1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2025-01-12 04:16:11 +00:00
Atmosphere/sept/sept-primary/src/fuse.c

262 lines
8.7 KiB
C
Raw Normal View History

2019-02-20 12:52:11 +00:00
/*
* Copyright (c) 2018-2020 Atmosphère-NX
2019-02-20 12:52:11 +00:00
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
2019-12-31 21:26:15 +00:00
2019-02-20 12:52:11 +00:00
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
2019-12-31 21:26:15 +00:00
#include <vapours/ams_version.h>
2019-02-20 12:52:11 +00:00
#include "car.h"
#include "fuse.h"
#include "pmc.h"
2019-02-20 12:52:11 +00:00
#include "timers.h"
/* Prototypes for internal commands. */
void fuse_enable_power(void);
void fuse_disable_power(void);
void fuse_wait_idle(void);
/* Initialize the fuse driver */
void fuse_init(void) {
/* Make all fuse registers visible. */
clkrst_enable_fuse_regs(true);
2019-02-20 12:52:11 +00:00
}
/* Disable access to the private key and set the TZ sticky bit. */
void fuse_disable_private_key(void) {
volatile tegra_fuse_t *fuse = fuse_get_regs();
fuse->FUSE_PRIVATEKEYDISABLE = 0x10;
2019-02-20 12:52:11 +00:00
}
/* Disables all fuse programming. */
void fuse_disable_programming(void) {
2019-02-20 12:52:11 +00:00
volatile tegra_fuse_t *fuse = fuse_get_regs();
fuse->FUSE_DISABLEREGPROGRAM = 1;
}
/* Enable power to the fuse hardware array. */
void fuse_enable_power(void) {
volatile tegra_pmc_t *pmc = pmc_get_regs();
pmc->fuse_control &= ~(0x200); /* Clear PMC_FUSE_CTRL_PS18_LATCH_CLEAR. */
mdelay(1);
pmc->fuse_control |= 0x100; /* Set PMC_FUSE_CTRL_PS18_LATCH_SET. */
mdelay(1);
2019-02-20 12:52:11 +00:00
}
/* Disable power to the fuse hardware array. */
2019-02-20 12:52:11 +00:00
void fuse_disable_power(void) {
volatile tegra_pmc_t *pmc = pmc_get_regs();
pmc->fuse_control &= ~(0x100); /* Clear PMC_FUSE_CTRL_PS18_LATCH_SET. */
mdelay(1);
pmc->fuse_control |= 0x200; /* Set PMC_FUSE_CTRL_PS18_LATCH_CLEAR. */
mdelay(1);
2019-02-20 12:52:11 +00:00
}
/* Wait for the fuse driver to go idle. */
2019-02-20 12:52:11 +00:00
void fuse_wait_idle(void) {
volatile tegra_fuse_t *fuse = fuse_get_regs();
uint32_t ctrl_val = 0;
/* Wait for STATE_IDLE */
while ((ctrl_val & (0xF0000)) != 0x40000)
ctrl_val = fuse->FUSE_FUSECTRL;
2019-02-20 12:52:11 +00:00
}
/* Read a fuse from the hardware array. */
2019-02-20 12:52:11 +00:00
uint32_t fuse_hw_read(uint32_t addr) {
volatile tegra_fuse_t *fuse = fuse_get_regs();
2019-12-31 21:26:15 +00:00
/* Wait for idle state. */
2019-02-20 12:52:11 +00:00
fuse_wait_idle();
/* Program the target address. */
fuse->FUSE_FUSEADDR = addr;
2019-02-20 12:52:11 +00:00
/* Enable read operation in control register. */
uint32_t ctrl_val = fuse->FUSE_FUSECTRL;
2019-02-20 12:52:11 +00:00
ctrl_val &= ~0x3;
ctrl_val |= 0x1; /* Set READ command. */
fuse->FUSE_FUSECTRL = ctrl_val;
2019-02-20 12:52:11 +00:00
/* Wait for idle state. */
2019-02-20 12:52:11 +00:00
fuse_wait_idle();
return fuse->FUSE_FUSERDATA;
