1
0
Fork 0
mirror of https://github.com/HamletDuFromage/aio-switch-updater.git synced 2024-11-25 02:52:05 +00:00
AIO-switch-updater/rcm/bdk/usb/usbd.c

1669 lines
45 KiB
C

/*
* USB Device driver for Tegra X1
*
* Copyright (c) 2019 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <stdlib.h>
#include <usb/usbd.h>
#include <usb/usb_descriptors.h>
#include <usb/usb_t210.h>
#include <gfx_utils.h>
#include <soc/bpmp.h>
#include <soc/clock.h>
#include <soc/fuse.h>
#include <soc/gpio.h>
#include <soc/pinmux.h>
#include <soc/pmc.h>
#include <soc/t210.h>
#include <utils/btn.h>
#include <utils/util.h>
#include <memory_map.h>
typedef enum
{
USB_HW_EP0 = 0,
USB_HW_EP1 = 1
} usb_hw_ep_t;
typedef enum
{
USB_EP_ADDR_CTRL_OUT = 0x00,
USB_EP_ADDR_CTRL_IN = 0x80,
USB_EP_ADDR_BULK_OUT = 0x01,
USB_EP_ADDR_BULK_IN = 0x81,
} usb_ep_addr_t;
typedef enum
{
USB_EP_CFG_RESET = 0,
USB_EP_CFG_STALL = 1
} usb_ep_cfg_t;
typedef enum
{
USB_EP_STATUS_IDLE = 0,
USB_EP_STATUS_ACTIVE = 1,
USB_EP_STATUS_ERROR = 2,
USB_EP_STATUS_NO_CONFIG = 3,
USB_EP_STATUS_STALLED = 4,
USB_EP_STATUS_DISABLED = 5
} usb_ep_status_t;
typedef enum {
USB_SETUP_RECIPIENT_DEVICE = 0,
USB_SETUP_RECIPIENT_INTERFACE = 1,
USB_SETUP_RECIPIENT_ENDPOINT = 2,
USB_SETUP_RECIPIENT_OTHER = 3,
USB_SETUP_TYPE_STANDARD = 0x00,
USB_SETUP_TYPE_CLASS = 0x20,
USB_SETUP_TYPE_VENDOR = 0x40,
USB_SETUP_TYPE_RESERVED = 0x60,
USB_SETUP_HOST_TO_DEVICE = 0x00,
USB_SETUP_DEVICE_TO_HOST = 0x80,
} usb_setup_req_type_t;
typedef enum {
USB_REQUEST_GET_STATUS = 0,
USB_REQUEST_CLEAR_FEATURE = 1,
USB_REQUEST_SET_FEATURE = 3,
USB_REQUEST_SET_ADDRESS = 5,
USB_REQUEST_GET_DESCRIPTOR = 6,
USB_REQUEST_SET_DESCRIPTOR = 7,
USB_REQUEST_GET_CONFIGURATION = 8,
USB_REQUEST_SET_CONFIGURATION = 9,
USB_REQUEST_GET_INTERFACE = 10,
USB_REQUEST_SET_INTERFACE = 11,
USB_REQUEST_SYNCH_FRAME = 12,
USB_REQUEST_GET_MS_DESCRIPTOR = 0x99,
USB_REQUEST_BULK_GET_MAX_LUN = 0xFE,
USB_REQUEST_BULK_RESET = 0xFF
} usb_standard_req_t;
typedef enum {
USB_FEATURE_ENDPOINT_HALT = 0,
USB_FEATURE_DEVICE_REMOTE_WAKEUP = 1,
USB_FEATURE_TEST_MODE = 2,
} usb_get_status_req_t;
typedef enum {
USB_STATUS_EP_OK = 0,
USB_STATUS_EP_HALTED = 1,
USB_STATUS_DEV_SELF_POWERED = 1,
USB_STATUS_DEV_REMOTE_WAKE = 2,
} usb_set_clear_feature_req_t;
typedef enum {
USB_XFER_DIR_OUT = 0,
USB_XFER_DIR_IN = 1,
} usb_xfer_dir_t;
typedef enum {
USB_SPEED_LOW = 0,
USB_SPEED_FULL = 1,
USB_SPEED_HIGH = 2,
USB_SPEED_SUPER = 3,
} usb_speed_t;
typedef enum {
USB_XFER_TYPE_CONTROL = 0,
USB_XFER_TYPE_ISOCHRONOUS = 1,
USB_XFER_TYPE_BULK = 2,
USB_XFER_TYPE_INTERRUPT = 3,
} usb_xfer_type_t;
typedef struct _dTD_t
{
vu32 next_dTD;
vu32 info;
vu32 pages[5];
vu32 reserved;
} dTD_t;
typedef struct _dQH_t
{
vu32 ep_capabilities;
vu32 curr_dTD_ptr;
vu32 next_dTD_ptr;
vu32 token;
vu32 buffers[5]; // hmmm.
vu32 reserved;
vu32 setup[2];
vu32 gap[4];
} dQH_t;
typedef struct _usbd_t
{
volatile dTD_t dtds[4 * 4]; // 4 dTD per endpoint.
volatile dQH_t *qhs;
int ep_configured[4];
int ep_bytes_requested[4];
} usbd_t;
typedef struct _usb_ctrl_setup_t
{
u8 bmRequestType;
u8 bRequest;
u16 wValue;
u16 wIndex;
u16 wLength;
} usb_ctrl_setup_t;
typedef struct _usbd_controller_t
{
u32 port_speed;
t210_usb2d_t *regs;
usb_ctrl_setup_t control_setup;
usb_desc_t *desc;
usb_gadget_type type;
u8 configuration_set;
u8 usb_phy_ready;
u8 configuration;
u8 interface;
u8 max_lun;
u8 max_lun_set;
u8 bulk_reset_req;
u8 hid_report_sent;
bool charger_detect;
} usbd_controller_t;
u8 usb_serial_string_descriptor[26] =
{
26, 0x03,
'C', 0x00, '7', 0x00, 'C', 0x00, '0', 0x00,
'9', 0x00, '2', 0x00, '4', 0x00, '2', 0x00, 'F', 0x00, '7', 0x00, '0', 0x00, '3', 0x00
};
u8 usb_lang_id_string_descriptor[] =
{
4, 3,
0x09, 0x04
};
usbd_t *usbdaemon;
usbd_controller_t *usbd_otg;
usbd_controller_t usbd_usb_otg_controller_ctxt;
bool usb_init_done = false;
u8 *usb_ep0_ctrl_buf = (u8 *)USB_EP_CONTROL_BUF_ADDR;
static int _usbd_reset_usb_otg_phy_device_mode()
{
usbd_otg->usb_phy_ready = 0;
// Clear UTMIP reset.
USB(USB1_IF_USB_SUSP_CTRL) &= ~SUSP_CTRL_UTMIP_RESET;
// Wait for PHY clock to get validated.
u32 retries = 100000; // 200ms timeout.
while (!(USB(USB1_IF_USB_SUSP_CTRL) & SUSP_CTRL_USB_PHY_CLK_VALID))
{
retries--;
if (!retries)
return 1;
usleep(1);
}
usbd_otg->usb_phy_ready = 1;
// Clear all device addresses, enabled setup requests and transmit events.
usbd_otg->regs->periodiclistbase = 0;
usbd_otg->regs->endptsetupstat = usbd_otg->regs->endptsetupstat;
usbd_otg->regs->endptcomplete = usbd_otg->regs->endptcomplete;
// Stop device controller.
usbd_otg->regs->usbcmd &= ~USB2D_USBCMD_RUN;
// Set controller mode to idle.
usbd_otg->regs->usbmode &= ~USB2D_USBMODE_CM_MASK;
// Reset the controller.
usbd_otg->regs->usbcmd |= USB2D_USBCMD_RESET;
// Wait for the reset to complete.
retries = 100000; // 200ms timeout.
while (usbd_otg->regs->usbcmd & USB2D_USBCMD_RESET)
{
retries--;
if (!retries)
return 2;
usleep(1);
}
// Wait for PHY clock to get validated after reset.
retries = 100000; // 200ms timeout.
while (!(USB(USB1_IF_USB_SUSP_CTRL) & SUSP_CTRL_USB_PHY_CLK_VALID))
{
retries--;
if (!retries)
return 3;
usleep(1);
}
// Set controller to Device mode.
usbd_otg->regs->usbmode = (usbd_otg->regs->usbmode & ~USB2D_USBMODE_CM_MASK) | USB2D_USBMODE_CM_DEVICE;
// Wait for the selected mode to be enabled.
retries = 100000; // 200ms timeout.
while ((usbd_otg->regs->usbmode & USB2D_USBMODE_CM_MASK) != USB2D_USBMODE_CM_DEVICE)
{
retries--;
if (!retries)
return 4;
usleep(1);
}
// Disable all interrupts.
usbd_otg->regs->usbintr = 0;
// Set the ID pullup and disable all OTGSC interrupts.
usbd_otg->regs->otgsc = USB2D_OTGSC_USB_ID_PULLUP;
// Clear all relevant interrupt statuses.
usbd_otg->regs->usbsts =
USB2D_USBSTS_UI | USB2D_USBSTS_UEI | USB2D_USBSTS_PCI |
USB2D_USBSTS_FRI | USB2D_USBSTS_SEI | USB2D_USBSTS_AAI |
USB2D_USBSTS_URI | USB2D_USBSTS_SRI | USB2D_USBSTS_SLI;
// Disable and clear all OTGSC interrupts.
usbd_otg->regs->otgsc = USB2D_OTGSC_USB_IRQ_STS_MASK;
// Clear EP0, EP1, EP2 setup requests.
usbd_otg->regs->endptsetupstat = 7; //TODO: Shouldn't this be endptsetupstat = endptsetupstat?
