1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2025-01-19 07:41:31 +00:00
Atmosphere/libraries/libmesosphere/source/arch/arm64/kern_k_debug.cpp

938 lines
44 KiB
C++
Raw Normal View History

2020-07-31 05:41:28 +01:00
/*
* Copyright (c) Atmosphère-NX
2020-07-31 05:41:28 +01:00
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mesosphere.hpp>
namespace ams::kern::arch::arm64 {
namespace {
constexpr inline u64 ForbiddenBreakPointFlagsMask = (((1ul << 40) - 1) << 24) | /* Reserved upper bits. */
(((1ul << 1) - 1) << 23) | /* Match VMID BreakPoint Type. */
(((1ul << 2) - 1) << 14) | /* Security State Control. */
(((1ul << 1) - 1) << 13) | /* Hyp Mode Control. */
(((1ul << 4) - 1) << 9) | /* Reserved middle bits. */
(((1ul << 2) - 1) << 3) | /* Reserved lower bits. */
(((1ul << 2) - 1) << 1); /* Privileged Mode Control. */
static_assert(ForbiddenBreakPointFlagsMask == 0xFFFFFFFFFF80FE1Eul);
constexpr inline u64 ForbiddenWatchPointFlagsMask = (((1ul << 32) - 1) << 32) | /* Reserved upper bits. */
(((1ul << 4) - 1) << 20) | /* WatchPoint Type. */
(((1ul << 2) - 1) << 14) | /* Security State Control. */
(((1ul << 1) - 1) << 13) | /* Hyp Mode Control. */
(((1ul << 2) - 1) << 1); /* Privileged Access Control. */
static_assert(ForbiddenWatchPointFlagsMask == 0xFFFFFFFF00F0E006ul);
constexpr inline u32 El0PsrMask = 0xFF0FFE20;
2020-07-31 05:41:28 +01:00
}
2020-07-31 08:04:43 +01:00
uintptr_t KDebug::GetProgramCounter(const KThread &thread) {
return GetExceptionContext(std::addressof(thread))->pc;
}
void KDebug::SetPreviousProgramCounter() {
/* Get the current thread. */
KThread *thread = GetCurrentThreadPointer();
MESOSPHERE_ASSERT(thread->IsCallingSvc());
/* Get the exception context. */
KExceptionContext *e_ctx = GetExceptionContext(thread);
/* Set the previous pc. */
if (e_ctx->write == 0) {
/* Subtract from the program counter. */
if (thread->GetOwnerProcess()->Is64Bit()) {
e_ctx->pc -= sizeof(u32);
} else {
e_ctx->pc -= (e_ctx->psr & 0x20) ? sizeof(u16) : sizeof(u32);
}
/* Mark that we've set. */
e_ctx->write = 1;
}
}
Result KDebug::GetThreadContextImpl(ams::svc::ThreadContext *out, KThread *thread, u32 context_flags) {
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
MESOSPHERE_ASSERT(thread != GetCurrentThreadPointer());
/* Get the exception context. */
const KExceptionContext *e_ctx = GetExceptionContext(thread);
/* Get whether we're 64-bit. */
const bool is_64_bit = this->Is64Bit();
/* If general registers are requested, get them. */
if ((context_flags & ams::svc::ThreadContextFlag_General) != 0) {
/* We can always get X0-X7/R0-R7. */
auto register_count = 8;
if (!thread->IsCallingSvc() || thread->GetSvcId() == svc::SvcId_ReturnFromException) {
if (is_64_bit) {
/* We're not in an SVC, so we can get X0-X29. */
register_count = 29;
} else {
/* We're 32-bit, so we should get R0-R12. */
register_count = 13;
}
}
/* Get the registers. */
for (auto i = 0; i < register_count; ++i) {
out->r[i] = is_64_bit ? e_ctx->x[i] : static_cast<u32>(e_ctx->x[i]);
}
}
/* If control flags are requested, get them. */
if ((context_flags & ams::svc::ThreadContextFlag_Control) != 0) {
if (is_64_bit) {
out->fp = e_ctx->x[29];
out->lr = e_ctx->x[30];
out->sp = e_ctx->sp;
out->pc = e_ctx->pc;
out->pstate = (e_ctx->psr & El0PsrMask);
/* Adjust PC if we should. */
if (e_ctx->write == 0 && thread->IsCallingSvc()) {
out->pc -= sizeof(u32);
}
out->tpidr = e_ctx->tpidr;
} else {
out->r[11] = static_cast<u32>(e_ctx->x[11]);
out->r[13] = static_cast<u32>(e_ctx->x[13]);
out->r[14] = static_cast<u32>(e_ctx->x[14]);
out->lr = 0;
out->sp = 0;
out->pc = e_ctx->pc;
out->pstate = (e_ctx->psr & El0PsrMask);
/* Adjust PC if we should. */
if (e_ctx->write == 0 && thread->IsCallingSvc()) {
out->pc -= (e_ctx->psr & 0x20) ? sizeof(u16) : sizeof(u32);
}
out->tpidr = static_cast<u32>(e_ctx->tpidr);