2019-02-20 12:52:11 +00:00
}
/* Write a fuse in the hardware array. */
2019-02-20 12:52:11 +00:00
void fuse_hw_write(uint32_t value, uint32_t addr) {
volatile tegra_fuse_t *fuse = fuse_get_regs();
2019-12-31 21:26:15 +00:00
/* Wait for idle state. */
2019-02-20 12:52:11 +00:00
fuse_wait_idle();
/* Program the target address and value. */
fuse->FUSE_FUSEADDR = addr;
fuse->FUSE_FUSEWDATA = value;
2019-02-20 12:52:11 +00:00
/* Enable write operation in control register. */
uint32_t ctrl_val = fuse->FUSE_FUSECTRL;
2019-02-20 12:52:11 +00:00
ctrl_val &= ~0x3;
ctrl_val |= 0x2; /* Set WRITE command. */
fuse->FUSE_FUSECTRL = ctrl_val;
2019-02-20 12:52:11 +00:00
/* Wait for idle state. */
2019-02-20 12:52:11 +00:00
fuse_wait_idle();
}
/* Sense the fuse hardware array into the shadow cache. */
2019-02-20 12:52:11 +00:00
void fuse_hw_sense(void) {
volatile tegra_fuse_t *fuse = fuse_get_regs();
2019-12-31 21:26:15 +00:00
/* Wait for idle state. */
2019-02-20 12:52:11 +00:00
fuse_wait_idle();
/* Enable sense operation in control register */
uint32_t ctrl_val = fuse->FUSE_FUSECTRL;
2019-02-20 12:52:11 +00:00
ctrl_val &= ~0x3;
ctrl_val |= 0x3; /* Set SENSE_CTRL command */
fuse->FUSE_FUSECTRL = ctrl_val;
2019-12-31 21:26:15 +00:00
/* Wait for idle state. */
2019-02-20 12:52:11 +00:00
fuse_wait_idle();
}
/* Read the SKU info register from the shadow cache. */
2019-02-20 12:52:11 +00:00
uint32_t fuse_get_sku_info(void) {
volatile tegra_fuse_chip_t *fuse_chip = fuse_chip_get_regs();
return fuse_chip->FUSE_SKU_INFO;
}
/* Read the bootrom patch version from a register in the shadow cache. */
2019-02-20 12:52:11 +00:00
uint32_t fuse_get_bootrom_patch_version(void) {
volatile tegra_fuse_chip_t *fuse_chip = fuse_chip_get_regs();
return fuse_chip->FUSE_SOC_SPEEDO_1_CALIB;
2019-02-20 12:52:11 +00:00
}
/* Read a spare bit register from the shadow cache */
uint32_t fuse_get_spare_bit(uint32_t idx) {
if (idx < 32) {
volatile tegra_fuse_chip_t *fuse_chip = fuse_chip_get_regs();
return fuse_chip->FUSE_SPARE_BIT[idx];
} else {
2019-02-20 12:52:11 +00:00
return 0;
}
}
/* Read a reserved ODM register from the shadow cache. */
2019-02-20 12:52:11 +00:00
uint32_t fuse_get_reserved_odm(uint32_t idx) {
if (idx < 8) {
volatile tegra_fuse_chip_t *fuse_chip = fuse_chip_get_regs();
return fuse_chip->FUSE_RESERVED_ODM[idx];
} else {
2019-02-20 12:52:11 +00:00
return 0;
}
}
2019-02-20 12:52:11 +00:00
/* Get the DRAM ID using values in the shadow cache. */
uint32_t fuse_get_dram_id(void) {
return ((fuse_get_reserved_odm(4) >> 3) & 0x7);
2019-02-20 12:52:11 +00:00
}
/* Derive the Device ID using values in the shadow cache. */
2019-02-20 12:52:11 +00:00
uint64_t fuse_get_device_id(void) {
volatile tegra_fuse_chip_t *fuse_chip = fuse_chip_get_regs();
2019-12-31 21:26:15 +00:00
2019-02-20 12:52:11 +00:00
uint64_t device_id = 0;
uint64_t y_coord = fuse_chip->FUSE_OPT_Y_COORDINATE & 0x1FF;
uint64_t x_coord = fuse_chip->FUSE_OPT_X_COORDINATE & 0x1FF;