// Set all interrupts to immediate.
usbd_otg->regs->usbcmd &= ~USB2D_USBCMD_ITC_MASK;
return 0;
}
static void _usb_charger_detect()
{
// Charger detect init.
usbd_otg->charger_detect = 0;
bool charger_detect_enable = FUSE(FUSE_RESERVED_SW) & 0x10; // Disabled on Switch production.
if (charger_detect_enable)
{
usbd_otg->charger_detect |= 1;
// Configure detect pin.
PINMUX_AUX(PINMUX_AUX_LCD_GPIO1) &= ~(PINMUX_PARKED | PINMUX_TRISTATE | PINMUX_PULL_MASK);
gpio_config(GPIO_PORT_V, GPIO_PIN_3, GPIO_MODE_GPIO);
// Configure charger pin.
PINMUX_AUX(PINMUX_AUX_USB_VBUS_EN0) &=
~(PINMUX_INPUT_ENABLE | PINMUX_PARKED | PINMUX_TRISTATE | PINMUX_PULL_MASK);
gpio_config(GPIO_PORT_CC, GPIO_PIN_5, GPIO_MODE_GPIO);
gpio_output_enable(GPIO_PORT_CC, GPIO_PIN_5, GPIO_OUTPUT_ENABLE);
// Enable charger.
if (gpio_read(GPIO_PORT_V, GPIO_PIN_3))
{
usbd_otg->charger_detect |= 2;
gpio_write(GPIO_PORT_CC, GPIO_PIN_5, GPIO_HIGH);
usbd_otg->charger_detect |= 0x100;
USB(USB1_UTMIP_BAT_CHRG_CFG0) = BAT_CHRG_CFG0_OP_SRC_EN; // Clears UTMIP_PD_CHRG and enables charger detect.
usleep(5000);
}
}
}
int usb_device_init()
{
if (usb_init_done)
return 0;
// Configure PLLU.
CLOCK(CLK_RST_CONTROLLER_PLLU_MISC) = CLOCK(CLK_RST_CONTROLLER_PLLU_MISC) | 0x20000000; // Disable reference clock.
u32 pllu_cfg = (((((CLOCK(CLK_RST_CONTROLLER_PLLU_BASE) >> 8 << 8) | 2) & 0xFFFF00FF) | ((0x19 << 8) & 0xFFFF)) & 0xFFE0FFFF) | (1<< 16) | 0x1000000;
CLOCK(CLK_RST_CONTROLLER_PLLU_BASE) = pllu_cfg;
CLOCK(CLK_RST_CONTROLLER_PLLU_BASE) = pllu_cfg | 0x40000000; // Enable.
// Wait for PLL to stabilize.
u32 timeout = (u32)TMR(TIMERUS_CNTR_1US) + 1300;
while (!(CLOCK(CLK_RST_CONTROLLER_PLLU_BASE) & (1 << 27))) // PLL_LOCK.
if ((u32)TMR(TIMERUS_CNTR_1US) > timeout)
break;
usleep(10);
// Enable PLLU USB/HSIC/ICUSB/48M.
CLOCK(CLK_RST_CONTROLLER_PLLU_BASE) = CLOCK(CLK_RST_CONTROLLER_PLLU_BASE) | 0x2600000 | 0x800000;
// Enable USBD clock.
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_L_SET) = BIT(CLK_L_USBD);
usleep(2);
CLOCK(CLK_RST_CONTROLLER_RST_DEV_L_SET) = BIT(CLK_L_USBD);
usleep(2);
CLOCK(CLK_RST_CONTROLLER_RST_DEV_L_CLR) = BIT(CLK_L_USBD);
usleep(2);
// Clear XUSB_PADCTL reset
CLOCK(CLK_RST_CONTROLLER_RST_DEV_W_CLR) = BIT(CLK_W_XUSB_PADCTL);
// Enable USB PHY and reset for programming.
u32 usb_susp_ctrl = USB(USB1_IF_USB_SUSP_CTRL);
USB(USB1_IF_USB_SUSP_CTRL) = usb_susp_ctrl | SUSP_CTRL_UTMIP_RESET;
USB(USB1_IF_USB_SUSP_CTRL) = usb_susp_ctrl | SUSP_CTRL_UTMIP_PHY_ENB | SUSP_CTRL_UTMIP_RESET;
// Disable UTMIPLL IDDQ.
CLOCK(CLK_RST_CONTROLLER_UTMIPLL_HW_PWRDN_CFG0) &= 0xFFFFFFFD;
usleep(10);
// Disable crystal clock.
USB(USB1_UTMIP_MISC_CFG1) &= 0xBFFFFFFF;
CLOCK(CLK_RST_CONTROLLER_UTMIP_PLL_CFG2) &= 0xBFFFFFFF;
// Set B_SESS_VLD.
USB(USB1_IF_USB_PHY_VBUS_SENSORS) |= 0x1000;
USB(USB1_IF_USB_PHY_VBUS_SENSORS) |= 0x800;
// Set UTMIPLL dividers and enable it.
CLOCK(CLK_RST_CONTROLLER_UTMIP_PLL_CFG0) = (CLOCK(CLK_RST_CONTROLLER_UTMIP_PLL_CFG0) & 0xFF0000FF) | 0x190000 | 0x100;
CLOCK(CLK_RST_CONTROLLER_UTMIP_PLL_CFG2) = (CLOCK(CLK_RST_CONTROLLER_UTMIP_PLL_CFG2) & 0xFF00003F) | 0x600000; // Set delay count for 38.4Mhz osc crystal.
CLOCK(CLK_RST_CONTROLLER_UTMIP_PLL_CFG1) = ((CLOCK(CLK_RST_CONTROLLER_UTMIP_PLL_CFG1) & 0x7FFF000) | 0x8000 | 0x177) & 0xFFFFAFFF;
// Wait for UTMIPLL to stabilize.
u32 retries = 10; // Wait 20us
while (!(CLOCK(CLK_RST_CONTROLLER_UTMIPLL_HW_PWRDN_CFG0) & 0x80000000) && retries)
{
usleep(1);
retries--;
}
// Configure UTMIP Transceiver Cells.
u32 fuse_usb_calib = FUSE(FUSE_USB_CALIB);
USB(USB1_UTMIP_XCVR_CFG0) = (((USB(USB1_UTMIP_XCVR_CFG0) & 0xFFFFFFF0) | (fuse_usb_calib & 0xF)) & 0xFE3FFFFF) | ((fuse_usb_calib & 0x3F) << 25 >> 29 << 22);
USB(USB1_UTMIP_XCVR_CFG1) = (USB(USB1_UTMIP_XCVR_CFG1) & 0xFFC3FFFF) | ((fuse_usb_calib << 21) >> 28 << 18);
USB(USB1_UTMIP_XCVR_CFG3) = (USB(USB1_UTMIP_XCVR_CFG3) & 0xFFFFC1FF) | ((FUSE(FUSE_USB_CALIB_EXT) & 0x1F) << 9);
USB(USB1_UTMIP_XCVR_CFG0) &= 0xFFDFFFFF;
USB(USB1_UTMIP_XCVR_CFG2) = (USB(USB1_UTMIP_XCVR_CFG2) & 0xFFFFF1FF) | 0x400;
usleep(1);
// Configure misc UTMIP.
