1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-12-04 17:42:15 +00:00
Atmosphere/exosphere/program/source/boot/secmon_boot_functions.cpp

204 lines
8.5 KiB
C++
Raw Normal View History

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
#include "../secmon_error.hpp"
#include "secmon_boot.hpp"
#include "secmon_boot_cache.hpp"
#include "secmon_boot_functions.hpp"
namespace ams::secmon::boot {
namespace {
constexpr inline uintptr_t SYSCTR0 = MemoryRegionVirtualDeviceSysCtr0.GetAddress();
NOINLINE void DecryptPayload(uintptr_t dst, uintptr_t src, size_t size, const void *iv, size_t iv_size, u8 key_generation) {
secmon::boot::DecryptPackage2(reinterpret_cast<void *>(dst), size, reinterpret_cast<void *>(src), size, secmon::boot::GetPackage2AesKey(), crypto::AesEncryptor128::KeySize, iv, iv_size, key_generation);
}
2020-05-17 00:46:34 +01:00
u32 GetChipId() {
constexpr u32 ChipIdErista = 0x210;
constexpr u32 ChipIdMariko = 0x214;
switch (GetSocType()) {
case fuse::SocType_Erista: return ChipIdErista;
case fuse::SocType_Mariko: return ChipIdMariko;
AMS_UNREACHABLE_DEFAULT_CASE();
}
}
}
void CheckVerifyResult(bool verify_result, pkg1::ErrorInfo error_info, const char *message) {
if (!verify_result) {
secmon::SetError(error_info);
AMS_ABORT(message);
}
}
void ClearIramBootCode() {
/* Clear the boot code image from where it was loaded in IRAM. */
util::ClearMemory(MemoryRegionPhysicalIramBootCodeCode.GetPointer(), MemoryRegionPhysicalIramBootCodeCode.GetSize());
}
void ClearIramBootKeys() {
/* Clear the boot keys from where they were loaded in IRAM. */
util::ClearMemory(MemoryRegionPhysicalIramBootCodeKeys.GetPointer(), MemoryRegionPhysicalIramBootCodeKeys.GetSize());
}
void ClearIramDebugCode() {
/* Clear the boot code image from where it was loaded in IRAM. */
util::ClearMemory(MemoryRegionPhysicalDebugCode.GetPointer(), MemoryRegionPhysicalDebugCode.GetSize());
}
void WaitForNxBootloader(const pkg1::SecureMonitorParameters &params, pkg1::BootloaderState state) {
/* Check NX Bootloader's state once per microsecond until it's advanced enough. */
while (params.bootloader_state < state) {
util::WaitMicroSeconds(1);
}
}
void LoadBootConfig(const void *src) {
pkg1::BootConfig * const dst = secmon::impl::GetBootConfigStorage();
if (pkg1::IsProduction()) {
std::memset(dst, 0, sizeof(*dst));
} else {
hw::FlushDataCache(src, sizeof(*dst));
hw::DataSynchronizationBarrierInnerShareable();
std::memcpy(dst, src, sizeof(*dst));
}
}
void VerifyOrClearBootConfig() {
/* On production hardware, the boot config is already cleared. */
if (pkg1::IsProduction()) {
return;
}
pkg1::BootConfig * const bc = secmon::impl::GetBootConfigStorage();
/* Determine if the bc is valid for the device. */
bool valid_for_device = false;
{
const bool valid_signature = secmon::boot::VerifyBootConfigSignature(*bc, secmon::boot::GetBootConfigRsaModulus(), se::RsaSize);
if (valid_signature) {
valid_for_device = secmon::boot::VerifyBootConfigEcid(*bc);
}
}
/* If the boot config is not valid for the device, clear its signed data. */
if (!valid_for_device) {
util::ClearMemory(std::addressof(bc->signed_data), sizeof(bc->signed_data));
}
}
void EnableTsc(u64 initial_tsc_value) {
/* Write the initial value to the CNTCV registers. */
const u32 lo = static_cast<u32>(initial_tsc_value >> 0);
const u32 hi = static_cast<u32>(initial_tsc_value >> 32);
reg::Write(SYSCTR0 + SYSCTR0_CNTCV0, lo);
reg::Write(SYSCTR0 + SYSCTR0_CNTCV1, hi);
/* Configure the system counter control register. */
reg::Write(SYSCTR0 + SYSCTR0_CNTCR, SYSCTR0_REG_BITS_ENUM(CNTCR_HDBG, ENABLE),
