(waiting_threads[i]->GetStatus() == ThreadStatus::WaitArb); ASSERT(waiting_threads[i]->GetStatus() == ThreadStatus::WaitArb);
waiting_threads[i]->SetWaitSynchronizationResult(RESULT_SUCCESS); waiting_threads[i]->SetSynchronizationResults(nullptr, RESULT_SUCCESS);
RemoveThread(waiting_threads[i]); RemoveThread(waiting_threads[i]);
waiting_threads[i]->WaitForArbitration(false);
waiting_threads[i]->SetArbiterWaitAddress(0); waiting_threads[i]->SetArbiterWaitAddress(0);
waiting_threads[i]->ResumeFromWait(); waiting_threads[i]->ResumeFromWait();
system.PrepareReschedule(waiting_threads[i]->GetProcessorID());
} }
} }
@ -56,6 +69,7 @@ ResultCode AddressArbiter::SignalToAddress(VAddr address, SignalType type, s32 v
} }
ResultCode AddressArbiter::SignalToAddressOnly(VAddr address, s32 num_to_wake) { ResultCode AddressArbiter::SignalToAddressOnly(VAddr address, s32 num_to_wake) {
SchedulerLock lock(system.Kernel());
const std::vector<std::shared_ptr<Thread>> waiting_threads = const std::vector<std::shared_ptr<Thread>> waiting_threads =
GetThreadsWaitingOnAddress(address); GetThreadsWaitingOnAddress(address);
WakeThreads(waiting_threads, num_to_wake); WakeThreads(waiting_threads, num_to_wake);
@ -64,6 +78,7 @@ ResultCode AddressArbiter::SignalToAddressOnly(VAddr address, s32 num_to_wake) {
ResultCode AddressArbiter::IncrementAndSignalToAddressIfEqual(VAddr address, s32 value, ResultCode AddressArbiter::IncrementAndSignalToAddressIfEqual(VAddr address, s32 value,
s32 num_to_wake) { s32 num_to_wake) {
SchedulerLock lock(system.Kernel());
auto& memory = system.Memory(); auto& memory = system.Memory();
// Ensure that we can write to the address. // Ensure that we can write to the address.
@ -71,16 +86,25 @@ ResultCode AddressArbiter::IncrementAndSignalToAddressIfEqual(VAddr address, s32
return ERR_INVALID_ADDRESS_STATE; return ERR_INVALID_ADDRESS_STATE;
} }
if (static_cast<s32>(memory.Read32(address)) != value) { const std::size_t current_core = system.CurrentCoreIndex();
return ERR_INVALID_STATE; auto& monitor = system.Monitor();
} u32 current_value;
do {
monitor.SetExclusive(current_core, address);
current_value = memory.Read32(address);
if (current_value != value) {
return ERR_INVALID_STATE;
}
current_value++;
} while (!monitor.ExclusiveWrite32(current_core, address, current_value));
memory.Write32(address, static_cast<u32>(value + 1));
return SignalToAddressOnly(address, num_to_wake); return SignalToAddressOnly(address, num_to_wake);
} }
ResultCode AddressArbiter::ModifyByWaitingCountAndSignalToAddressIfEqual(VAddr address, s32 value, ResultCode AddressArbiter::ModifyByWaitingCountAndSignalToAddressIfEqual(VAddr address, s32 value,
s32 num_to_wake) { s32 num_to_wake) {
SchedulerLock lock(system.Kernel());
auto& memory = system.Memory(); auto& memory = system.Memory();
// Ensure that we can write to the address. // Ensure that we can write to the address.
@ -92,29 +116,34 @@ ResultCode AddressArbiter::ModifyByWaitingCountAndSignalToAddressIfEqual(VAddr a
const std::vector<std::shared_ptr<Thread>> waiting_threads = const std::vector<std::shared_ptr<Thread>> waiting_threads =
GetThreadsWaitingOnAddress(address); GetThreadsWaitingOnAddress(address);
// Determine the modified value depending on the waiting count. const std::size_t current_core = system.CurrentCoreIndex();
auto& monitor = system.Monitor();
s32 updated_value; s32 updated_value;
if (num_to_wake <= 0) { do {
if (waiting_threads.empty()) { monitor.SetExclusive(current_core, address);
updated_value = value + 1; updated_value = memory.Read32(address);
} else {
updated_value = value - 1;
}
} else {
if (waiting_threads.empty()) {
updated_value = value + 1;
} else if (waiting_threads.size() <= static_cast<u32>(num_to_wake)) {
updated_value = value - 1;
} else {
updated_value = value;
}
}
if (static_cast<s32>(memory.Read32(address)) != value) { if (updated_value != value) {
return ERR_INVALID_STATE; return ERR_INVALID_STATE;
} }
// Determine the modified value depending on the waiting count.
if (num_to_wake <= 0) {
if (waiting_threads.empty()) {
updated_value = value + 1;
} else {
updated_value = value - 1;
}
} else {
if (waiting_threads.empty()) {
updated_value = value + 1;
} else if (waiting_threads.size() <= static_cast<u32>(num_to_wake)) {
updated_value = value - 1;
} else {
updated_value = value;
}
}
} while (!monitor.ExclusiveWrite32(current_core, address, updated_value));
memory.Write32(address, static_cast<u32>(updated_value));
WakeThreads(waiting_threads, num_to_wake); WakeThreads(waiting_threads, num_to_wake);
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
@ -136,60 +165,121 @@ ResultCode AddressArbiter::WaitForAddress(VAddr address, ArbitrationType type, s
ResultCode AddressArbiter::WaitForAddressIfLessThan(VAddr address, s32 value, s64 timeout, ResultCode AddressArbiter::WaitForAddressIfLessThan(VAddr address, s32 value, s64 timeout,
bool should_decrement) { bool should_decrement) {
auto& memory = system.Memory(); auto& memory = system.Memory();
auto& kernel = system.Kernel();
Thread* current_thread = system.CurrentScheduler().GetCurrentThread();