USB(USB1_UTMIP_DEBOUNCE_CFG0) = (USB(USB1_UTMIP_DEBOUNCE_CFG0) & 0xFFFF0000) | 0xBB80;
USB(USB1_UTMIP_BIAS_CFG1) = (USB(USB1_UTMIP_BIAS_CFG1) & 0xFFFFC0FF) | 0x100; // when osc is 38.4KHz
//USB(USB1_UTMIP_SPARE_CFG0) &= 0xFFFFFEE7; unpatched0
USB(USB1_UTMIP_BIAS_CFG2) |= 2; //patched0 - UTMIP_HSSQUELCH_LEVEL_NEW: 2.
USB(USB1_UTMIP_SPARE_CFG0) &= 0xFFFFFE67; //patched0 - FUSE_HS_IREF_CAP_CFG
USB(USB1_UTMIP_TX_CFG0) |= 0x80000;
//USB(USB1_UTMIP_HSRX_CFG0) = (USB(USB1_UTMIP_HSRX_CFG0) & 0xFFF003FF) | 0x88000 | 0x4000; unpatched1
USB(USB1_UTMIP_HSRX_CFG0) = (USB(USB1_UTMIP_HSRX_CFG0) & 0xF0F003FF) | 0x88000 | 0x4000; //patched1 - reset UTMIP_PCOUNT_UPDN_DIV: From 1 to 0.
USB(USB1_UTMIP_BIAS_CFG2) &= 0xFFFFFFF8; //patched1 - UTMIP_HSSQUELCH_LEVEL_NEW: 0
USB(USB1_UTMIP_HSRX_CFG1) = (USB(USB1_UTMIP_HSRX_CFG1) & 0xFFFFFFC1) | 0x12;
USB(USB1_UTMIP_MISC_CFG1) |= 0x40000000;
// Enable crystal clock.
CLOCK(CLK_RST_CONTROLLER_UTMIP_PLL_CFG2) |= 0x40000000;
// Enable USB2 tracking.
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_Y_SET) = BIT(CLK_Y_USB2_TRK);
CLOCK(CLK_RST_CONTROLLER_CLK_SOURCE_USB2_HSIC_TRK) = (CLOCK(CLK_RST_CONTROLLER_CLK_SOURCE_USB2_HSIC_TRK) & 0xFFFFFF00) | 6; // Set trank divisor to 4.
USB(USB1_UTMIP_BIAS_CFG1) = (USB(USB1_UTMIP_BIAS_CFG1) & 0xFFC03F07) | 0x78000 | 0x50; // Set delays.
USB(USB1_UTMIP_BIAS_CFG0) &= 0xFFFFFBFF; // Disable Power down bias circuit.
usleep(1);
// Force PDTRK input into power up.
USB(USB1_UTMIP_BIAS_CFG1) = (USB(USB1_UTMIP_BIAS_CFG1) & 0xFFFFFFFE) | 2;
usleep(100);
// TRK cycle done. Force PDTRK input into power down.
USB(USB1_UTMIP_BIAS_CFG1) = (USB(USB1_UTMIP_BIAS_CFG1) & 0xFF7FFFFF) | 1;
usleep(3);
// Force PDTRK input into power up.
USB(USB1_UTMIP_BIAS_CFG1) = USB(USB1_UTMIP_BIAS_CFG1) & 0xFFFFFFFE;
usleep(100);
// TRK cycle done. Force PDTRK input into power down.
USB(USB1_UTMIP_BIAS_CFG1) = (USB(USB1_UTMIP_BIAS_CFG1) & 0xFF7FFFFF) | 1;
// Disable USB2_TRK clock and configure UTMIP misc.
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_Y_CLR) = BIT(CLK_Y_USB2_TRK);
CLOCK(CLK_RST_CONTROLLER_UTMIP_PLL_CFG2) = (CLOCK(CLK_RST_CONTROLLER_UTMIP_PLL_CFG2) & 0xFEFFFFEA) | 0x2000000 | 0x28 | 2;
usleep(1);
USB(USB1_UTMIP_BIAS_CFG0) &= 0xFF3FF7FF;
usleep(1);
// Clear power downs on UTMIP ID and VBUS wake up, PD, PD2, PDZI, PDCHRP, PDDR.
PMC(APBDEV_PMC_USB_AO) &= 0xFFFFFFF3; // UTMIP ID and VBUS wake up.
usleep(1);
USB(USB1_UTMIP_XCVR_CFG0) &= 0xFFFFBFFF; // UTMIP_FORCE_PD_POWERDOWN.
usleep(1);
USB(USB1_UTMIP_XCVR_CFG0) &= 0xFFFEFFFF; // UTMIP_FORCE_PD2_POWERDOWN.
usleep(1);
USB(USB1_UTMIP_XCVR_CFG0) &= 0xFFFBFFFF; // UTMIP_FORCE_PDZI_POWERDOWN.
usleep(1);
USB(USB1_UTMIP_XCVR_CFG1) &= 0xFFFFFFFB; // UTMIP_FORCE_PDCHRP_POWERDOWN.
usleep(1);
USB(USB1_UTMIP_XCVR_CFG1) &= 0xFFFFFFEF; // UTMIP_FORCE_PDDR_POWERDOWN.
usleep(1);
// AHB USB performance cfg.
AHB_GIZMO(AHB_GIZMO_AHB_MEM) |= AHB_MEM_ENB_FAST_REARBITRATE;
AHB_GIZMO(AHB_GIZMO_USB) |= AHB_GIZMO_USB_IMMEDIATE;
AHB_GIZMO(AHB_ARBITRATION_PRIORITY_CTRL) |= ARBITRATION_PRIORITY_CTRL_ENB_FAST_REARBITRATE;
AHB_GIZMO(AHB_AHB_MEM_PREFETCH_CFG1) =
MEM_PREFETCH_ENABLE | (MEM_PREFETCH_AHB_MST_USB << 26) | (12 << 21) | 0x1000; // addr boundary 64KB
// Set software and hardware context storage and clear it.
usbdaemon = (usbd_t *)USBD_ADDR; // Depends on USB_TD_BUFFER_PAGE_SIZE aligned address.
usbd_otg = &usbd_usb_otg_controller_ctxt;
memset(usbd_otg, 0, sizeof(usbd_controller_t));
memset(usbdaemon, 0, sizeof(usbd_t));
usbd_otg->regs = (t210_usb2d_t *)USB_OTG_BASE;
usbd_otg->usb_phy_ready = 0;
// Initialize USB PHY on the USB_OTG Controller (#1) in Device mode.
int result = _usbd_reset_usb_otg_phy_device_mode();
usbd_otg->configuration_set = 0;
_usb_charger_detect();
if (!result)
usb_init_done = true;
return result;
}
static void _usb_device_power_down()
{
// Enable PHY low power suspend.
usbd_otg->regs->hostpc1_devlc |= USB2D_HOSTPC1_DEVLC_PHCD;
// Do not use any controller regs after the above!
// A reset or clear of the PHCD suspend bit must happen.
// Power down OTG and Bias circuits.
USB(USB1_UTMIP_BIAS_CFG0) |= (1 << 11) | (1 << 10); // UTMIP_OTGPD, UTMIP_BIASPD.
// Power down ID detectors.
USB(USB1_UTMIP_BIAS_CFG0) |= (1 << 23) | (1 << 22); //UTMIP_IDPD_SEL, UTMIP_IDPD_VAL.
if (usbd_otg->charger_detect)
{
USB(USB1_UTMIP_BAT_CHRG_CFG0) = 1; //UTMIP_PD_CHRG
usbd_otg->charger_detect = 0;
}
// Power down the UTMIP transceivers.
// UTMIP_FORCE_PDZI_POWERDOWN, UTMIP_FORCE_PD2_POWERDOWN, UTMIP_FORCE_PD_POWERDOWN.
USB(USB1_UTMIP_XCVR_CFG0) |= (1 << 18) | (1 << 16) |(1 << 14);
// UTMIP_FORCE_PDDR_POWERDOWN, UTMIP_FORCE_PDCHRP_POWERDOWN, UTMIP_FORCE_PDDISC_POWERDOWN.
USB(USB1_UTMIP_XCVR_CFG1) |= (1 << 4) | (1 << 2) | (1 << 0);
// Keep UTMIP in reset.
USB(USB1_IF_USB_SUSP_CTRL) |= SUSP_CTRL_UTMIP_RESET;
// Power down PD trunk.
USB(USB1_UTMIP_BIAS_CFG1) |= (1 << 0); //UTMIP_FORCE_PDTRK_POWERDOWN.