}
}
/* Get the FPU context. */
R_RETURN(this->GetFpuContext(out, thread, context_flags));
}
Result KDebug::SetThreadContextImpl(const ams::svc::ThreadContext &ctx, KThread *thread, u32 context_flags) {
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
MESOSPHERE_ASSERT(thread != GetCurrentThreadPointer());
/* Get the exception context. */
KExceptionContext *e_ctx = GetExceptionContext(thread);
/* If general registers are requested, set them. */
if ((context_flags & ams::svc::ThreadContextFlag_General) != 0) {
if (this->Is64Bit()) {
/* Set X0-X28. */
for (auto i = 0; i <= 28; ++i) {
e_ctx->x[i] = ctx.r[i];
}
} else {
/* Set R0-R12. */
for (auto i = 0; i <= 12; ++i) {
e_ctx->x[i] = static_cast<u32>(ctx.r[i]);
}
}
}
/* If control flags are requested, set them. */
if ((context_flags & ams::svc::ThreadContextFlag_Control) != 0) {
/* Mark ourselve as having adjusted pc. */
e_ctx->write = 1;
if (this->Is64Bit()) {
e_ctx->x[29] = ctx.fp;
e_ctx->x[30] = ctx.lr;
e_ctx->sp = ctx.sp;
e_ctx->pc = ctx.pc;
e_ctx->psr = ((ctx.pstate & El0PsrMask) | (e_ctx->psr & ~El0PsrMask));
e_ctx->tpidr = ctx.tpidr;
} else {
e_ctx->x[13] = static_cast<u32>(ctx.r[13]);
e_ctx->x[14] = static_cast<u32>(ctx.r[14]);
e_ctx->x[30] = 0;
e_ctx->sp = 0;
e_ctx->pc = static_cast<u32>(ctx.pc);
e_ctx->psr = ((ctx.pstate & El0PsrMask) | (e_ctx->psr & ~El0PsrMask));
e_ctx->tpidr = ctx.tpidr;
}
}
/* Set the FPU context. */
R_RETURN(this->SetFpuContext(ctx, thread, context_flags));
}
Result KDebug::GetFpuContext(ams::svc::ThreadContext *out, KThread *thread, u32 context_flags) {
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
MESOSPHERE_ASSERT(thread != GetCurrentThreadPointer());
/* Succeed if there's nothing to do. */
R_SUCCEED_IF((context_flags & (ams::svc::ThreadContextFlag_Fpu | ams::svc::ThreadContextFlag_FpuControl)) == 0);
/* Get the thread context. */
KThreadContext *t_ctx = std::addressof(thread->GetContext());
/* Get the FPU control registers, if required. */
if ((context_flags & ams::svc::ThreadContextFlag_FpuControl) != 0) {
out->fpsr = t_ctx->GetFpsr();
out->fpcr = t_ctx->GetFpcr();
}
/* Get the FPU registers, if required. */
if ((context_flags & ams::svc::ThreadContextFlag_Fpu) != 0) {
static_assert(util::size(ams::svc::ThreadContext{}.v) == KThreadContext::NumFpuRegisters);
const auto &caller_save = thread->GetCallerSaveFpuRegisters();
const auto &callee_save = t_ctx->GetCalleeSaveFpuRegisters();
if (this->Is64Bit()) {
KThreadContext::GetFpuRegisters(out->v, caller_save.fpu64, callee_save.fpu64);
} else {
KThreadContext::GetFpuRegisters(out->v, caller_save.fpu32, callee_save.fpu32);
for (size_t i = KThreadContext::NumFpuRegisters / 2; i < KThreadContext::NumFpuRegisters; ++i) {
out->v[i] = 0;
}
}
}
R_SUCCEED();
}
Result KDebug::SetFpuContext(const ams::svc::ThreadContext &ctx, KThread *thread, u32 context_flags) {
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
MESOSPHERE_ASSERT(thread != GetCurrentThreadPointer());
/* Succeed if there's nothing to do. */
R_SUCCEED_IF((context_flags & (ams::svc::ThreadContextFlag_Fpu | ams::svc::ThreadContextFlag_FpuControl)) == 0);
/* Get the thread context. */
KThreadContext *t_ctx = std::addressof(thread->GetContext());
/* Set the FPU control registers, if required. */
if ((context_flags & ams::svc::ThreadContextFlag_FpuControl) != 0) {
t_ctx->SetFpsr(ctx.fpsr);
t_ctx->SetFpcr(ctx.fpcr);
}
/* Set the FPU registers, if required. */
if ((context_flags & ams::svc::ThreadContextFlag_Fpu) != 0) {
static_assert(util::size(ams::svc::ThreadContext{}.v) == KThreadContext::NumFpuRegisters);
auto &caller_save = thread->GetCallerSaveFpuRegisters();
auto &callee_save = t_ctx->GetCalleeSaveFpuRegisters();
if (this->Is64Bit()) {
KThreadContext::SetFpuRegisters(caller_save.fpu64, callee_save.fpu64, ctx.v);
} else {
