2020-04-06 11:15:24 +01:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2018-2020 Atmosphère-NX
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms and conditions of the GNU General Public License,
|
|
|
|
* version 2, as published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
|
|
* more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
#include <stratosphere.hpp>
|
|
|
|
|
|
|
|
namespace ams::fssystem {
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
class AdditionalDeviceAddressEntry {
|
|
|
|
private:
|
|
|
|
/* TODO: SdkMutex */
|
|
|
|
os::Mutex mutex;
|
|
|
|
bool is_registered;
|
|
|
|
uintptr_t address;
|
|
|
|
size_t size;
|
|
|
|
public:
|
2020-04-08 10:21:35 +01:00
|
|
|
constexpr AdditionalDeviceAddressEntry() : mutex(false), is_registered(), address(), size() { /* ... */ }
|
2020-04-06 11:15:24 +01:00
|
|
|
|
|
|
|
void Register(uintptr_t addr, size_t sz) {
|
|
|
|
std::scoped_lock lk(this->mutex);
|
|
|
|
|
|
|
|
AMS_ASSERT(!this->is_registered);
|
|
|
|
if (!this->is_registered) {
|
|
|
|
this->is_registered = true;
|
|
|
|
this->address = addr;
|
|
|
|
this->size = size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Unregister(uintptr_t addr) {
|
|
|
|
std::scoped_lock lk(this->mutex);
|
|
|
|
|
|
|
|
if (this->is_registered && this->address == addr) {
|
|
|
|
this->is_registered = false;
|
|
|
|
this->address = 0;
|
|
|
|
this->size = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Includes(const void *ptr) {
|
|
|
|
std::scoped_lock lk(this->mutex);
|
|
|
|
|
|
|
|
if (this->is_registered) {
|
|
|
|
const uintptr_t addr = reinterpret_cast<uintptr_t>(ptr);
|
|
|
|
return this->address <= addr && addr < this->address + this->size;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
constexpr auto RetryWait = TimeSpan::FromMilliSeconds(10);
|
|
|
|
|
|
|
|
constexpr size_t HeapBlockSize = BufferPoolAlignment;
|
|
|
|
static_assert(HeapBlockSize == 4_KB);
|
|
|
|
|
|
|
|
/* A heap block is 4KB. An order is a power of two. */
|
|
|
|
/* This gives blocks of the order 32KB, 512KB, 4MB. */
|
|
|
|
constexpr s32 HeapOrderTrim = 3;
|
|
|
|
constexpr s32 HeapOrderMax = 7;
|
|
|
|
constexpr s32 HeapOrderMaxForLarge = HeapOrderMax + 3;
|
|
|
|
|
|
|
|
constexpr size_t HeapAllocatableSizeTrim = HeapBlockSize * (static_cast<size_t>(1) << HeapOrderTrim);
|
|
|
|
constexpr size_t HeapAllocatableSizeMax = HeapBlockSize * (static_cast<size_t>(1) << HeapOrderMax);
|
|
|
|
constexpr size_t HeapAllocatableSizeMaxForLarge = HeapBlockSize * (static_cast<size_t>(1) << HeapOrderMaxForLarge);
|
|
|
|
|
|
|
|
/* TODO: SdkMutex */
|
2020-04-08 10:21:35 +01:00
|
|
|
os::Mutex g_heap_mutex(false);
|
2020-04-06 11:15:24 +01:00
|
|
|
FileSystemBuddyHeap g_heap;
|
|
|
|
|
|
|
|
std::atomic<size_t> g_retry_count;
|
|
|
|
std::atomic<size_t> g_reduce_allocation_count;
|
|
|
|
|
|
|
|
void *g_heap_buffer;
|
|
|
|
size_t g_heap_size;
|
|
|
|
size_t g_heap_free_size_peak;
|
|
|
|
|
|
|
|
AdditionalDeviceAddressEntry g_additional_device_address_entry;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t PooledBuffer::GetAllocatableSizeMaxCore(bool large) {
|
|
|
|
return large ? HeapAllocatableSizeMaxForLarge : HeapAllocatableSizeMax;
|
|
|
|
}
|
|
|
|
|
|
|
|
void PooledBuffer::AllocateCore(size_t ideal_size, size_t required_size, bool large) {