// Force UTMIP_PLL power down.
CLOCK(CLK_RST_CONTROLLER_UTMIP_PLL_CFG1) |= (1 << 14); // UTMIP_FORCE_PLL_ENABLE_POWERDOWN.
CLOCK(CLK_RST_CONTROLLER_UTMIP_PLL_CFG1) |= (1 << 12); // UTMIP_FORCE_PLL_ACTIVE_POWERDOWN.
CLOCK(CLK_RST_CONTROLLER_UTMIP_PLL_CFG2) |= (1 << 4) | (1 << 0); // UTMIP_FORCE_PD_SAMP_A/C_POWERDOWN.
CLOCK(CLK_RST_CONTROLLER_UTMIP_PLL_CFG1) |= (1 << 16); // UTMIP_FORCE_PLLU_POWERDOWN.
// Disable crystal clock.
USB(USB1_UTMIP_MISC_CFG1) &= 0xBFFFFFFF;
// Enable UTMIPLL IDDQ.
CLOCK(CLK_RST_CONTROLLER_UTMIPLL_HW_PWRDN_CFG0) |= 2;
// Set XUSB_PADCTL reset
CLOCK(CLK_RST_CONTROLLER_RST_DEV_W_SET) = BIT(CLK_W_XUSB_PADCTL);
// Disable USBD clock.
CLOCK(CLK_RST_CONTROLLER_CLK_ENB_L_CLR) = BIT(CLK_L_USBD);
// Completely disable PLLU.
CLOCK(CLK_RST_CONTROLLER_PLLU_BASE) &= ~0x2E00000; // Disable PLLU USB/HSIC/ICUSB/48M.
CLOCK(CLK_RST_CONTROLLER_PLLU_BASE) &= ~0x40000000; // Disable PLLU.
CLOCK(CLK_RST_CONTROLLER_PLLU_MISC) &= ~0x20000000; // Enable reference clock.
usb_init_done = false;
}
static void _usbd_stall_reset_ep1(usb_xfer_dir_t direction, usb_ep_cfg_t stall)
{
stall &= 1;
if (direction == USB_XFER_DIR_IN)
{
usbd_otg->regs->endptctrl[1] = (usbd_otg->regs->endptctrl[1] & ~USB2D_ENDPTCTRL_TX_EP_STALL) | ((u32)stall << 16);
if (!stall)
usbd_otg->regs->endptctrl[1] |= USB2D_ENDPTCTRL_TX_EP_RESET;
}
else
{
usbd_otg->regs->endptctrl[1] = (usbd_otg->regs->endptctrl[1] & ~USB2D_ENDPTCTRL_RX_EP_STALL) | stall;
if (!stall)
usbd_otg->regs->endptctrl[1] |= USB2D_ENDPTCTRL_RX_EP_RESET;
}
}
void usbd_end(bool reset_ep, bool only_controller)
{
if (reset_ep)
{
usbd_flush_endpoint(USB_EP_ALL);
_usbd_stall_reset_ep1(0, USB_EP_CFG_RESET); // EP1 Bulk IN.
_usbd_stall_reset_ep1(1, USB_EP_CFG_RESET); // EP1 Bulk OUT.
//TODO: what about EP0 simultaneous in/out reset.
usbd_otg->configuration = 0;
usbd_otg->interface = 0;
usbd_otg->configuration_set = 0;
usbd_otg->max_lun_set = 0;
}
// Stop device controller.
usbd_otg->regs->usbcmd &= ~USB2D_USBCMD_RUN;
// Enable PHY auto low power suspend.
usbd_otg->regs->hostpc1_devlc |= USB2D_HOSTPC1_DEVLC_ASUS;
if (!only_controller)
_usb_device_power_down();
}
void usb_device_stall_ep1_bulk_out()
{
_usbd_stall_reset_ep1(USB_XFER_DIR_OUT, USB_EP_CFG_STALL);
}
void usb_device_stall_ep1_bulk_in()
{
_usbd_stall_reset_ep1(USB_XFER_DIR_IN, USB_EP_CFG_STALL);
}
int usbd_get_max_pkt_length(int endpoint)
{
switch (endpoint)
{
case USB_EP_CTRL_OUT:
case USB_EP_CTRL_IN:
return 64;
case USB_EP_BULK_OUT:
case USB_EP_BULK_IN:
if (usbd_otg->port_speed == 2)
return 512;
else
return 64;
default:
return 64;
}
}
static void _usbd_initialize_ep_ctrl(u32 endpoint)
{
usb_hw_ep_t actual_ep = (endpoint & 2) >> 1;
usb_xfer_dir_t direction = endpoint & 1;
memset((void *)&usbdaemon->qhs[endpoint], 0, sizeof(dQH_t));
if (!endpoint)
usbdaemon->qhs[endpoint].ep_capabilities = USB_QHD_EP_CAP_IOS_ENABLE;
usbdaemon->qhs[endpoint].next_dTD_ptr = 1; // TERMINATE_SET
u32 max_packet_len = usbd_get_max_pkt_length(endpoint) & USB_QHD_EP_CAP_MAX_PKT_LEN_MASK;
usbdaemon->qhs[endpoint].ep_capabilities |= max_packet_len << 16;
if (direction == USB_XFER_DIR_IN)
{
u32 endpoint_type = usbd_otg->regs->endptctrl[actual_ep] & ~USB2D_ENDPTCTRL_TX_EP_TYPE_MASK;
if (actual_ep)
endpoint_type |= usbd_otg->type ? USB2D_ENDPTCTRL_TX_EP_TYPE_INTR : USB2D_ENDPTCTRL_TX_EP_TYPE_BULK;
else
endpoint_type |= USB2D_ENDPTCTRL_TX_EP_TYPE_CTRL;
usbd_otg->regs->endptctrl[actual_ep] = endpoint_type;
usbd_otg->regs->endptctrl[actual_ep] &= ~USB2D_ENDPTCTRL_TX_EP_STALL;
if (actual_ep == USB_HW_EP1)
usbd_otg->regs->endptctrl[1] |= USB2D_ENDPTCTRL_TX_EP_RESET;
usbd_otg->regs->endptctrl[actual_ep] |= USB2D_ENDPTCTRL_TX_EP_ENABLE;
}
else // EP Bulk OUT.
{
u32 endpoint_type = usbd_otg->regs->endptctrl[actual_ep] & ~USB2D_ENDPTCTRL_RX_EP_TYPE_MASK;
if (actual_ep)
{
endpoint_type |= usbd_otg->type ? USB2D_ENDPTCTRL_RX_EP_TYPE_INTR : USB2D_ENDPTCTRL_RX_EP_TYPE_BULK;
}
else
endpoint_type |= USB2D_ENDPTCTRL_RX_EP_TYPE_CTRL;
usbd_otg->regs->endptctrl[actual_ep] = endpoint_type;
usbd_otg->regs->endptctrl[actual_ep] &= ~USB2D_ENDPTCTRL_RX_EP_STALL;
if (actual_ep == USB_HW_EP1)
usbd_otg->regs->endptctrl[1] |= USB2D_ENDPTCTRL_RX_EP_RESET;
usbd_otg->regs->endptctrl[actual_ep] |= USB2D_ENDPTCTRL_RX_EP_ENABLE;
}
}
static int _usbd_initialize_ep0()
{
memset((void *)usbdaemon->qhs, 0, sizeof(dQH_t) * 4); // Clear all used EP queue heads.
memset((void *)usbdaemon->dtds, 0, sizeof(dTD_t) * 4); // Clear all used EP0 token heads.
usbd_otg->regs->asynclistaddr = (u32)usbdaemon->qhs;
_usbd_initialize_ep_ctrl(USB_EP_CTRL_OUT);
_usbd_initialize_ep_ctrl(USB_EP_CTRL_IN);
// Disable Auto Low Power.
usbd_otg->regs->hostpc1_devlc &= ~USB2D_HOSTPC1_DEVLC_ASUS;
// Initiate an attach event.
usbd_otg->regs->usbcmd |= USB2D_USBCMD_RUN;
u32 retries = 100000; // 200ms timeout.
while (!(usbd_otg->regs->usbcmd & USB2D_USBCMD_RUN))
{
retries--;
if (!retries)
return 3;
usleep(1);
}
return 0;
}
// static void _disable_usb_wdt4()
// {
// if (TIMER_WDT4_STATUS & 1)// active
// {
// TIMER_TMR0_TMR_PTV &= 0x7FFFFFFF; // Disable timer
// TIMER_WDT4_UNLOCK_PATTERN = 0xC45A; // Alow writes to disable counter bit.