KThreadContext::SetFpuRegisters(caller_save.fpu32, callee_save.fpu32, ctx.v);
}
}
R_SUCCEED();
}
2020-07-31 08:04:43 +01:00
Result KDebug::BreakIfAttached(ams::svc::BreakReason break_reason, uintptr_t address, size_t size) {
R_RETURN(KDebugBase::OnDebugEvent(ams::svc::DebugEvent_Exception, ams::svc::DebugException_UserBreak, GetProgramCounter(GetCurrentThread()), break_reason, address, size));
2020-07-31 08:04:43 +01:00
}
2020-07-31 05:41:28 +01:00
#define MESOSPHERE_SET_HW_BREAK_POINT(ID, FLAGS, VALUE) \
({ \
cpu::SetDbgBcr##ID##El1(0); \
cpu::EnsureInstructionConsistencyFullSystem(); \
2020-07-31 05:41:28 +01:00
cpu::SetDbgBvr##ID##El1(VALUE); \
cpu::EnsureInstructionConsistencyFullSystem(); \
2020-07-31 05:41:28 +01:00
cpu::SetDbgBcr##ID##El1(FLAGS); \
cpu::EnsureInstructionConsistencyFullSystem(); \
2020-07-31 05:41:28 +01:00
})
#define MESOSPHERE_SET_HW_WATCH_POINT(ID, FLAGS, VALUE) \
({ \
cpu::SetDbgWcr##ID##El1(0); \
cpu::EnsureInstructionConsistencyFullSystem(); \
2020-07-31 05:41:28 +01:00
cpu::SetDbgWvr##ID##El1(VALUE); \
cpu::EnsureInstructionConsistencyFullSystem(); \
2020-07-31 05:41:28 +01:00
cpu::SetDbgWcr##ID##El1(FLAGS); \
cpu::EnsureInstructionConsistencyFullSystem(); \
2020-07-31 05:41:28 +01:00
})
Result KDebug::SetHardwareBreakPoint(ams::svc::HardwareBreakPointRegisterName name, u64 flags, u64 value) {
/* Get the debug feature register. */
cpu::DebugFeatureRegisterAccessor dfr0;
/* Extract interesting info from the debug feature register. */
const auto num_bp = dfr0.GetNumBreakpoints();
const auto num_wp = dfr0.GetNumWatchpoints();
const auto num_ctx = dfr0.GetNumContextAwareBreakpoints();
if (ams::svc::HardwareBreakPointRegisterName_I0 <= name && name <= ams::svc::HardwareBreakPointRegisterName_I15) {
/* Check that the name is a valid instruction breakpoint. */
R_UNLESS((name - ams::svc::HardwareBreakPointRegisterName_I0) <= num_bp, svc::ResultNotSupported());
/* Configure flags/value. */
if ((flags & 1) != 0) {
/* We're enabling the breakpoint. Check that the flags are allowable. */
R_UNLESS((flags & ForbiddenBreakPointFlagsMask) == 0, svc::ResultInvalidCombination());
/* Require that the breakpoint be linked or match context id. */
R_UNLESS((flags & ((1ul << 21) | (1ul << 20))) != 0, svc::ResultInvalidCombination());
/* If the breakpoint matches context id, we need to get the context id. */
if ((flags & (1ul << 21)) != 0) {
/* Ensure that the breakpoint is context-aware. */
R_UNLESS((name - ams::svc::HardwareBreakPointRegisterName_I0) >= (num_bp - num_ctx), svc::ResultNotSupported());
2020-07-31 05:41:28 +01:00
/* Check that the breakpoint does not have the mismatch bit. */
R_UNLESS((flags & (1ul << 22)) == 0, svc::ResultInvalidCombination());
/* Get the debug object from the current handle table. */
KScopedAutoObject debug = GetCurrentProcess().GetHandleTable().GetObject<KDebug>(static_cast<ams::svc::Handle>(value));
R_UNLESS(debug.IsNotNull(), svc::ResultInvalidHandle());
/* Get the process from the debug object. */
2021-09-18 02:10:05 +01:00
R_UNLESS(debug->IsAttached(), svc::ResultProcessTerminated());
R_UNLESS(debug->OpenProcess(), svc::ResultProcessTerminated());
/* Close the process when we're done. */
ON_SCOPE_EXIT { debug->CloseProcess(); };
/* Get the proces. */
KProcess * const process = debug->GetProcessUnsafe();
2020-07-31 05:41:28 +01:00
/* Set the value to be the context id. */
value = process->GetId() & 0xFFFFFFFF;
}
/* Set the breakpoint as non-secure EL0-only. */
flags |= (1ul << 14) | (2ul << 1);
} else {
/* We're disabling the breakpoint. */
flags = 0;
value = 0;
}
/* Set the breakpoint. */
switch (name) {
