bliss-rs/src/misc.rs

109 lines
3.4 KiB
Rust
Raw Permalink Normal View History

2021-05-14 15:35:08 +01:00
//! Miscellaneous feature extraction module.
//!
//! Contains various descriptors that don't fit in one of the
//! existing categories.
2021-05-16 13:47:42 +01:00
use bliss_audio_aubio_rs::level_lin;
2021-05-14 15:35:08 +01:00
use ndarray::{arr1, Axis};
use super::utils::{mean, Normalize};
/**
* Loudness (in dB) detection object.
*
* It indicates how "loud" a recording of a song is. For a given audio signal,
* this value increases if the amplitude of the signal, and nothing else, is
* increased.
*
* Of course, this makes this result dependent of the recording, meaning
* the same song would yield different loudness on different recordings. Which
* is exactly what we want, given that this is not a music theory project, but
* one that aims at giving the best real-life results.
*
* Ranges between -90 dB (~silence) and 0 dB.
*
* (This is technically the sound pressure level of the track, but loudness is
* way more visual)
*/
#[derive(Default)]
pub(crate) struct LoudnessDesc {
pub values: Vec<f32>,
}
impl LoudnessDesc {
pub const WINDOW_SIZE: usize = 1024;
pub fn do_(&mut self, chunk: &[f32]) {
let level = level_lin(chunk);
self.values.push(level);
}
pub fn get_value(&mut self) -> Vec<f32> {
let mut std_value = arr1(&self.values).std_axis(Axis(0), 0.).into_scalar();
let mut mean_value = mean(&self.values);
// Make sure the dB don't go less than -90dB
if mean_value < 1e-9 {
mean_value = 1e-9
};
if std_value < 1e-9 {
std_value = 1e-9
}
vec![
self.normalize(10.0 * mean_value.log10()),
self.normalize(10.0 * std_value.log10()),
]
}
}
impl Normalize for LoudnessDesc {
const MAX_VALUE: f32 = 0.;
const MIN_VALUE: f32 = -90.;
}
#[cfg(test)]
mod tests {
use super::*;
use crate::Song;
2021-06-13 13:07:17 +01:00
use std::path::Path;
2021-05-14 15:35:08 +01:00
#[test]
fn test_loudness() {
2021-06-13 13:07:17 +01:00
let song = Song::decode(Path::new("data/s16_mono_22_5kHz.flac")).unwrap();
2021-05-14 15:35:08 +01:00
let mut loudness_desc = LoudnessDesc::default();
for chunk in song.sample_array.chunks_exact(LoudnessDesc::WINDOW_SIZE) {
loudness_desc.do_(&chunk);
}
let expected_values = vec![0.271263, 0.2577181];
for (expected, actual) in expected_values.iter().zip(loudness_desc.get_value().iter()) {
assert!(0.01 > (expected - actual).abs());
}
}
#[test]
fn test_loudness_boundaries() {
let mut loudness_desc = LoudnessDesc::default();
let silence_chunk = vec![0.; 1024];
loudness_desc.do_(&silence_chunk);
let expected_values = vec![-1., -1.];
for (expected, actual) in expected_values.iter().zip(loudness_desc.get_value().iter()) {
assert!(0.0000001 > (expected - actual).abs());
}
let mut loudness_desc = LoudnessDesc::default();
let silence_chunk = vec![1.; 1024];
loudness_desc.do_(&silence_chunk);
let expected_values = vec![1., -1.];
for (expected, actual) in expected_values.iter().zip(loudness_desc.get_value().iter()) {
assert!(0.0000001 > (expected - actual).abs());
}
let mut loudness_desc = LoudnessDesc::default();
let silence_chunk = vec![-1.; 1024];
loudness_desc.do_(&silence_chunk);
let expected_values = vec![1., -1.];
for (expected, actual) in expected_values.iter().zip(loudness_desc.get_value().iter()) {
assert!(0.0000001 > (expected - actual).abs());
}
}
}