SYSCTR0_REG_BITS_ENUM(CNTCR_EN, ENABLE));
}
void WriteGpuCarveoutMagicNumbers() {
/* Define the magic numbers. */
constexpr u32 GpuMagicNumber = 0xC0EDBBCC;
constexpr u32 SkuInfo = 0x83;
constexpr u32 HdcpMicroCodeVersion = 0x2;
/* Get our pointers. */
u32 *gpu_magic = MemoryRegionDramGpuCarveout.GetEndPointer<u32>() - (0x004 / sizeof(*gpu_magic));
u32 *tsec_magic = MemoryRegionDramGpuCarveout.GetEndPointer<u32>() - (0x100 / sizeof(*tsec_magic));
/* Write the gpu magic number. */
gpu_magic[0] = GpuMagicNumber;
/* Write the tsec magic numbers. */
tsec_magic[0] = SkuInfo;
tsec_magic[1] = HdcpMicroCodeVersion;
2020-05-17 00:46:34 +01:00
tsec_magic[2] = GetChipId();
/* Flush the magic numbers. */
hw::FlushDataCache(gpu_magic, 1 * sizeof(u32));
hw::FlushDataCache(tsec_magic, 3 * sizeof(u32));
hw::DataSynchronizationBarrierInnerShareable();
}
void UpdateBootConfigForPackage2Header(const pkg2::Package2Header &header) {
/* Check for all-zeroes signature. */
2020-06-12 19:01:47 +01:00
const bool is_unsigned = header.signature[0] == 0 && crypto::IsSameBytes(header.signature, header.signature + 1, sizeof(header.signature) - 1);
secmon::impl::GetBootConfigStorage()->signed_data.SetPackage2SignatureVerificationDisabled(is_unsigned);
/* Check for valid magic. */
2020-06-12 19:01:47 +01:00
const bool is_decrypted = crypto::IsSameBytes(header.meta.magic, pkg2::Package2Meta::Magic::String, sizeof(header.meta.magic));
secmon::impl::GetBootConfigStorage()->signed_data.SetPackage2EncryptionDisabled(is_decrypted);
}
void VerifyPackage2HeaderSignature(pkg2::Package2Header &header, bool verify) {
const u8 * const mod = secmon::boot::GetPackage2RsaModulus(pkg1::IsProductionForPublicKey());
const size_t mod_size = se::RsaSize;
if (verify) {
CheckVerifyResult(secmon::boot::VerifyPackage2Signature(header, mod, mod_size), pkg1::ErrorInfo_InvalidPackage2Signature, "pkg2 sign FAIL");
}
}
void DecryptPackage2Header(pkg2::Package2Meta *dst, const pkg2::Package2Meta &src, bool encrypted) {
if (encrypted) {
constexpr int IvSize = 0x10;
/* Decrypt the header. */
DecryptPackage2(dst, sizeof(*dst), std::addressof(src), sizeof(src), secmon::boot::GetPackage2AesKey(), crypto::AesEncryptor128::KeySize, std::addressof(src), IvSize, src.GetKeyGeneration());
/* Copy back the iv, which encodes encrypted metadata. */
std::memcpy(dst, std::addressof(src), IvSize);
} else {
std::memcpy(dst, std::addressof(src), sizeof(*dst));
}
}
void VerifyPackage2Header(const pkg2::Package2Meta &meta) {
/* Validate the metadata. */
CheckVerifyResult(VerifyPackage2Meta(meta), pkg1::ErrorInfo_InvalidPackage2Meta, "pkg2 meta FAIL");
/* Validate the version. */
CheckVerifyResult(VerifyPackage2Version(meta), pkg1::ErrorInfo_InvalidPackage2Version, "pkg2 version FAIL");
}
void DecryptAndLoadPackage2Payloads(uintptr_t dst, const pkg2::Package2Meta &meta, uintptr_t src, bool encrypted) {
/* Get the key generation for crypto. */
const u8 key_generation = meta.GetKeyGeneration();
/* Decrypt or load each payload in order. */
for (int i = 0; i < pkg2::PayloadCount; ++i) {
AMS_SECMON_LOG("pkg2 payload[%d]: %09lx -> %09lx size=%08x\n", i, src, dst + meta.payload_offsets[i], meta.payload_sizes[i]);
if (encrypted) {
DecryptPayload(dst + meta.payload_offsets[i], src, meta.payload_sizes[i], meta.payload_ivs[i], sizeof(meta.payload_ivs[i]), key_generation);
} else {
std::memcpy(reinterpret_cast<void *>(dst + meta.payload_offsets[i]), reinterpret_cast<void *>(src), meta.payload_sizes[i]);
}
src += meta.payload_sizes[i];
}
}
}