case ams::svc::HardwareBreakPointRegisterName_I0: MESOSPHERE_SET_HW_BREAK_POINT( 0, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_I1: MESOSPHERE_SET_HW_BREAK_POINT( 1, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_I2: MESOSPHERE_SET_HW_BREAK_POINT( 2, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_I3: MESOSPHERE_SET_HW_BREAK_POINT( 3, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_I4: MESOSPHERE_SET_HW_BREAK_POINT( 4, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_I5: MESOSPHERE_SET_HW_BREAK_POINT( 5, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_I6: MESOSPHERE_SET_HW_BREAK_POINT( 6, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_I7: MESOSPHERE_SET_HW_BREAK_POINT( 7, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_I8: MESOSPHERE_SET_HW_BREAK_POINT( 8, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_I9: MESOSPHERE_SET_HW_BREAK_POINT( 9, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_I10: MESOSPHERE_SET_HW_BREAK_POINT(10, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_I11: MESOSPHERE_SET_HW_BREAK_POINT(11, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_I12: MESOSPHERE_SET_HW_BREAK_POINT(12, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_I13: MESOSPHERE_SET_HW_BREAK_POINT(13, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_I14: MESOSPHERE_SET_HW_BREAK_POINT(14, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_I15: MESOSPHERE_SET_HW_BREAK_POINT(15, flags, value); break;
default: break;
}
} else if (ams::svc::HardwareBreakPointRegisterName_D0 <= name && name <= ams::svc::HardwareBreakPointRegisterName_D15) {
/* Check that the name is a valid data breakpoint. */
R_UNLESS((name - ams::svc::HardwareBreakPointRegisterName_D0) <= num_wp, svc::ResultNotSupported());
/* Configure flags/value. */
if ((flags & 1) != 0) {
/* We're enabling the watchpoint. Check that the flags are allowable. */
R_UNLESS((flags & ForbiddenWatchPointFlagsMask) == 0, svc::ResultInvalidCombination());
/* Set the breakpoint as linked non-secure EL0-only. */
flags |= (1ul << 20) | (1ul << 14) | (2ul << 1);
} else {
/* We're disabling the watchpoint. */
flags = 0;
value = 0;
}
/* Set the watchkpoint. */
switch (name) {
case ams::svc::HardwareBreakPointRegisterName_D0: MESOSPHERE_SET_HW_WATCH_POINT( 0, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_D1: MESOSPHERE_SET_HW_WATCH_POINT( 1, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_D2: MESOSPHERE_SET_HW_WATCH_POINT( 2, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_D3: MESOSPHERE_SET_HW_WATCH_POINT( 3, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_D4: MESOSPHERE_SET_HW_WATCH_POINT( 4, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_D5: MESOSPHERE_SET_HW_WATCH_POINT( 5, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_D6: MESOSPHERE_SET_HW_WATCH_POINT( 6, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_D7: MESOSPHERE_SET_HW_WATCH_POINT( 7, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_D8: MESOSPHERE_SET_HW_WATCH_POINT( 8, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_D9: MESOSPHERE_SET_HW_WATCH_POINT( 9, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_D10: MESOSPHERE_SET_HW_WATCH_POINT(10, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_D11: MESOSPHERE_SET_HW_WATCH_POINT(11, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_D12: MESOSPHERE_SET_HW_WATCH_POINT(12, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_D13: MESOSPHERE_SET_HW_WATCH_POINT(13, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_D14: MESOSPHERE_SET_HW_WATCH_POINT(14, flags, value); break;
case ams::svc::HardwareBreakPointRegisterName_D15: MESOSPHERE_SET_HW_WATCH_POINT(15, flags, value); break;
default: break;
}
} else {
/* Invalid name. */
R_THROW(svc::ResultInvalidEnumValue());
2020-07-31 05:41:28 +01:00
}
R_SUCCEED();
2020-07-31 05:41:28 +01:00
}
#undef MESOSPHERE_SET_HW_WATCH_POINT
#undef MESOSPHERE_SET_HW_BREAK_POINT
void KDebug::PrintRegister(KThread *thread) {
#if defined(MESOSPHERE_BUILD_FOR_DEBUGGING)
{
/* Treat no thread as current thread. */
