1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-12-31 22:56:02 +00:00
Atmosphere/libraries/libmesosphere/source/kern_k_page_heap.cpp

239 lines
10 KiB
C++
Raw Normal View History

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mesosphere.hpp>
namespace ams::kern {
void KPageHeap::Initialize(KPhysicalAddress address, size_t size, KVirtualAddress management_address, size_t management_size, const size_t *block_shifts, size_t num_block_shifts) {
2020-02-07 01:40:57 +00:00
/* Check our assumptions. */
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(address), PageSize));
MESOSPHERE_ASSERT(util::IsAligned(size, PageSize));
MESOSPHERE_ASSERT(0 < num_block_shifts && num_block_shifts <= NumMemoryBlockPageShifts);
const KVirtualAddress management_end = management_address + management_size;
2020-02-07 01:40:57 +00:00
/* Set our members. */
m_heap_address = address;
m_heap_size = size;
m_num_blocks = num_block_shifts;
2020-02-07 01:40:57 +00:00
/* Setup bitmaps. */
u64 *cur_bitmap_storage = GetPointer<u64>(management_address);
2020-02-07 01:40:57 +00:00
for (size_t i = 0; i < num_block_shifts; i++) {
const size_t cur_block_shift = block_shifts[i];
const size_t next_block_shift = (i != num_block_shifts - 1) ? block_shifts[i + 1] : 0;
cur_bitmap_storage = m_blocks[i].Initialize(m_heap_address, m_heap_size, cur_block_shift, next_block_shift, cur_bitmap_storage);
2020-02-07 01:40:57 +00:00
}
/* Ensure we didn't overextend our bounds. */
MESOSPHERE_ABORT_UNLESS(KVirtualAddress(cur_bitmap_storage) <= management_end);
2020-02-07 01:40:57 +00:00
}
size_t KPageHeap::GetNumFreePages() const {
size_t num_free = 0;
for (size_t i = 0; i < m_num_blocks; i++) {
num_free += m_blocks[i].GetNumFreePages();
}
return num_free;
}
KPhysicalAddress KPageHeap::AllocateByLinearSearch(s32 index) {
const size_t needed_size = m_blocks[index].GetSize();
for (s32 i = index; i < static_cast<s32>(m_num_blocks); i++) {
if (const KPhysicalAddress addr = m_blocks[i].PopBlock(false); addr != Null<KPhysicalAddress>) {
if (const size_t allocated_size = m_blocks[i].GetSize(); allocated_size > needed_size) {
this->Free(addr + needed_size, (allocated_size - needed_size) / PageSize);
}
return addr;
}
}
return Null<KPhysicalAddress>;
}
KPhysicalAddress KPageHeap::AllocateByRandom(s32 index, size_t num_pages, size_t align_pages) {
/* Get the size and required alignment. */
const size_t needed_size = num_pages * PageSize;
const size_t align_size = align_pages * PageSize;
/* Determine meta-alignment of our desired alignment size. */
const size_t align_shift = util::CountTrailingZeros(align_size);
/* Decide on a block to allocate from. */
constexpr size_t MinimumPossibleAlignmentsForRandomAllocation = 4;
{
/* By default, we'll want to look at all blocks larger than our current one. */
s32 max_blocks = static_cast<s32>(m_num_blocks);
/* Determine the maximum block we should try to allocate from. */
size_t possible_alignments = 0;
for (s32 i = index; i < max_blocks; ++i) {
/* Add the possible alignments from blocks at the current size. */
possible_alignments += (1 + ((m_blocks[i].GetSize() - needed_size) >> align_shift)) * m_blocks[i].GetNumFreeBlocks();
/* If there are enough possible alignments, we don't need to look at larger blocks. */
if (possible_alignments >= MinimumPossibleAlignmentsForRandomAllocation) {
max_blocks = i + 1;
break;
}
}
/* If we have any possible alignments which require a larger block, we need to pick one. */
if (possible_alignments > 0 && index + 1 < max_blocks) {
/* Select a random alignment from the possibilities. */
const size_t rnd = m_rng.GenerateRandom(possible_alignments);
/* Determine which block corresponds to the random alignment we chose. */
possible_alignments = 0;
for (s32 i = index; i < max_blocks; ++i) {
/* Add the possible alignments from blocks at the current size. */
possible_alignments += (1 + ((m_blocks[i].GetSize() - needed_size) >> align_shift)) * m_blocks[i].GetNumFreeBlocks();