|
|
|
|
/* Ensure preconditions. */
|
|
|
|
AMS_ASSERT(g_heap_buffer != nullptr);
|
|
|
|
AMS_ASSERT(this->buffer == nullptr);
|
|
|
|
AMS_ASSERT(g_heap.GetBlockSize() == HeapBlockSize);
|
|
|
|
|
|
|
|
/* Check that we can allocate this size. */
|
|
|
|
AMS_ASSERT(required_size <= GetAllocatableSizeMaxCore(large));
|
|
|
|
|
|
|
|
const size_t target_size = std::min(std::max(ideal_size, required_size), GetAllocatableSizeMaxCore(large));
|
|
|
|
|
|
|
|
/* Loop until we allocate. */
|
|
|
|
while (true) {
|
|
|
|
/* Lock the heap and try to allocate. */
|
|
|
|
{
|
|
|
|
std::scoped_lock lk(g_heap_mutex);
|
|
|
|
|
|
|
|
/* Determine how much we can allocate, and don't allocate more than half the heap. */
|
|
|
|
size_t allocatable_size = g_heap.GetAllocatableSizeMax();
|
|
|
|
if (allocatable_size > HeapBlockSize) {
|
|
|
|
allocatable_size >>= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check if this allocation is acceptable. */
|
|
|
|
if (allocatable_size >= required_size) {
|
|
|
|
/* Get the order. */
|
|
|
|
const auto order = g_heap.GetOrderFromBytes(std::min(target_size, allocatable_size));
|
|
|
|
|
|
|
|
/* Allocate and get the size. */
|
|
|
|
this->buffer = reinterpret_cast<char *>(g_heap.AllocateByOrder(order));
|
|
|
|
this->size = g_heap.GetBytesFromOrder(order);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check if we allocated. */
|
|
|
|
if (this->buffer != nullptr) {
|
|
|
|
/* If we need to trim the end, do so. */
|
|
|
|
if (this->GetSize() >= target_size + HeapAllocatableSizeTrim) {
|
|
|
|
this->Shrink(util::AlignUp(target_size, HeapAllocatableSizeTrim));
|
|
|
|
}
|
|
|
|
AMS_ASSERT(this->GetSize() >= required_size);
|
|
|
|
|
|
|
|
/* If we reduced, note so. */
|
|
|
|
if (this->GetSize() < std::min(target_size, HeapAllocatableSizeMax)) {
|
|
|
|
g_reduce_allocation_count++;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
/* Sleep. */
|
|
|
|
/* TODO: os::SleepThread() */
|
|
|
|
svc::SleepThread(RetryWait.GetNanoSeconds());
|
|
|
|
g_retry_count++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Update metrics. */
|
|
|
|
{
|
|
|
|
std::scoped_lock lk(g_heap_mutex);
|
|
|
|
|
|
|
|
const size_t free_size = g_heap.GetTotalFreeSize();
|
|
|
|
if (free_size < g_heap_free_size_peak) {
|
|
|
|
g_heap_free_size_peak = free_size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void PooledBuffer::Shrink(size_t ideal_size) {
|
|
|
|
AMS_ASSERT(ideal_size <= GetAllocatableSizeMaxCore(true));
|
|
|
|
|
|
|
|
/* Check if we actually need to shrink. */
|
|
|
|
if (this->size > ideal_size) {
|
|
|
|
/* If we do, we need to have a buffer allocated from the heap. */
|
|
|
|
AMS_ASSERT(this->buffer != nullptr);
|
2020-04-17 03:55:47 +01:00
|
|
|
AMS_ASSERT(g_heap.GetBlockSize() == HeapBlockSize);
|
2020-04-06 11:15:24 +01:00
|
|
|
|
|
|
|
const size_t new_size = util::AlignUp(ideal_size, HeapBlockSize);
|
|
|
|
|
|
|
|
/* Repeatedly free the tail of our buffer until we're done. */
|
|
|
|
{
|
|
|
|
std::scoped_lock lk(g_heap_mutex);
|
|
|
|
|
|
|
|
while (new_size < this->size) {
|
|
|
|
/* Determine the size and order to free. */
|
|
|
|
const size_t tail_align = util::LeastSignificantOneBit(this->size);
|
|
|
|
const size_t free_size = std::min(util::FloorPowerOfTwo(this->size - new_size), tail_align);
|
|
|