if (thread == nullptr) {
thread = GetCurrentThreadPointer();
}
/* Get the exception context. */
KExceptionContext *e_ctx = GetExceptionContext(thread);
/* Get the owner process. */
if (auto *process = thread->GetOwnerProcess(); process != nullptr) {
/* Lock the owner process. */
KScopedLightLock state_lk(process->GetStateLock());
KScopedLightLock list_lk(process->GetListLock());
/* Suspend all the process's threads. */
{
KScopedSchedulerLock sl;
auto end = process->GetThreadList().end();
for (auto it = process->GetThreadList().begin(); it != end; ++it) {
if (std::addressof(*it) != GetCurrentThreadPointer()) {
it->RequestSuspend(KThread::SuspendType_Backtrace);
}
}
}
/* Print the registers. */
MESOSPHERE_RELEASE_LOG("Registers\n");
if ((e_ctx->psr & 0x10) == 0) {
/* 64-bit thread. */
for (auto i = 0; i < 31; ++i) {
MESOSPHERE_RELEASE_LOG(" X[%2d]: 0x%016lx\n", i, e_ctx->x[i]);
}
MESOSPHERE_RELEASE_LOG(" SP: 0x%016lx\n", e_ctx->sp);
MESOSPHERE_RELEASE_LOG(" PC: 0x%016lx\n", e_ctx->pc - sizeof(u32));
MESOSPHERE_RELEASE_LOG(" PSR: 0x%08x\n", e_ctx->psr);
MESOSPHERE_RELEASE_LOG(" TPIDR_EL0: 0x%016lx\n", e_ctx->tpidr);
} else {
/* 32-bit thread. */
for (auto i = 0; i < 13; ++i) {
MESOSPHERE_RELEASE_LOG(" R[%2d]: 0x%08x\n", i, static_cast<u32>(e_ctx->x[i]));
}
MESOSPHERE_RELEASE_LOG(" SP: 0x%08x\n", static_cast<u32>(e_ctx->x[13]));
MESOSPHERE_RELEASE_LOG(" LR: 0x%08x\n", static_cast<u32>(e_ctx->x[14]));
MESOSPHERE_RELEASE_LOG(" PC: 0x%08x\n", static_cast<u32>(e_ctx->pc) - static_cast<u32>((e_ctx->psr & 0x20) ? sizeof(u16) : sizeof(u32)));
MESOSPHERE_RELEASE_LOG(" PSR: 0x%08x\n", e_ctx->psr);
MESOSPHERE_RELEASE_LOG(" TPIDR: 0x%08x\n", static_cast<u32>(e_ctx->tpidr));
}
/* Resume the threads that we suspended. */
{
KScopedSchedulerLock sl;
auto end = process->GetThreadList().end();
for (auto it = process->GetThreadList().begin(); it != end; ++it) {
if (std::addressof(*it) != GetCurrentThreadPointer()) {
it->Resume(KThread::SuspendType_Backtrace);
}
}
}
}
}
#else
MESOSPHERE_UNUSED(thread);
#endif
}
#if defined(MESOSPHERE_BUILD_FOR_DEBUGGING)
namespace {
bool IsHeapPhysicalAddress(KPhysicalAddress phys_addr) {
const KMemoryRegion *cached = nullptr;
return KMemoryLayout::IsHeapPhysicalAddress(cached, phys_addr);
}
template<typename T>
bool ReadValue(T *out, KProcess *process, uintptr_t address) {
KPhysicalAddress phys_addr;
KMemoryInfo mem_info;
ams::svc::PageInfo page_info;
if (!util::IsAligned(address, sizeof(T))) {
return false;
}
if (R_FAILED(process->GetPageTable().QueryInfo(std::addressof(mem_info), std::addressof(page_info), address))) {
return false;
}
if ((mem_info.GetPermission() & KMemoryPermission_UserRead) != KMemoryPermission_UserRead) {
return false;
}
if (!process->GetPageTable().GetPhysicalAddress(std::addressof(phys_addr), address)) {
return false;
}
if (!IsHeapPhysicalAddress(phys_addr)) {
return false;
}
*out = *GetPointer<T>(process->GetPageTable().GetHeapVirtualAddress(phys_addr));
return true;
}
bool GetModuleName(char *dst, size_t dst_size, KProcess *process, uintptr_t base_address) {
/* Locate .rodata. */
KMemoryInfo mem_info;
ams::svc::PageInfo page_info;
KMemoryState mem_state = KMemoryState_None;
while (true) {
if (R_FAILED(process->GetPageTable().QueryInfo(std::addressof(mem_info), std::addressof(page_info), base_address))) {
return false;
}
if (mem_state == KMemoryState_None) {
mem_state = mem_info.GetState();
if (mem_state != KMemoryState_Code && mem_state != KMemoryState_AliasCode) {
return false;
}
}
if (mem_info.GetState() != mem_state) {
return false;
}
if (mem_info.GetPermission() == KMemoryPermission_UserRead) {
break;
}
base_address = mem_info.GetEndAddress();
}
/* Check that first value is 0. */
u32 val;
if (!ReadValue(std::addressof(val), process, base_address)) {
return false;
}
if (val != 0) {
return false;
}