/* If the current block gets us to our random choice, use the current block. */
if (rnd < possible_alignments) {
index = i;
break;
}
}
}
}
/* Pop a block from the index we selected. */
if (KPhysicalAddress addr = m_blocks[index].PopBlock(true); addr != Null<KPhysicalAddress>) {
/* Determine how much size we have left over. */
if (const size_t leftover_size = m_blocks[index].GetSize() - needed_size; leftover_size > 0) {
/* Determine how many valid alignments we can have. */
const size_t possible_alignments = 1 + (leftover_size >> align_shift);
/* Select a random valid alignment. */
const size_t random_offset = m_rng.GenerateRandom(possible_alignments) << align_shift;
/* Free memory before the random offset. */
if (random_offset != 0) {
this->Free(addr, random_offset / PageSize);
}
/* Advance our block by the random offset. */
addr += random_offset;
/* Free memory after our allocated block. */
if (random_offset != leftover_size) {
this->Free(addr + needed_size, (leftover_size - random_offset) / PageSize);
}
}
/* Return the block we allocated. */
return addr;
}
return Null<KPhysicalAddress>;
}
void KPageHeap::FreeBlock(KPhysicalAddress block, s32 index) {
do {
block = m_blocks[index++].PushBlock(block);
} while (block != Null<KPhysicalAddress>);
}
void KPageHeap::Free(KPhysicalAddress addr, size_t num_pages) {
/* Freeing no pages is a no-op. */
if (num_pages == 0) {
return;
}
/* Find the largest block size that we can free, and free as many as possible. */
s32 big_index = static_cast<s32>(m_num_blocks) - 1;
const KPhysicalAddress start = addr;
const KPhysicalAddress end = addr + num_pages * PageSize;
KPhysicalAddress before_start = start;
KPhysicalAddress before_end = start;
KPhysicalAddress after_start = end;
KPhysicalAddress after_end = end;
while (big_index >= 0) {
const size_t block_size = m_blocks[big_index].GetSize();
const KPhysicalAddress big_start = util::AlignUp(GetInteger(start), block_size);
const KPhysicalAddress big_end = util::AlignDown(GetInteger(end), block_size);
if (big_start < big_end) {
/* Free as many big blocks as we can. */
for (auto block = big_start; block < big_end; block += block_size) {
this->FreeBlock(block, big_index);
}
before_end = big_start;
after_start = big_end;
break;
}
big_index--;
}
MESOSPHERE_ASSERT(big_index >= 0);
/* Free space before the big blocks. */
for (s32 i = big_index - 1; i >= 0; i--) {
const size_t block_size = m_blocks[i].GetSize();
while (before_start + block_size <= before_end) {
before_end -= block_size;
this->FreeBlock(before_end, i);
}
}
/* Free space after the big blocks. */
for (s32 i = big_index - 1; i >= 0; i--) {
const size_t block_size = m_blocks[i].GetSize();
while (after_start + block_size <= after_end) {
this->FreeBlock(after_start, i);
after_start += block_size;
}
}
}
size_t KPageHeap::CalculateManagementOverheadSize(size_t region_size, const size_t *block_shifts, size_t num_block_shifts) {
size_t overhead_size = 0;
for (size_t i = 0; i < num_block_shifts; i++) {
2020-02-07 01:40:57 +00:00
const size_t cur_block_shift = block_shifts[i];
const size_t next_block_shift = (i != num_block_shifts - 1) ? block_shifts[i + 1] : 0;
overhead_size += KPageHeap::Block::CalculateManagementOverheadSize(region_size, cur_block_shift, next_block_shift);
}
2020-01-31 00:51:35 +00:00
return util::AlignUp(overhead_size, PageSize);
}
2020-12-10 11:31:57 +00:00
void KPageHeap::DumpFreeList() const {
MESOSPHERE_RELEASE_LOG("KPageHeap::DumpFreeList %p\n", this);
for (size_t i = 0; i < m_num_blocks; ++i) {
const size_t block_size = m_blocks[i].GetSize();
2020-12-10 11:31:57 +00:00
const char *suffix;
size_t size;
if (block_size >= 1_GB) {
suffix = "GiB";
size = block_size / 1_GB;
} else if (block_size >= 1_MB) {
suffix = "MiB";
size = block_size / 1_MB;
} else if (block_size >= 1_KB) {
suffix = "KiB";
size = block_size / 1_KB;
} else {
suffix = "B";
size = block_size;
}
MESOSPHERE_RELEASE_LOG(" %4zu %s block x %zu\n", size, suffix, m_blocks[i].GetNumFreeBlocks());
2020-12-10 11:31:57 +00:00
}
}
}