// Ensure that we can read the address. Handle event_handle = InvalidHandle;
if (!memory.IsValidVirtualAddress(address)) { {
return ERR_INVALID_ADDRESS_STATE; SchedulerLockAndSleep lock(kernel, event_handle, current_thread, timeout);
// Ensure that we can read the address.
if (!memory.IsValidVirtualAddress(address)) {
lock.CancelSleep();
return ERR_INVALID_ADDRESS_STATE;
}
/// TODO(Blinkhawk): Check termination pending.
s32 current_value = static_cast<s32>(memory.Read32(address));
if (current_value >= value) {
lock.CancelSleep();
return ERR_INVALID_STATE;
}
s32 decrement_value;
const std::size_t current_core = system.CurrentCoreIndex();
auto& monitor = system.Monitor();
do {
monitor.SetExclusive(current_core, address);
current_value = static_cast<s32>(memory.Read32(address));
if (should_decrement) {
decrement_value = current_value - 1;
} else {
decrement_value = current_value;
}
} while (
!monitor.ExclusiveWrite32(current_core, address, static_cast<u32>(decrement_value)));
// Short-circuit without rescheduling, if timeout is zero.
if (timeout == 0) {
lock.CancelSleep();
return RESULT_TIMEOUT;
}
current_thread->SetSynchronizationResults(nullptr, RESULT_TIMEOUT);
current_thread->SetArbiterWaitAddress(address);
InsertThread(SharedFrom(current_thread));
current_thread->SetStatus(ThreadStatus::WaitArb);
current_thread->WaitForArbitration(true);
} }
const s32 cur_value = static_cast<s32>(memory.Read32(address)); if (event_handle != InvalidHandle) {
if (cur_value >= value) { auto& time_manager = kernel.TimeManager();
return ERR_INVALID_STATE; time_manager.UnscheduleTimeEvent(event_handle);
} }
if (should_decrement) { {
memory.Write32(address, static_cast<u32>(cur_value - 1)); SchedulerLock lock(kernel);
if (current_thread->IsWaitingForArbitration()) {
RemoveThread(SharedFrom(current_thread));
current_thread->WaitForArbitration(false);
}
} }
// Short-circuit without rescheduling, if timeout is zero. return current_thread->GetSignalingResult();
if (timeout == 0) {
return RESULT_TIMEOUT;
}
return WaitForAddressImpl(address, timeout);
} }
ResultCode AddressArbiter::WaitForAddressIfEqual(VAddr address, s32 value, s64 timeout) { ResultCode AddressArbiter::WaitForAddressIfEqual(VAddr address, s32 value, s64 timeout) {
auto& memory = system.Memory(); auto& memory = system.Memory();
auto& kernel = system.Kernel();
// Ensure that we can read the address.
if (!memory.IsValidVirtualAddress(address)) {
return ERR_INVALID_ADDRESS_STATE;
}
// Only wait for the address if equal.
if (static_cast<s32>(memory.Read32(address)) != value) {
return ERR_INVALID_STATE;
}
// Short-circuit without rescheduling if timeout is zero.
if (timeout == 0) {
return RESULT_TIMEOUT;
}
return WaitForAddressImpl(address, timeout);
}
ResultCode AddressArbiter::WaitForAddressImpl(VAddr address, s64 timeout) {
Thread* current_thread = system.CurrentScheduler().GetCurrentThread(); Thread* current_thread = system.CurrentScheduler().GetCurrentThread();
current_thread->SetArbiterWaitAddress(address);
InsertThread(SharedFrom(current_thread));
current_thread->SetStatus(ThreadStatus::WaitArb);
current_thread->InvalidateWakeupCallback();
current_thread->WakeAfterDelay(timeout);
system.PrepareReschedule(current_thread->GetProcessorID()); Handle event_handle = InvalidHandle;
return RESULT_TIMEOUT; {
SchedulerLockAndSleep lock(kernel, event_handle, current_thread, timeout);
// Ensure that we can read the address.
if (!memory.IsValidVirtualAddress(address)) {
lock.CancelSleep();
return ERR_INVALID_ADDRESS_STATE;
}
/// TODO(Blinkhawk): Check termination pending.
s32 current_value = static_cast<s32>(memory.Read32(address));
if (current_value != value) {
lock.CancelSleep();
return ERR_INVALID_STATE;
}
// Short-circuit without rescheduling, if timeout is zero.
if (timeout == 0) {
lock.CancelSleep();
return RESULT_TIMEOUT;
}
current_thread->SetSynchronizationResults(nullptr, RESULT_TIMEOUT);
current_thread->SetArbiterWaitAddress(address);
InsertThread(SharedFrom(current_thread));
current_thread->SetStatus(ThreadStatus::WaitArb);
current_thread->WaitForArbitration(true);
}
if (event_handle != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(event_handle);
}
{
SchedulerLock lock(kernel);
if (current_thread->IsWaitingForArbitration()) {
RemoveThread(SharedFrom(current_thread));
current_thread->WaitForArbitration(false);
}
}
return current_thread->GetSignalingResult();
} }
void AddressArbiter::HandleWakeupThread(std::shared_ptr<Thread> thread) { void AddressArbiter::HandleWakeupThread(std::shared_ptr<Thread> thread) {
@ -221,9 +311,9 @@ void AddressArbiter::RemoveThread(std::shared_ptr<Thread> thread) {
const auto iter = std::find_if(thread_list.cbegin(), thread_list.cend(), const auto iter = std::find_if(thread_list.cbegin(), thread_list.cend(),
[&thread](const auto& entry) { return thread == entry; }); [&thread](const auto& entry) { return thread == entry; });
ASSERT(iter != thread_list.cend()); if (iter != thread_list.cend()) {
thread_list.erase(iter);
thread_list.erase(iter); }
} }
std::vector<std::shared_ptr<Thread>> AddressArbiter::GetThreadsWaitingOnAddress( std::vector<std::shared_ptr<Thread>> AddressArbiter::GetThreadsWaitingOnAddress(