|
const s32 free_order = g_heap.GetOrderFromBytes(free_size);
|
|
|
|
|
|
|
|
/* Ensure we determined size correctly. */
|
|
|
|
AMS_ASSERT(util::IsAligned(free_size, HeapBlockSize));
|
|
|
|
AMS_ASSERT(free_size == g_heap.GetBytesFromOrder(free_order));
|
|
|
|
|
|
|
|
/* Actually free the memory. */
|
|
|
|
g_heap.Free(this->buffer + this->size - free_size, free_order);
|
|
|
|
this->size -= free_size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Shrinking to zero means that we have no buffer. */
|
|
|
|
if (this->size == 0) {
|
|
|
|
this->buffer = nullptr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Result InitializeBufferPool(char *buffer, size_t size) {
|
|
|
|
AMS_ASSERT(g_heap_buffer == nullptr);
|
|
|
|
AMS_ASSERT(buffer != nullptr);
|
|
|
|
AMS_ASSERT(util::IsAligned(reinterpret_cast<uintptr_t>(buffer), BufferPoolAlignment));
|
|
|
|
|
|
|
|
/* Initialize the heap. */
|
|
|
|
R_TRY(g_heap.Initialize(reinterpret_cast<uintptr_t>(buffer), size, HeapBlockSize, HeapOrderMaxForLarge + 1));
|
|
|
|
|
|
|
|
/* Initialize metrics. */
|
|
|
|
g_heap_buffer = buffer;
|
|
|
|
g_heap_size = size;
|
|
|
|
g_heap_free_size_peak = size;
|
|
|
|
|
|
|
|
return ResultSuccess();
|
|
|
|
}
|
|
|
|
|
|
|
|
Result InitializeBufferPool(char *buffer, size_t size, char *work, size_t work_size) {
|
|
|
|
AMS_ASSERT(g_heap_buffer == nullptr);
|
|
|
|
AMS_ASSERT(buffer != nullptr);
|
|
|
|
AMS_ASSERT(util::IsAligned(reinterpret_cast<uintptr_t>(buffer), BufferPoolAlignment));
|
|
|
|
AMS_ASSERT(work_size >= BufferPoolWorkSize);
|
|
|
|
|
|
|
|
/* Initialize the heap. */
|
|
|
|
R_TRY(g_heap.Initialize(reinterpret_cast<uintptr_t>(buffer), size, HeapBlockSize, HeapOrderMaxForLarge + 1, work, work_size));
|
|
|
|
|
|
|
|
/* Initialize metrics. */
|
|
|
|
g_heap_buffer = buffer;
|
|
|
|
g_heap_size = size;
|
|
|
|
g_heap_free_size_peak = size;
|
|
|
|
|
|
|
|
return ResultSuccess();
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IsPooledBuffer(const void *buffer) {
|
|
|
|
AMS_ASSERT(buffer != nullptr);
|
|
|
|
return g_heap_buffer <= buffer && buffer < reinterpret_cast<char *>(g_heap_buffer) + g_heap_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t GetPooledBufferRetriedCount() {
|
|
|
|
return g_retry_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t GetPooledBufferReduceAllocationCount() {
|
|
|
|
return g_reduce_allocation_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t GetPooledBufferFreeSizePeak() {
|
|
|
|
return g_heap_free_size_peak;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ClearPooledBufferPeak() {
|
|
|
|
std::scoped_lock lk(g_heap_mutex);
|
|
|
|
g_heap_free_size_peak = g_heap.GetTotalFreeSize();
|
|
|
|
g_retry_count = 0;
|
|
|
|
g_reduce_allocation_count = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void RegisterAdditionalDeviceAddress(uintptr_t address, size_t size) {
|
|
|
|
g_additional_device_address_entry.Register(address, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
void UnregisterAdditionalDeviceAddress(uintptr_t address) {
|
|
|
|
g_additional_device_address_entry.Unregister(address);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IsAdditionalDeviceAddress(const void *ptr) {
|
|
|
|
return g_additional_device_address_entry.Includes(ptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|