/* Read the name length. */
if (!ReadValue(std::addressof(val), process, base_address + sizeof(u32))) {
return false;
}
if (!(0 < val && val < dst_size)) {
return false;
}
const size_t name_len = val;
/* Read the name, one character at a time. */
for (size_t i = 0; i < name_len; ++i) {
if (!ReadValue(dst + i, process, base_address + 2 * sizeof(u32) + i)) {
return false;
}
if (!(0 < dst[i] && dst[i] <= 0x7F)) {
return false;
}
}
/* NULL-terminate. */
dst[name_len] = 0;
return true;
}
void PrintAddress(uintptr_t address) {
MESOSPHERE_RELEASE_LOG(" %p\n", reinterpret_cast<void *>(address));
}
void PrintAddressWithModuleName(uintptr_t address, bool has_module_name, const char *module_name, uintptr_t base_address) {
if (has_module_name) {
MESOSPHERE_RELEASE_LOG(" %p [%10s + %8lx]\n", reinterpret_cast<void *>(address), module_name, address - base_address);
} else {
MESOSPHERE_RELEASE_LOG(" %p [%10lx + %8lx]\n", reinterpret_cast<void *>(address), base_address, address - base_address);
}
}
void PrintAddressWithSymbol(uintptr_t address, bool has_module_name, const char *module_name, uintptr_t base_address, const char *symbol_name, uintptr_t func_address) {
if (has_module_name) {
MESOSPHERE_RELEASE_LOG(" %p [%10s + %8lx] (%s + %lx)\n", reinterpret_cast<void *>(address), module_name, address - base_address, symbol_name, address - func_address);
} else {
MESOSPHERE_RELEASE_LOG(" %p [%10lx + %8lx] (%s + %lx)\n", reinterpret_cast<void *>(address), base_address, address - base_address, symbol_name, address - func_address);
}
}
void PrintCodeAddress(KProcess *process, uintptr_t address, bool is_lr = true) {
/* Prepare to parse + print the address. */
uintptr_t test_address = is_lr ? address - sizeof(u32) : address;
uintptr_t base_address = address;
uintptr_t dyn_address = 0;
uintptr_t sym_tab = 0;
uintptr_t str_tab = 0;
size_t num_sym = 0;
u64 temp_64;
u32 temp_32;
/* Locate the start of .text. */
KMemoryInfo mem_info;
ams::svc::PageInfo page_info;
KMemoryState mem_state = KMemoryState_None;
while (true) {
if (R_FAILED(process->GetPageTable().QueryInfo(std::addressof(mem_info), std::addressof(page_info), base_address))) {
return PrintAddress(address);
}
if (mem_state == KMemoryState_None) {
mem_state = mem_info.GetState();
if (mem_state != KMemoryState_Code && mem_state != KMemoryState_AliasCode) {
return PrintAddress(address);
}
} else if (mem_info.GetState() != mem_state) {
return PrintAddress(address);
}
if (mem_info.GetPermission() != KMemoryPermission_UserReadExecute) {
return PrintAddress(address);
}
base_address = mem_info.GetAddress();
if (R_FAILED(process->GetPageTable().QueryInfo(std::addressof(mem_info), std::addressof(page_info), base_address - 1))) {
return PrintAddress(address);
}
if (mem_info.GetState() != mem_state) {
break;
}
if (mem_info.GetPermission() != KMemoryPermission_UserReadExecute) {
break;
}
}
/* Read the first instruction. */
if (!ReadValue(std::addressof(temp_32), process, base_address)) {
return PrintAddress(address);
}
/* Get the module name. */
char module_name[0x20];
const bool has_module_name = GetModuleName(module_name, sizeof(module_name), process, base_address);
/* If the process is 32-bit, just print the module. */
if (!process->Is64Bit()) {
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
if (temp_32 == 0) {
/* Module is dynamically loaded by rtld. */
u32 mod_offset;
if (!ReadValue(std::addressof(mod_offset), process, base_address + sizeof(u32))) {
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
if (!ReadValue(std::addressof(temp_32), process, base_address + mod_offset)) {
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
if (temp_32 != 0x30444F4D) { /* MOD0 */
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
if (!ReadValue(std::addressof(temp_32), process, base_address + mod_offset + sizeof(u32))) {
