2
1
Fork 0
mirror of https://github.com/yuzu-emu/yuzu.git synced 2024-07-04 23:31:19 +01:00
yuzu/src/core/core_cpu.cpp
Lioncash b117ca5fce kernel/svc: Deglobalize the supervisor call handlers
Adjusts the interface of the wrappers to take a system reference, which
allows accessing a system instance without using the global accessors.

This also allows getting rid of all global accessors within the
supervisor call handling code. While this does make the wrappers
themselves slightly more noisy, this will be further cleaned up in a
follow-up. This eliminates the global system accessors in the current
code while preserving the existing interface.
2019-04-07 20:30:05 -04:00

138 lines
3.6 KiB
C++

// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <condition_variable>
#include <mutex>
#include "common/logging/log.h"
#ifdef ARCHITECTURE_x86_64
#include "core/arm/dynarmic/arm_dynarmic.h"
#endif
#include "core/arm/exclusive_monitor.h"
#include "core/arm/unicorn/arm_unicorn.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_timing.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/lock.h"
#include "core/settings.h"
namespace Core {
void CpuBarrier::NotifyEnd() {
std::unique_lock lock{mutex};
end = true;
condition.notify_all();
}
bool CpuBarrier::Rendezvous() {
if (!Settings::values.use_multi_core) {
// Meaningless when running in single-core mode
return true;
}
if (!end) {
std::unique_lock lock{mutex};
--cores_waiting;
if (!cores_waiting) {
cores_waiting = NUM_CPU_CORES;
condition.notify_all();
return true;
}
condition.wait(lock);
return true;
}
return false;
}
Cpu::Cpu(System& system, ExclusiveMonitor& exclusive_monitor, CpuBarrier& cpu_barrier,
std::size_t core_index)
: cpu_barrier{cpu_barrier}, core_timing{system.CoreTiming()}, core_index{core_index} {
if (Settings::values.use_cpu_jit) {
#ifdef ARCHITECTURE_x86_64
arm_interface = std::make_unique<ARM_Dynarmic>(system, exclusive_monitor, core_index);
#else
arm_interface = std::make_unique<ARM_Unicorn>(system);
LOG_WARNING(Core, "CPU JIT requested, but Dynarmic not available");
#endif
} else {
arm_interface = std::make_unique<ARM_Unicorn>(system);
}
scheduler = std::make_unique<Kernel::Scheduler>(system, *arm_interface);
}
Cpu::~Cpu() = default;
std::unique_ptr<ExclusiveMonitor> Cpu::MakeExclusiveMonitor(std::size_t num_cores) {
if (Settings::values.use_cpu_jit) {
#ifdef ARCHITECTURE_x86_64
return std::make_unique<DynarmicExclusiveMonitor>(num_cores);
#else
return nullptr; // TODO(merry): Passthrough exclusive monitor
#endif
} else {
return nullptr; // TODO(merry): Passthrough exclusive monitor
}
}
void Cpu::RunLoop(bool tight_loop) {
// Wait for all other CPU cores to complete the previous slice, such that they run in lock-step
if (!cpu_barrier.Rendezvous()) {
// If rendezvous failed, session has been killed
return;
}
// If we don't have a currently active thread then don't execute instructions,
// instead advance to the next event and try to yield to the next thread
if (Kernel::GetCurrentThread() == nullptr) {
LOG_TRACE(Core, "Core-{} idling", core_index);
if (IsMainCore()) {
// TODO(Subv): Only let CoreTiming idle if all 4 cores are idling.
core_timing.Idle();
core_timing.Advance();
}
PrepareReschedule();
} else {
if (IsMainCore()) {
core_timing.Advance();
}
if (tight_loop) {
arm_interface->Run();
} else {
arm_interface->Step();
}
}
Reschedule();
}
void Cpu::SingleStep() {
return RunLoop(false);
}
void Cpu::PrepareReschedule() {
arm_interface->PrepareReschedule();
reschedule_pending = true;
}
void Cpu::Reschedule() {
if (!reschedule_pending) {
return;
}
reschedule_pending = false;
// Lock the global kernel mutex when we manipulate the HLE state
std::lock_guard lock{HLE::g_hle_lock};
scheduler->Reschedule();
}
} // namespace Core