1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2025-01-02 15:46:01 +00:00
Atmosphere/stratosphere/fatal/source/fatal_debug.cpp

268 lines
10 KiB
C++
Raw Normal View History

/*
2019-04-08 03:00:49 +01:00
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
2019-07-19 03:09:35 +01:00
#include <unordered_map>
#include "fatal_debug.hpp"
#include "fatal_config.hpp"
2019-07-19 03:09:35 +01:00
namespace sts::fatal::srv {
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
namespace {
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
constexpr u32 SvcSendSyncRequestInstruction = 0xD4000421;
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
struct StackFrame {
u64 fp;
u64 lr;
};
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
bool IsThreadFatalCaller(u32 error_code, u32 debug_handle, u64 thread_id, u64 thread_tls_addr, ThreadContext *thread_ctx) {
/* Verify that the thread is running or waiting. */
{
u64 _;
u32 _thread_state;
if (R_FAILED(svcGetDebugThreadParam(&_, &_thread_state, debug_handle, thread_id, DebugThreadParam_State))) {
return false;
}
2019-07-19 03:09:35 +01:00
const svc::ThreadState thread_state = static_cast<svc::ThreadState>(_thread_state);
if (thread_state != svc::ThreadState::Waiting && thread_state != svc::ThreadState::Running) {
return false;
}
}
2019-07-19 03:09:35 +01:00
/* Get the thread context. */
if (R_FAILED(svcGetDebugThreadContext(thread_ctx, debug_handle, thread_id, svc::ThreadContextFlag_All))) {
return false;
}
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
/* Try to read the current instruction. */
u32 insn;
if (R_FAILED(svcReadDebugProcessMemory(&insn, debug_handle, thread_ctx->pc.x, sizeof(insn)))) {
return false;
}
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
/* If the instruction isn't svcSendSyncRequest, it's not the fatal caller. */
if (insn != SvcSendSyncRequestInstruction) {
return false;
}
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
/* Read in the fatal caller's TLS. */
u8 thread_tls[0x100];
if (R_FAILED(svcReadDebugProcessMemory(thread_tls, debug_handle, thread_tls_addr, sizeof(thread_tls)))) {
return false;
}
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
/* HACK: We want to parse the command the fatal caller sent. */
/* The easiest way to do this is to copy their TLS over ours, and parse ours. */
std::memcpy(armGetTls(), thread_tls, sizeof(thread_tls));
{
IpcParsedCommand r;
if (R_FAILED(ipcParse(&r))) {
return false;
}
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
/* Fatal command takes in a PID, only one buffer max. */
if (!r.HasPid || r.NumStatics || r.NumStaticsOut || r.NumHandles) {
return false;
}
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
struct {
u32 magic;
u32 version;
u64 cmd_id;
u32 err_code;
} *raw = (decltype(raw))(r.Raw);
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
if (raw->magic != SFCI_MAGIC) {
return false;
}
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
if (raw->cmd_id > 2) {
return false;
}
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
if (raw->cmd_id != 2 && r.NumBuffers) {
return false;
}
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
if (raw->err_code != error_code) {
return false;
}
}
/* We found our caller. */
return true;
}
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
bool TryGuessBaseAddress(u64 *out_base_address, u32 debug_handle, u64 guess) {
MemoryInfo mi;
u32 pi;
if (R_FAILED(svcQueryDebugProcessMemory(&mi, &pi, debug_handle, guess)) || mi.perm != Perm_Rx) {
return false;
}
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
/* Iterate backwards until we find the memory before the code region. */
while (mi.addr > 0) {
if (R_FAILED(svcQueryDebugProcessMemory(&mi, &pi, debug_handle, guess))) {
return false;
}
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
if (mi.type == MemType_Unmapped) {
/* Code region will be at the end of the unmapped region preceding it. */
*out_base_address = mi.addr + mi.size;
return true;
}
guess = mi.addr - 4;
}
2019-06-18 00:41:03 +01:00
return false;
}
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
u64 GetBaseAddress(const ThrowContext *throw_ctx, const ThreadContext *thread_ctx, u32 debug_handle) {
u64 base_address = 0;
if (TryGuessBaseAddress(&base_address, debug_handle, thread_ctx->pc.x)) {
return base_address;
}
if (TryGuessBaseAddress(&base_address, debug_handle, thread_ctx->lr)) {
return base_address;
}
for (size_t i = 0; i < throw_ctx->cpu_ctx.aarch64_ctx.stack_trace_size; i++) {