// TIMER_WDT4_COMMAND |= 2; // Disable counter
// TIMER_TMR0_TMR_PCR |= 0x40000000;// INTR_CLR
// }
// }
int usbd_flush_endpoint(u32 endpoint)
{
usb_hw_ep_t actual_ep = (endpoint & 2) >> 1;
usb_xfer_dir_t direction = endpoint & 1;
u32 reg_mask = endpoint;
// Flash all endpoints or 1.
if (endpoint != USB_EP_ALL)
{
if (direction == USB_XFER_DIR_IN)
reg_mask = USB2D_ENDPT_STATUS_TX_OFFSET << actual_ep;
else
reg_mask = USB2D_ENDPT_STATUS_RX_OFFSET << actual_ep;
}
usbd_otg->regs->endptflush = reg_mask;
u32 retries = 100000; // 200ms timeout.
while (usbd_otg->regs->endptflush & reg_mask)
{
retries--;
if (!retries)
return 3;
usleep(1);
}
// Wait for the endpoint to finish all transactions (buffer not ready).
retries = 100000; // 200ms timeout.
while (usbd_otg->regs->endptstatus & reg_mask)
{
retries--;
if (!retries)
return 3;
usleep(1);
}
// Wait for the endpoint to clear the primed status.
retries = 100000; // 200ms timeout.
while (usbd_otg->regs->endptprime & reg_mask)
{
retries--;
if (!retries)
return 3;
usleep(1);
}
return 0;
}
static void _usbd_mark_ep_complete(u32 endpoint)
{
u32 complete_bit;
usb_hw_ep_t actual_ep = (endpoint & 2) >> 1;
usb_xfer_dir_t direction = endpoint & 1;
usbd_flush_endpoint(endpoint);
memset((void *)&usbdaemon->dtds[endpoint * 4], 0, sizeof(dTD_t) * 4);
memset((void *)&usbdaemon->qhs[endpoint], 0, sizeof(dQH_t));
usbdaemon->ep_configured[endpoint] = 0;
usbdaemon->ep_bytes_requested[endpoint] = 0;
if (direction == USB_XFER_DIR_IN)
complete_bit = USB2D_ENDPT_STATUS_TX_OFFSET << actual_ep;
else
complete_bit = USB2D_ENDPT_STATUS_RX_OFFSET << actual_ep;
usbd_otg->regs->endptcomplete |= complete_bit;
}
static usb_ep_status_t _usbd_get_ep_status(usb_ep_t endpoint)
{
bool status;
u32 reg_val;
u32 reg_mask;
u32 actual_ep = (endpoint & 2) >> 1;
usb_xfer_dir_t direction = endpoint & 1;
if (direction == USB_XFER_DIR_IN)
reg_mask = USB2D_ENDPT_STATUS_TX_OFFSET << actual_ep;
else
reg_mask = USB2D_ENDPT_STATUS_RX_OFFSET << actual_ep;
if (actual_ep == USB_HW_EP1)
reg_val = usbd_otg->regs->endptctrl[1];
else
reg_val = usbd_otg->regs->endptctrl[0];
// Check stalled status.
if (direction == USB_XFER_DIR_IN)
status = reg_val & USB2D_ENDPTCTRL_TX_EP_STALL;
else
status = reg_val & USB2D_ENDPTCTRL_RX_EP_STALL;
if (status)
return USB_EP_STATUS_STALLED;
// Check enabled status.
if (direction == USB_XFER_DIR_IN)
status = reg_val & USB2D_ENDPTCTRL_TX_EP_ENABLE;
else
status = reg_val & USB2D_ENDPTCTRL_RX_EP_ENABLE;
if (!status)
return USB_EP_STATUS_DISABLED;
// CHeck qHD error status.
u32 token_error_mask = USB_QHD_TOKEN_HALTED | USB_QHD_TOKEN_BUFFER_ERROR | USB_QHD_TOKEN_XFER_ERROR;
if (usbdaemon->qhs[endpoint].token & token_error_mask)
return USB_EP_STATUS_ERROR;
// Check if endpoint has a request or a ready buffer.
if ((usbd_otg->regs->endptprime & reg_mask) || (usbd_otg->regs->endptstatus & reg_mask))
return USB_EP_STATUS_ACTIVE; // RX/TX active.
// Return idle or not configured status.
if (!usbdaemon->ep_configured[endpoint])
return USB_EP_STATUS_NO_CONFIG;
return USB_EP_STATUS_IDLE;
}
static int _usbd_ep_operation(usb_ep_t endpoint, u8 *buf, u32 len, bool sync)
{
if (!buf)
len = 0;
u32 prime_bit;
usb_hw_ep_t actual_ep = (endpoint & 2) >> 1;
usb_xfer_dir_t direction = endpoint & 1;
u32 length_left = len;
u32 dtd_ep_idx = endpoint * 4;
_usbd_mark_ep_complete(endpoint);
if (endpoint == USB_EP_CTRL_OUT)
usbdaemon->qhs[endpoint].ep_capabilities = USB_QHD_EP_CAP_IOS_ENABLE;
u32 max_packet_len = usbd_get_max_pkt_length(endpoint) & USB_QHD_EP_CAP_MAX_PKT_LEN_MASK;
usbdaemon->qhs[endpoint].ep_capabilities |= (max_packet_len << 16) | USB_QHD_EP_CAP_ZERO_LEN_TERM_DIS;
usbdaemon->qhs[endpoint].next_dTD_ptr = 0; // Clear terminate bit.
//usbdaemon->qhs[endpoint].ep_capabilities |= USB_QHD_TOKEN_IRQ_ON_COMPLETE;
usbdaemon->ep_configured[endpoint] = 1;
usbdaemon->ep_bytes_requested[endpoint] = len;
// Configure dTD.
u32 dtd_idx = 0;
do
{
if (dtd_idx)
usbdaemon->dtds[dtd_ep_idx + dtd_idx - 1].next_dTD = (u32)&usbdaemon->dtds[dtd_ep_idx + dtd_idx];
u32 dtd_size = MIN(length_left, USB_TD_BUFFER_MAX_SIZE); // 16KB max per dTD.
usbdaemon->dtds[dtd_ep_idx + dtd_idx].info = (dtd_size << 16) | USB_QHD_TOKEN_ACTIVE;
// usbdaemon->dtds[dtd_ep_idx + dtd_idx].info |= USB_QHD_TOKEN_IRQ_ON_COMPLETE;
// Set buffers addresses to all page pointers.
u32 dt_buffer_offset = dtd_idx * USB_TD_BUFFER_MAX_SIZE;
for (u32 i = 0; i < 4; i++)
usbdaemon->dtds[dtd_ep_idx + dtd_idx].pages[i] =
(u32)&buf[dt_buffer_offset + (USB_TD_BUFFER_PAGE_SIZE * i)];
//usbdaemon->dtds[dtd_ep_idx + dtd_idx].pages[5] =
// (u32)&buf[dt_buffer_offset + (USB_TD_BUFFER_PAGE_SIZE * 4)]; // Last buffer. Unused.
length_left -= dtd_size;
if (length_left)
dtd_idx++;
}
while (length_left);
// Last dTD, terminate it.
usbdaemon->dtds[dtd_ep_idx + dtd_idx].next_dTD = 1;
// Set first dTD address to queue head next dTD.
usbdaemon->qhs[endpoint].next_dTD_ptr |= (u32)&usbdaemon->dtds[dtd_ep_idx] & 0xFFFFFFE0;
// Flush AHB prefetcher.