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
dyn_address = base_address + mod_offset + temp_32;
} else if (temp_32 == 0x14000002) {
/* Module embeds rtld. */
if (!ReadValue(std::addressof(temp_32), process, base_address + 0x5C)) {
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
if (temp_32 != 0x94000002) {
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
if (!ReadValue(std::addressof(temp_32), process, base_address + 0x60)) {
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
dyn_address = base_address + 0x60 + temp_32;
} else {
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
/* Locate tables inside .dyn. */
for (size_t ofs = 0; /* ... */; ofs += 0x10) {
/* Read the DynamicTag. */
if (!ReadValue(std::addressof(temp_64), process, dyn_address + ofs)) {
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
if (temp_64 == 0) {
/* We're done parsing .dyn. */
break;
} else if (temp_64 == 4) {
/* We found DT_HASH */
if (!ReadValue(std::addressof(temp_64), process, dyn_address + ofs + sizeof(u64))) {
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
/* Read nchain, to get the number of symbols. */
if (!ReadValue(std::addressof(temp_32), process, base_address + temp_64 + sizeof(u32))) {
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
num_sym = temp_32;
} else if (temp_64 == 5) {
/* We found DT_STRTAB */
if (!ReadValue(std::addressof(temp_64), process, dyn_address + ofs + sizeof(u64))) {
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
str_tab = base_address + temp_64;
} else if (temp_64 == 6) {
/* We found DT_SYMTAB */
if (!ReadValue(std::addressof(temp_64), process, dyn_address + ofs + sizeof(u64))) {
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
sym_tab = base_address + temp_64;
}
}
/* Check that we found all the tables. */
if (!(sym_tab != 0 && str_tab != 0 && num_sym != 0)) {
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
/* Try to locate an appropriate symbol. */
for (size_t i = 0; i < num_sym; ++i) {
/* Read the symbol from userspace. */
struct {
u32 st_name;
u8 st_info;
u8 st_other;
u16 st_shndx;
u64 st_value;
u64 st_size;
} sym;
{
u64 x[sizeof(sym) / sizeof(u64)];
for (size_t j = 0; j < util::size(x); ++j) {
if (!ReadValue(x + j, process, sym_tab + sizeof(sym) * i + sizeof(u64) * j)) {
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
}
std::memcpy(std::addressof(sym), x, sizeof(sym));
}
/* Check the symbol is valid/STT_FUNC. */
if (sym.st_shndx == 0 || ((sym.st_shndx & 0xFF00) == 0xFF00)) {
continue;
}
if ((sym.st_info & 0xF) != 2) {
continue;
}
/* Check the address. */
const uintptr_t func_start = base_address + sym.st_value;
if (func_start <= test_address && test_address < func_start + sym.st_size) {
/* Read the symbol name. */
const uintptr_t sym_address = str_tab + sym.st_name;
char sym_name[0x80];
sym_name[util::size(sym_name) - 1] = 0;
for (size_t j = 0; j < util::size(sym_name) - 1; ++j) {
if (!ReadValue(sym_name + j, process, sym_address + j)) {
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
if (sym_name[j] == 0) {
break;
}
}
/* Print the symbol. */
return PrintAddressWithSymbol(address, has_module_name, module_name, base_address, sym_name, func_start);
}
}
/* Fall back to printing the module. */
return PrintAddressWithModuleName(address, has_module_name, module_name, base_address);
}
}
#endif
void KDebug::PrintBacktrace(KThread *thread) {
#if defined(MESOSPHERE_BUILD_FOR_DEBUGGING)
{
/* Treat no thread as current thread. */
if (thread == nullptr) {
thread = GetCurrentThreadPointer();
}
/* Get the exception context. */
KExceptionContext *e_ctx = GetExceptionContext(thread);
/* Get the owner process. */
if (auto *process = thread->GetOwnerProcess(); process != nullptr) {
/* Lock the owner process. */
KScopedLightLock state_lk(process->GetStateLock());
KScopedLightLock list_lk(process->GetListLock());