if (TryGuessBaseAddress(&base_address, debug_handle, throw_ctx->cpu_ctx.aarch64_ctx.stack_trace[i])) {
return base_address;
}
}
return base_address;
}
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
}
2019-07-19 03:09:35 +01:00
void TryCollectDebugInformation(ThrowContext *ctx, u64 process_id) {
/* Try to debug the process. This may fail, if we called into ourself. */
os::ManagedHandle debug_handle;
2019-07-19 03:09:35 +01:00
if (R_FAILED(svcDebugActiveProcess(debug_handle.GetPointer(), process_id))) {
return;
}
2019-06-18 00:41:03 +01:00
/* First things first, check if process is 64 bits, and get list of thread infos. */
std::unordered_map<u64, u64> thread_id_to_tls;
{
bool got_attach_process = false;
2019-07-19 03:09:35 +01:00
svc::DebugEventInfo d;
while (R_SUCCEEDED(svcGetDebugEvent(reinterpret_cast<u8 *>(&d), debug_handle.Get()))) {
switch (d.type) {
case svc::DebugEventType::AttachProcess:
ctx->cpu_ctx.architecture = (d.info.attach_process.flags & 1) ? CpuContext::Architecture_Aarch64 : CpuContext::Architecture_Aarch32;
std::memcpy(ctx->proc_name, d.info.attach_process.name, sizeof(d.info.attach_process.name));
got_attach_process = true;
break;
case svc::DebugEventType::AttachThread:
thread_id_to_tls[d.info.attach_thread.thread_id] = d.info.attach_thread.tls_address;
break;
case svc::DebugEventType::Exception:
case svc::DebugEventType::ExitProcess:
case svc::DebugEventType::ExitThread:
break;
}
}
2019-06-18 00:41:03 +01:00
if (!got_attach_process) {
return;
}
}
2019-06-18 00:41:03 +01:00
/* TODO: Try to collect information on 32-bit fatals. This shouldn't really matter for any real use case. */
2019-07-19 03:09:35 +01:00
if (ctx->cpu_ctx.architecture == CpuContext::Architecture_Aarch32) {
return;
}
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
/* Welcome to hell. Here, we try to identify which thread called into fatal. */
bool found_fatal_caller = false;
u64 thread_id = 0;
ThreadContext thread_ctx;
{
/* We start by trying to get a list of threads. */
u32 thread_count;
u64 thread_ids[0x60];
2019-07-19 03:09:35 +01:00
if (R_FAILED(svcGetThreadList(&thread_count, thread_ids, 0x60, debug_handle.Get()))) {
return;
}
2019-06-18 00:41:03 +01:00
/* We need to locate the thread that's called fatal. */
for (u32 i = 0; i < thread_count; i++) {
const u64 cur_thread_id = thread_ids[i];
if (thread_id_to_tls.find(cur_thread_id) == thread_id_to_tls.end()) {
continue;
}
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
if (IsThreadFatalCaller(ctx->error_code, debug_handle.Get(), cur_thread_id, thread_id_to_tls[cur_thread_id], &thread_ctx)) {
thread_id = cur_thread_id;
found_fatal_caller = true;
break;
}
}
if (!found_fatal_caller) {
return;
}
}
2019-07-19 03:09:35 +01:00
if (R_FAILED(svcGetDebugThreadContext(&thread_ctx, debug_handle.Get(), thread_id, svc::ThreadContextFlag_All))) {
return;
}
2019-06-18 00:41:03 +01:00
2019-07-19 03:09:35 +01:00
/* Set register states. */
ctx->cpu_ctx.aarch64_ctx.SetRegisterValue(aarch64::RegisterName_FP, thread_ctx.fp);
ctx->cpu_ctx.aarch64_ctx.SetRegisterValue(aarch64::RegisterName_LR, thread_ctx.lr);
ctx->cpu_ctx.aarch64_ctx.SetRegisterValue(aarch64::RegisterName_SP, thread_ctx.sp);
ctx->cpu_ctx.aarch64_ctx.SetRegisterValue(aarch64::RegisterName_PC, thread_ctx.pc.x);
/* Parse a stack trace. */
u64 cur_fp = thread_ctx.fp;
2019-07-19 03:09:35 +01:00
ctx->cpu_ctx.aarch64_ctx.stack_trace_size = 0;
for (unsigned int i = 0; i < aarch64::CpuContext::MaxStackTraceDepth; i++) {
/* Validate the current frame. */
if (cur_fp == 0 || (cur_fp & 0xF)) {
break;
}
2019-06-18 00:41:03 +01:00
/* Read a new frame. */
2019-07-19 03:09:35 +01:00
StackFrame cur_frame = {};
if (R_FAILED(svcReadDebugProcessMemory(&cur_frame, debug_handle.Get(), cur_fp, sizeof(StackFrame)))) {
break;
}
2019-06-18 00:41:03 +01:00
/* Advance to the next frame. */
ctx->cpu_ctx.aarch64_ctx.stack_trace[ctx->cpu_ctx.aarch64_ctx.stack_trace_size++] = cur_frame.lr;
cur_fp = cur_frame.fp;
}
2019-06-18 00:41:03 +01:00
/* Try to read up to 0x100 of stack. */
for (size_t sz = 0x100; sz > 0; sz -= 0x10) {
2019-07-19 03:09:35 +01:00
if (R_SUCCEEDED(svcReadDebugProcessMemory(ctx->stack_dump, debug_handle.Get(), thread_ctx.sp, sz))) {
ctx->stack_dump_size = sz;
break;
}
}
2019-03-26 16:04:32 +00:00
2019-07-19 03:09:35 +01:00
/* Parse the base address. */
ctx->cpu_ctx.aarch64_ctx.SetBaseAddress(GetBaseAddress(ctx, &thread_ctx, debug_handle.Get()));
}
2019-07-19 03:09:35 +01:00
}