AHB_GIZMO(AHB_AHB_MEM_PREFETCH_CFG1) &= ~MEM_PREFETCH_ENABLE;
AHB_GIZMO(AHB_AHB_MEM_PREFETCH_CFG1) |= MEM_PREFETCH_ENABLE;
if (direction == USB_XFER_DIR_IN)
{
prime_bit = USB2D_ENDPT_STATUS_TX_OFFSET << actual_ep;
bpmp_mmu_maintenance(BPMP_MMU_MAINT_CLN_INV_WAY, false);
}
else
prime_bit = USB2D_ENDPT_STATUS_RX_OFFSET << actual_ep;
// Prime endpoint.
usbd_otg->regs->endptprime |= prime_bit; // USB2_CONTROLLER_USB2D_ENDPTPRIME.
int res = 0;
usb_ep_status_t ep_status;
if (sync)
{
ep_status = _usbd_get_ep_status(endpoint);
if (ep_status == USB_EP_STATUS_ACTIVE)
{
u32 retries = 1000000; // Timeout 2s.
while (retries)
{
ep_status = _usbd_get_ep_status(endpoint);
if (ep_status != USB_EP_STATUS_ACTIVE)
{
if (ep_status == USB_EP_STATUS_DISABLED)
res = 28;
goto out;
}
retries--;
usleep(1);
}
res = 3;
}
else if (ep_status == USB_EP_STATUS_DISABLED)
res = 28;
out:
if (res)
_usbd_mark_ep_complete(endpoint);
else if (_usbd_get_ep_status(endpoint) != USB_EP_STATUS_IDLE)
res = 26;
if (direction == USB_XFER_DIR_OUT)
bpmp_mmu_maintenance(BPMP_MMU_MAINT_CLN_INV_WAY, false);
}
return res;
}
static int _usbd_ep_ack(usb_ep_t ep)
{
return _usbd_ep_operation(ep, NULL, 0, true);
}
static void _usbd_set_ep0_stall()
{
// EP Control endpoints must be always stalled together.
usbd_otg->regs->endptctrl[0] =
USB2D_ENDPTCTRL_TX_EP_ENABLE | USB2D_ENDPTCTRL_TX_EP_STALL |
USB2D_ENDPTCTRL_RX_EP_ENABLE | USB2D_ENDPTCTRL_RX_EP_STALL;
}
void usbd_set_ep_stall(u32 endpoint, int ep_stall)
{
usb_hw_ep_t actual_ep = (endpoint & 2) >> 1;
usb_xfer_dir_t direction = endpoint & 1;
if (ep_stall)
{
if (direction == USB_XFER_DIR_IN)
usbd_otg->regs->endptctrl[actual_ep] |= USB2D_ENDPTCTRL_TX_EP_STALL; // Stall EP Bulk IN.
else
usbd_otg->regs->endptctrl[actual_ep] |= USB2D_ENDPTCTRL_RX_EP_STALL; // Stall EP Bulk OUT.
}
else
{
if (direction == USB_XFER_DIR_IN)
usbd_otg->regs->endptctrl[actual_ep] &= ~USB2D_ENDPTCTRL_TX_EP_STALL; // Clear stall EP Bulk IN.
else
usbd_otg->regs->endptctrl[actual_ep] &= ~USB2D_ENDPTCTRL_RX_EP_STALL; // Clear stall EP Bulk OUT.
}
}
static void _usbd_handle_get_class_request(bool *transmit_data, u8 *descriptor, int *size, int *ep_stall)
{
u8 _bRequest = usbd_otg->control_setup.bRequest;
u16 _wIndex = usbd_otg->control_setup.wIndex;
u16 _wValue = usbd_otg->control_setup.wValue;
u16 _wLength = usbd_otg->control_setup.wLength;
bool valid_interface = _wIndex == usbd_otg->interface;
bool valid_len = _bRequest == USB_REQUEST_BULK_GET_MAX_LUN ? 1 : 0;
if (!valid_interface || _wValue != 0 || _wLength != valid_len)
{
*ep_stall = 1;
return;
}
switch (_bRequest)
{
case USB_REQUEST_BULK_RESET:
_usbd_ep_ack(USB_EP_CTRL_IN);
usbd_otg->bulk_reset_req = 1;
break; // DELAYED_STATUS;
case USB_REQUEST_BULK_GET_MAX_LUN:
*transmit_data = 1;
descriptor[0] = usbd_otg->max_lun; // Set 0 LUN for 1 drive supported.
usbd_otg->max_lun_set = 1;
break;
default:
*ep_stall = 1;
break;
}
}
static void _usbd_handle_get_descriptor(bool *transmit_data, void **descriptor, int *size, int *ep_stall)
{
u8 descriptor_type = usbd_otg->control_setup.wValue >> 8;
u8 descriptor_subtype = usbd_otg->control_setup.wValue & 0xFF;
switch (descriptor_type)
{
case USB_DESCRIPTOR_DEVICE:
{
/*
u32 soc_rev = APB_MISC(APB_MISC_GP_HIDREV);
usb_device_descriptor.idProduct = (soc_rev >> 8) & 0xFF; // chip_id.
usb_device_descriptor.idProduct |= ((soc_rev << 4) | (FUSE(FUSE_SKU_INFO) & 0xF)) << 8; // HIDFAM.
usb_device_descriptor.bcdDevice = (soc_rev >> 16) & 0xF; // MINORREV.
usb_device_descriptor.bcdDevice |= ((soc_rev >> 4) & 0xF) << 8; // MAJORREV.
*/
*descriptor = usbd_otg->desc->dev;
*size = usbd_otg->desc->dev->bLength;
*transmit_data = 1;
return;
}
case USB_DESCRIPTOR_CONFIGURATION:
if (usbd_otg->type == USB_GADGET_UMS)
{
if (usbd_otg->port_speed == 2) // High speed. 512 bytes.
{
usbd_otg->desc->cfg->endpoint[0].wMaxPacketSize = 0x200;
usbd_otg->desc->cfg->endpoint[1].wMaxPacketSize = 0x200;
}
else // Full speed. 64 bytes.
{
usbd_otg->desc->cfg->endpoint[0].wMaxPacketSize = 0x40;
usbd_otg->desc->cfg->endpoint[1].wMaxPacketSize = 0x40;
}
}
else
{
usb_cfg_hid_descr_t *tmp = (usb_cfg_hid_descr_t *)usbd_otg->desc->cfg;
if (usbd_otg->port_speed == 2) // High speed. 512 bytes.
{
tmp->endpoint[0].wMaxPacketSize = 0x200;
tmp->endpoint[1].wMaxPacketSize = 0x200;
}
else // Full speed. 64 bytes.
{
tmp->endpoint[0].wMaxPacketSize = 0x40;
tmp->endpoint[1].wMaxPacketSize = 0x40;
}
}
*descriptor = usbd_otg->desc->cfg;
*size = usbd_otg->desc->cfg->config.wTotalLength;
*transmit_data = 1;
return;
case USB_DESCRIPTOR_STRING:
switch (descriptor_subtype)
{
case 1:
*descriptor = usbd_otg->desc->vendor;
*size = usbd_otg->desc->vendor[0];
break;
case 2:
*descriptor = usbd_otg->desc->product;
*size = usbd_otg->desc->product[0];
break;
case 3:
*descriptor = usb_serial_string_descriptor;
*size = usb_serial_string_descriptor[0];
break;
case 0xEE:
*descriptor = usbd_otg->desc->ms_os;
*size = usbd_otg->desc->ms_os->bLength;
break;
default:
*descriptor = usb_lang_id_string_descriptor;
*size = 4;
break;
}
*transmit_data = 1;
return;
case USB_DESCRIPTOR_DEVICE_QUALIFIER:
if (!usbd_otg->desc->dev_qual)
goto exit;
*descriptor = usbd_otg->desc->dev_qual;
*size = usbd_otg->desc->dev_qual->bLength;
*transmit_data = 1;
return;
case USB_DESCRIPTOR_OTHER_SPEED_CONFIGURATION:
if (!usbd_otg->desc->cfg_other)
goto exit;
if (usbd_otg->port_speed == 2)
{
usbd_otg->desc->cfg_other->endpoint[0].wMaxPacketSize = 0x40;
usbd_otg->desc->cfg_other->endpoint[1].wMaxPacketSize = 0x40;
}
else
{
usbd_otg->desc->cfg_other->endpoint[0].wMaxPacketSize = 0x200;
usbd_otg->desc->cfg_other->endpoint[1].wMaxPacketSize = 0x200;
}
if ((usbd_otg->charger_detect & 1) && (usbd_otg->charger_detect & 2))
usbd_otg->desc->cfg_other->config.bMaxPower = 500 / 2;
*descriptor = usbd_otg->desc->cfg_other;
*size = usbd_otg->desc->cfg_other->config.wTotalLength;
*transmit_data = 1;
return;
case USB_DESCRIPTOR_DEVICE_BINARY_OBJECT:
*descriptor = usbd_otg->desc->dev_bot;
*size = usbd_otg->desc->dev_bot->wTotalLength;
*transmit_data = 1;
return;
default:
*transmit_data = 0;
*ep_stall = 1;
return;
}
exit:
*transmit_data = 0;
*ep_stall = 1;
return;
}
static int _usbd_handle_set_request(int *ep_stall)
{
int ret = 0;
u8 bRequest = usbd_otg->control_setup.bRequest;
if (bRequest == USB_REQUEST_SET_ADDRESS)
{
ret = _usbd_ep_ack(USB_EP_CTRL_IN);
// Set USB address for device mode.