/* Suspend all the process's threads. */
{
KScopedSchedulerLock sl;
auto end = process->GetThreadList().end();
for (auto it = process->GetThreadList().begin(); it != end; ++it) {
if (std::addressof(*it) != GetCurrentThreadPointer()) {
it->RequestSuspend(KThread::SuspendType_Backtrace);
}
}
}
/* Print the backtrace. */
MESOSPHERE_RELEASE_LOG("User Backtrace\n");
if ((e_ctx->psr & 0x10) == 0) {
/* 64-bit thread. */
PrintCodeAddress(process, e_ctx->pc, false);
PrintCodeAddress(process, e_ctx->x[30]);
/* Walk the stack frames. */
uintptr_t fp = static_cast<uintptr_t>(e_ctx->x[29]);
for (auto i = 0; i < 0x20 && fp != 0 && util::IsAligned(fp, 0x10); ++i) {
/* Read the next frame. */
struct {
u64 fp;
u64 lr;
} stack_frame;
{
KMemoryInfo mem_info;
ams::svc::PageInfo page_info;
KPhysicalAddress phys_addr;
if (R_FAILED(process->GetPageTable().QueryInfo(std::addressof(mem_info), std::addressof(page_info), fp))) {
break;
}
if ((mem_info.GetState() & KMemoryState_FlagReferenceCounted) == 0) {
break;
}
if ((mem_info.GetAttribute() & KMemoryAttribute_Uncached) != 0) {
break;
}
if ((mem_info.GetPermission() & KMemoryPermission_UserRead) != KMemoryPermission_UserRead) {
break;
}
if (!process->GetPageTable().GetPhysicalAddress(std::addressof(phys_addr), fp)) {
break;
}
if (!IsHeapPhysicalAddress(phys_addr)) {
break;
}
u64 *frame_ptr = GetPointer<u64>(process->GetPageTable().GetHeapVirtualAddress(phys_addr));
stack_frame.fp = frame_ptr[0];
stack_frame.lr = frame_ptr[1];
}
/* Print and advance. */
PrintCodeAddress(process, stack_frame.lr);
fp = stack_frame.fp;
}
} else {
/* 32-bit thread. */
PrintCodeAddress(process, e_ctx->pc, false);
PrintCodeAddress(process, e_ctx->x[14]);
/* Walk the stack frames. */
uintptr_t fp = static_cast<uintptr_t>(e_ctx->x[11]);
for (auto i = 0; i < 0x20 && fp != 0 && util::IsAligned(fp, 4); ++i) {
/* Read the next frame. */
struct {
u32 fp;
u32 lr;
} stack_frame;
{
KMemoryInfo mem_info;
ams::svc::PageInfo page_info;
KPhysicalAddress phys_addr;
/* Read FP */
if (R_FAILED(process->GetPageTable().QueryInfo(std::addressof(mem_info), std::addressof(page_info), fp))) {
break;
}
if ((mem_info.GetState() & KMemoryState_FlagReferenceCounted) == 0) {
break;
}
if ((mem_info.GetAttribute() & KMemoryAttribute_Uncached) != 0) {
break;
}
if ((mem_info.GetPermission() & KMemoryPermission_UserRead) != KMemoryPermission_UserRead) {
break;
}
if (!process->GetPageTable().GetPhysicalAddress(std::addressof(phys_addr), fp)) {
break;
}
if (!IsHeapPhysicalAddress(phys_addr)) {
break;
}
stack_frame.fp = *GetPointer<u32>(process->GetPageTable().GetHeapVirtualAddress(phys_addr));
/* Read LR. */
uintptr_t lr_ptr = (e_ctx->x[13] <= stack_frame.fp && stack_frame.fp < e_ctx->x[13] + PageSize) ? fp + 4 : fp - 4;
if (R_FAILED(process->GetPageTable().QueryInfo(std::addressof(mem_info), std::addressof(page_info), lr_ptr))) {
break;
}
if ((mem_info.GetState() & KMemoryState_FlagReferenceCounted) == 0) {
break;
}
if ((mem_info.GetAttribute() & KMemoryAttribute_Uncached) != 0) {
break;
}
if ((mem_info.GetPermission() & KMemoryPermission_UserRead) != KMemoryPermission_UserRead) {
break;
}
if (!process->GetPageTable().GetPhysicalAddress(std::addressof(phys_addr), lr_ptr)) {
break;
}
if (!IsHeapPhysicalAddress(phys_addr)) {
break;
}
stack_frame.lr = *GetPointer<u32>(process->GetPageTable().GetHeapVirtualAddress(phys_addr));
}
/* Print and advance. */
PrintCodeAddress(process, stack_frame.lr);
fp = stack_frame.fp;
}
}
/* Resume the threads that we suspended. */
{
KScopedSchedulerLock sl;
auto end = process->GetThreadList().end();
for (auto it = process->GetThreadList().begin(); it != end; ++it) {
if (std::addressof(*it) != GetCurrentThreadPointer()) {
it->Resume(KThread::SuspendType_Backtrace);
}
}
}
}
}
#else
MESOSPHERE_UNUSED(thread);
#endif
}
2020-07-31 05:41:28 +01:00
}