View file

@ -73,9 +73,6 @@ private:
/// Waits on an address if the value passed is equal to the argument value. /// Waits on an address if the value passed is equal to the argument value.
ResultCode WaitForAddressIfEqual(VAddr address, s32 value, s64 timeout); ResultCode WaitForAddressIfEqual(VAddr address, s32 value, s64 timeout);
// Waits on the given address with a timeout in nanoseconds
ResultCode WaitForAddressImpl(VAddr address, s64 timeout);
/// Wake up num_to_wake (or all) threads in a vector. /// Wake up num_to_wake (or all) threads in a vector.
void WakeThreads(const std::vector<std::shared_ptr<Thread>>& waiting_threads, s32 num_to_wake); void WakeThreads(const std::vector<std::shared_ptr<Thread>>& waiting_threads, s32 num_to_wake);

View file

@ -1691,7 +1691,6 @@ static ResultCode WaitForAddress(Core::System& system, VAddr address, u32 type,
LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, timeout={}", address, LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, timeout={}", address,
type, value, timeout); type, value, timeout);
UNIMPLEMENTED();
// If the passed address is a kernel virtual address, return invalid memory state. // If the passed address is a kernel virtual address, return invalid memory state.
if (Core::Memory::IsKernelVirtualAddress(address)) { if (Core::Memory::IsKernelVirtualAddress(address)) {
LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address); LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address);
@ -1717,8 +1716,6 @@ static ResultCode SignalToAddress(Core::System& system, VAddr address, u32 type,
LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, num_to_wake=0x{:X}", LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, num_to_wake=0x{:X}",
address, type, value, num_to_wake); address, type, value, num_to_wake);
UNIMPLEMENTED();
// If the passed address is a kernel virtual address, return invalid memory state. // If the passed address is a kernel virtual address, return invalid memory state.
if (Core::Memory::IsKernelVirtualAddress(address)) { if (Core::Memory::IsKernelVirtualAddress(address)) {
LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address); LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address);

View file

@ -548,6 +548,14 @@ public:
return global_handle; return global_handle;
} }
bool IsWaitingForArbitration() const {
return waiting_for_arbitration;
}
void WaitForArbitration(bool set) {
waiting_for_arbitration = set;
}
private: private:
friend class GlobalScheduler; friend class GlobalScheduler;
friend class Scheduler; friend class Scheduler;
@ -615,6 +623,7 @@ private:
/// If waiting for an AddressArbiter, this is the address being waited on. /// If waiting for an AddressArbiter, this is the address being waited on.
VAddr arb_wait_address{0}; VAddr arb_wait_address{0};
bool waiting_for_arbitration{};
/// Handle used as userdata to reference this object when inserting into the CoreTiming queue. /// Handle used as userdata to reference this object when inserting into the CoreTiming queue.
Handle global_handle = 0; Handle global_handle = 0;