if (!ret)
usbd_otg->regs->periodiclistbase = (usbd_otg->regs->periodiclistbase & 0x1FFFFFF) | ((usbd_otg->control_setup.wValue & 0xFF) << 25);
}
else if (bRequest == USB_REQUEST_SET_CONFIGURATION)
{
ret = _usbd_ep_ack(USB_EP_CTRL_IN);
if (!ret)
{
usbd_otg->configuration = usbd_otg->control_setup.wValue;
_usbd_initialize_ep_ctrl(USB_EP_BULK_OUT);
_usbd_initialize_ep_ctrl(USB_EP_BULK_IN);
usbd_otg->configuration_set = 1;
}
}
else
*ep_stall = 1;
return ret;
}
static int _usbd_handle_ep0_control_transfer()
{
int direction;
int ret = 0;
bool transmit_data = 0;
u8 *descriptor = (u8 *)USB_DESCRIPTOR_ADDR;
int size = 0;
int ep_stall = 0;
u8 _bmRequestType = usbd_otg->control_setup.bmRequestType;
u8 _bRequest = usbd_otg->control_setup.bRequest;
u16 _wValue = usbd_otg->control_setup.wValue;
u16 _wIndex = usbd_otg->control_setup.wIndex;
u16 _wLength = usbd_otg->control_setup.wLength;
//gfx_printf("%02X %02X %04X %04X %04X\n", _bmRequestType, _bRequest, _wValue, _wIndex, _wLength);
switch (_bmRequestType)
{
case (USB_SETUP_HOST_TO_DEVICE | USB_SETUP_RECIPIENT_DEVICE | USB_SETUP_TYPE_STANDARD):
ret = _usbd_handle_set_request(&ep_stall);
break;
case (USB_SETUP_HOST_TO_DEVICE | USB_SETUP_RECIPIENT_INTERFACE | USB_SETUP_TYPE_STANDARD):
ret = _usbd_ep_ack(USB_EP_CTRL_IN);
if (!ret)
usbd_otg->interface = _wValue;
break;
case (USB_SETUP_HOST_TO_DEVICE | USB_SETUP_RECIPIENT_ENDPOINT | USB_SETUP_TYPE_STANDARD):
switch (_bRequest)
{
case USB_REQUEST_CLEAR_FEATURE:
case USB_REQUEST_SET_FEATURE:
if ((_wValue & 0xFF) == USB_FEATURE_ENDPOINT_HALT)
{
switch (_wIndex) // endpoint
{
case USB_EP_ADDR_CTRL_OUT:
direction = 2;
break;
case USB_EP_ADDR_CTRL_IN:
direction = 3;
break;
case USB_EP_ADDR_BULK_OUT:
direction = 0;
break;
case USB_EP_ADDR_BULK_IN:
direction = 1;
break;
default:
_usbd_stall_reset_ep1(3, USB_EP_CFG_STALL);
goto out;
}
if (_bRequest == USB_REQUEST_CLEAR_FEATURE)
_usbd_stall_reset_ep1(direction, USB_EP_CFG_RESET);
else
_usbd_stall_reset_ep1(direction, USB_EP_CFG_STALL);
ret = _usbd_ep_ack(USB_EP_CTRL_IN);
}
else
_usbd_stall_reset_ep1(3, USB_EP_CFG_STALL);
break;
default:
ep_stall = 1;
break;
}
break;
case (USB_SETUP_HOST_TO_DEVICE | USB_SETUP_RECIPIENT_INTERFACE | USB_SETUP_TYPE_CLASS):
_usbd_handle_get_class_request(&transmit_data, descriptor, &size, &ep_stall);
break;
case (USB_SETUP_DEVICE_TO_HOST | USB_SETUP_RECIPIENT_DEVICE | USB_SETUP_TYPE_STANDARD):
switch (_bRequest)
{
case USB_REQUEST_GET_STATUS:
descriptor[0] = USB_STATUS_DEV_SELF_POWERED;
descriptor[1] = 0; // No support for remove wake up.
transmit_data = 1;
size = 2;
break;
case USB_REQUEST_GET_DESCRIPTOR:
_usbd_handle_get_descriptor(&transmit_data, (void **)&descriptor, &size, &ep_stall);
break;
case USB_REQUEST_GET_CONFIGURATION:
descriptor = (u8 *)&usbd_otg->configuration;
size = _wLength;
transmit_data = 1;
break;
default:
ep_stall = 1;
break;
}
break;
case (USB_SETUP_DEVICE_TO_HOST | USB_SETUP_RECIPIENT_INTERFACE | USB_SETUP_TYPE_STANDARD):
if (_bRequest == USB_REQUEST_GET_INTERFACE)
{
descriptor = (void *)&usbd_otg->interface;
}
else if (_bRequest == USB_REQUEST_GET_STATUS)
{
memset(descriptor, 0, _wLength);
}
else if (_bRequest == USB_REQUEST_GET_DESCRIPTOR && (_wValue >> 8) == USB_DESCRIPTOR_HID_REPORT && usbd_otg->type > USB_GADGET_UMS)
{
if (usbd_otg->type == USB_GADGET_HID_GAMEPAD)
{
descriptor = (u8 *)&hid_report_descriptor_jc;
_wLength = sizeof(hid_report_descriptor_jc);
}
else // USB_GADGET_HID_TOUCHPAD
{
descriptor = (u8 *)&hid_report_descriptor_touch;
_wLength = sizeof(hid_report_descriptor_touch);
}
usbd_otg->hid_report_sent = 1;
}
else
{
ep_stall = 1;
break;
}
size = _wLength;
transmit_data = 1;
break;
case (USB_SETUP_DEVICE_TO_HOST | USB_SETUP_RECIPIENT_ENDPOINT | USB_SETUP_TYPE_STANDARD):
if (_bRequest == USB_REQUEST_GET_STATUS)
{
int ep_req;
switch (_wIndex)
{
case 0:
ep_req = 0;
break;
case 1:
ep_req = 2;
break;
case 0x80:
ep_req = 1;
break;
case 0x81:
ep_req = 3;
break;
default:
_usbd_stall_reset_ep1(3, USB_EP_CFG_STALL);
goto out;
}
size = _wLength;
memset(descriptor, 0, size);
if (_usbd_get_ep_status(ep_req) == USB_EP_STATUS_STALLED)
descriptor[0] = USB_STATUS_EP_HALTED;
else
descriptor[0] = USB_STATUS_EP_OK;
transmit_data = 1;
}
else
_usbd_stall_reset_ep1(3, USB_EP_CFG_STALL);
break;
case (USB_SETUP_DEVICE_TO_HOST | USB_SETUP_RECIPIENT_INTERFACE | USB_SETUP_TYPE_CLASS):
memset(descriptor, 0, _wLength);
_usbd_handle_get_class_request(&transmit_data, descriptor, &size, &ep_stall);
size = _wLength;
break;
case (USB_SETUP_DEVICE_TO_HOST | USB_SETUP_RECIPIENT_INTERFACE | USB_SETUP_TYPE_VENDOR):
case (USB_SETUP_DEVICE_TO_HOST | USB_SETUP_RECIPIENT_DEVICE | USB_SETUP_TYPE_VENDOR):
if (_bRequest == USB_REQUEST_GET_MS_DESCRIPTOR)
{
switch (_wIndex)
{
case USB_DESCRIPTOR_MS_COMPAT_ID:
descriptor = (u8 *)usbd_otg->desc->ms_cid;
size = usbd_otg->desc->ms_cid->dLength;
transmit_data = 1;
break;
case USB_DESCRIPTOR_MS_EXTENDED_PROPERTIES:
descriptor = (u8 *)usbd_otg->desc->mx_ext;
size = usbd_otg->desc->mx_ext->dLength;
transmit_data = 1;
break;
default:
ep_stall = 1;
break;
}
}
else
ep_stall = 1;
break;
default:
ep_stall = 1;
break;
}
// Transmit data to HOST if any.
if (transmit_data)
{
memcpy(usb_ep0_ctrl_buf, descriptor, size);
if (_wLength < size)
size = _wLength;
ret = _usbd_ep_operation(USB_EP_CTRL_IN, usb_ep0_ctrl_buf, size, true);
if (!ret)
ret = _usbd_ep_ack(USB_EP_CTRL_OUT);
}
out:
if (ep_stall)
_usbd_set_ep0_stall();
return ret;
}
static int _usbd_ep0_initialize()
{
bool enter = false;
if (usbd_otg->configuration_set)
enter = true;
else
{
usbdaemon->qhs = (volatile dQH_t *)USB2_QH_USB2D_QH_EP_BASE;
if (!_usbd_initialize_ep0())
enter = true;
}
if (enter)
{
usbd_otg->configuration_set = 0;
usbd_otg->max_lun_set = 0;
// Timeout if cable or communication isn't started in 1.5 minutes.
u32 timer = get_tmr_ms() + 90000;
while (true)
{
u32 usb_status_irqs = usbd_otg->regs->usbsts;
// Clear all interrupt statuses.
usbd_otg->regs->usbsts = usb_status_irqs;
// Check if a reset was received.
if (usb_status_irqs & USB2D_USBSTS_URI)
{
//_disable_usb_wdt4();
// Clear all device addresses, enabled setup requests, transmit events and flush all endpoints.
usbd_otg->regs->periodiclistbase = 0;
usbd_otg->regs->endptsetupstat = usbd_otg->regs->endptsetupstat;
usbd_otg->regs->endptcomplete = usbd_otg->regs->endptcomplete;
usbd_flush_endpoint(USB_EP_ALL);
}
// Check if port change happened.
if (usb_status_irqs & USB2D_USBSTS_PCI)
usbd_otg->port_speed = (usbd_otg->regs->hostpc1_devlc & USB2D_HOSTPC1_DEVLC_PSPD_MASK) >> 25;
// Acknowledge setup request for EP0 and copy its configuration.
u32 ep0_setup_req = usbd_otg->regs->endptsetupstat;
if (ep0_setup_req & 1)
{
usbd_otg->regs->endptsetupstat = ep0_setup_req;
memcpy(&usbd_otg->control_setup, (void *)usbdaemon->qhs->setup, 8);
if (_usbd_handle_ep0_control_transfer())
break;
}
if (usbd_otg->configuration_set)
return 0;
if (timer < get_tmr_ms() || btn_read_vol() == (BTN_VOL_UP | BTN_VOL_DOWN))
return 2;
}
}
return 3;
}
int usb_device_ep0_initialize(usb_gadget_type type)
{
switch (type)
{
case USB_GADGET_UMS:
usbd_otg->desc = &usb_gadget_ums_descriptors;
break;
case USB_GADGET_HID_GAMEPAD:
usbd_otg->desc = &usb_gadget_hid_jc_descriptors;
break;
case USB_GADGET_HID_TOUCHPAD:
usbd_otg->desc = &usb_gadget_hid_touch_descriptors;
break;
}
usbd_otg->type = type;
int result = _usbd_ep0_initialize();
if (result)
result = 8;
return result;
}
int usbd_handle_ep0_pending_control_transfer()
{
// Acknowledge setup request for EP0 and copy its configuration.
u32 ep0_setup_req = usbd_otg->regs->endptsetupstat;
if (ep0_setup_req & 1)
{
usbd_otg->regs->endptsetupstat = ep0_setup_req;
memcpy(&usbd_otg->control_setup, (void *)usbdaemon->qhs->setup, 8);
_usbd_handle_ep0_control_transfer();
memset(usb_ep0_ctrl_buf, 0, USB_TD_BUFFER_PAGE_SIZE);
}
if (usbd_otg->bulk_reset_req)
{
usbd_otg->bulk_reset_req = 0;
return 1;
}
return 0;
}
static usb_ep_status_t _usbd_get_ep1_status(usb_xfer_dir_t dir)
{
usb_ep_t ep;
if (dir == USB_XFER_DIR_OUT)
ep = USB_EP_BULK_OUT;
else
ep = USB_EP_BULK_IN;
return _usbd_get_ep_status(ep);
}
int usb_device_read_ep1_out(u8 *buf, u32 len, u32 *bytes_read, bool sync)
{
if (len > USB_EP_BUFFER_MAX_SIZE)
len = USB_EP_BUFFER_MAX_SIZE;
int result = _usbd_ep_operation(USB_EP_BULK_OUT, buf, len, sync);
if (sync && bytes_read)
{
if (result)
*bytes_read = 0;
else
*bytes_read = len;
}
return result;
}
int usb_device_read_ep1_out_big_reads(u8 *buf, u32 len, u32 *bytes_read)
{
if (len > USB_EP_BULK_OUT_MAX_XFER)
len = USB_EP_BULK_OUT_MAX_XFER;
int result;
u32 bytes = 0;
*bytes_read = 0;
u8 *buf_curr = buf;
while (len)
{
u32 len_ep = MIN(len, USB_EP_BUFFER_MAX_SIZE);
result = usb_device_read_ep1_out(buf_curr, len_ep, &bytes, true);
if (!result)
{
len -= len_ep;
buf_curr += len_ep;
*bytes_read = *bytes_read + bytes;
}
else
break;
}
return result;
}
static int _usbd_get_ep1_out_bytes_read()
{
if (_usbd_get_ep_status(2) != USB_EP_STATUS_IDLE)
return 0;
else
return (usbdaemon->ep_bytes_requested[2] - (usbdaemon->qhs[2].token >> 16));
}
int usb_device_ep1_out_reading_finish(u32 *pending_bytes)
{
usb_ep_status_t ep_status;
do
{
ep_status = _usbd_get_ep1_status(USB_XFER_DIR_OUT);
if ((ep_status == USB_EP_STATUS_IDLE) || (ep_status == USB_EP_STATUS_DISABLED))
break;
usbd_handle_ep0_pending_control_transfer();
}
while ((ep_status == USB_EP_STATUS_ACTIVE) || (ep_status == USB_EP_STATUS_STALLED));
*pending_bytes = _usbd_get_ep1_out_bytes_read();
bpmp_mmu_maintenance(BPMP_MMU_MAINT_CLN_INV_WAY, false);
if (ep_status == USB_EP_STATUS_IDLE)
return 0;
else if (ep_status == USB_EP_STATUS_DISABLED)
return 28;
else
return 26;
}
int usb_device_write_ep1_in(u8 *buf, u32 len, u32 *bytes_written, bool sync)
{
if (len > USB_EP_BUFFER_MAX_SIZE)
len = USB_EP_BUFFER_MAX_SIZE;
int result = _usbd_ep_operation(USB_EP_BULK_IN, buf, len, sync);
if (sync && bytes_written)
{
if (result)
*bytes_written = 0;
else
*bytes_written = len;
}
return result;
}
static int _usbd_get_ep1_in_bytes_written()
{
if (_usbd_get_ep_status(3) != USB_EP_STATUS_IDLE)
return 0;
else
return (usbdaemon->ep_bytes_requested[3] - (usbdaemon->qhs[3].token >> 16));
}
int usb_device_ep1_in_writing_finish(u32 *pending_bytes)
{
usb_ep_status_t ep_status;
do
{
ep_status = _usbd_get_ep1_status(USB_XFER_DIR_IN);
if ((ep_status == USB_EP_STATUS_IDLE) || (ep_status == USB_EP_STATUS_DISABLED))
break;
usbd_handle_ep0_pending_control_transfer();
}
while ((ep_status == USB_EP_STATUS_ACTIVE) || (ep_status == USB_EP_STATUS_STALLED));
*pending_bytes = _usbd_get_ep1_in_bytes_written();
if (ep_status == USB_EP_STATUS_IDLE)
return 0;
else if (ep_status == USB_EP_STATUS_DISABLED)
return 28;
usb_device_stall_ep1_bulk_out();
return 26;
}
bool usb_device_get_suspended()
{
u32 suspended = usbd_otg->regs->portsc1 & USB2D_PORTSC1_SUSP;
return (suspended ? true : false);
}
u32 usb_device_get_port_status()
{
return (usbd_otg->regs->portsc1);
}
bool usb_device_get_max_lun(u8 max_lun)
{
// Timeout if get MAX_LUN request doesn't happen in 10s.
u32 timer = get_tmr_ms() + 10000;
usbd_otg->max_lun = max_lun;
while (!usbd_otg->max_lun_set)
{
usbd_handle_ep0_pending_control_transfer();
if (timer < get_tmr_ms() || btn_read_vol() == (BTN_VOL_UP | BTN_VOL_DOWN))
return true;
}
return false;
}
bool usb_device_get_hid_report()
{
// Timeout if get GET_HID_REPORT request doesn't happen in 10s.
u32 timer = get_tmr_ms() + 10000;
while (!usbd_otg->hid_report_sent)
{
usbd_handle_ep0_pending_control_transfer();
if (timer < get_tmr_ms() || btn_read_vol() == (BTN_VOL_UP | BTN_VOL_DOWN))
return true;
}
return false;
}