uint64_t wafer_id = fuse_chip->FUSE_OPT_WAFER_ID & 0x3F;
uint32_t lot_code = fuse_chip->FUSE_OPT_LOT_CODE_0;
uint64_t fab_code = fuse_chip->FUSE_OPT_FAB_CODE & 0x3F;
2019-12-31 21:26:15 +00:00
2019-02-20 12:52:11 +00:00
uint64_t derived_lot_code = 0;
for (unsigned int i = 0; i < 5; i++) {
derived_lot_code = (derived_lot_code * 0x24) + ((lot_code >> (24 - 6*i)) & 0x3F);
}
derived_lot_code &= 0x03FFFFFF;
2019-12-31 21:26:15 +00:00
2019-02-20 12:52:11 +00:00
device_id |= y_coord << 0;
device_id |= x_coord << 9;
device_id |= wafer_id << 18;
device_id |= derived_lot_code << 24;
device_id |= fab_code << 50;
2019-12-31 21:26:15 +00:00
2019-02-20 12:52:11 +00:00
return device_id;
}
/* Derive the Hardware Type using values in the shadow cache. */
2019-12-31 21:26:15 +00:00
uint32_t fuse_get_hardware_type(uint32_t target_firmware) {
uint32_t fuse_reserved_odm4 = fuse_get_reserved_odm(4);
uint32_t hardware_type = (((fuse_reserved_odm4 >> 7) & 2) | ((fuse_reserved_odm4 >> 2) & 1));
2019-12-31 21:26:15 +00:00
/* Firmware from versions 1.0.0 to 3.0.2. */
2019-12-31 21:26:15 +00:00
if (target_firmware < ATMOSPHERE_TARGET_FIRMWARE_400) {
volatile tegra_fuse_chip_t *fuse_chip = fuse_chip_get_regs();
2019-02-20 12:52:11 +00:00
if (hardware_type >= 1) {
return (hardware_type > 2) ? 3 : hardware_type - 1;
2019-02-20 12:52:11 +00:00
} else if ((fuse_chip->FUSE_SPARE_BIT[9] & 1) == 0) {
return 0;
} else {
return 3;
}
2019-12-31 21:26:15 +00:00
} else if (target_firmware < ATMOSPHERE_TARGET_FIRMWARE_700) { /* Firmware versions from 4.0.0 to 6.2.0. */
static const uint32_t types[] = {0,1,4,3};
hardware_type |= ((fuse_reserved_odm4 >> 14) & 0x3C);
hardware_type--;
return (hardware_type > 3) ? 4 : types[hardware_type];
} else { /* Firmware versions from 7.0.0 onwards. */
/* Always return 0 in retail. */
return 0;
}
2019-02-20 12:52:11 +00:00
}
/* Derive the Retail Type using values in the shadow cache. */
2019-02-20 12:52:11 +00:00
uint32_t fuse_get_retail_type(void) {
/* Retail Type = IS_RETAIL | UNIT_TYPE. */
uint32_t fuse_reserved_odm4 = fuse_get_reserved_odm(4);
uint32_t retail_type = (((fuse_reserved_odm4 >> 7) & 4) | (fuse_reserved_odm4 & 3));
2019-02-20 12:52:11 +00:00
if (retail_type == 4) { /* Standard retail unit, IS_RETAIL | 0. */
return 1;
} else if (retail_type == 3) { /* Standard dev unit, 0 | DEV_UNIT. */
return 0;
}
return 2; /* IS_RETAIL | DEV_UNIT */
}
/* Derive the 16-byte Hardware Info using values in the shadow cache, and copy to output buffer. */
void fuse_get_hardware_info(void *dst) {
volatile tegra_fuse_chip_t *fuse_chip = fuse_chip_get_regs();
uint32_t hw_info[0x4];
uint32_t ops_reserved = fuse_chip->FUSE_OPT_OPS_RESERVED & 0x3F;
uint32_t y_coord = fuse_chip->FUSE_OPT_Y_COORDINATE & 0x1FF;
uint32_t x_coord = fuse_chip->FUSE_OPT_X_COORDINATE & 0x1FF;
uint32_t wafer_id = fuse_chip->FUSE_OPT_WAFER_ID & 0x3F;
uint32_t lot_code_0 = fuse_chip->FUSE_OPT_LOT_CODE_0;
uint32_t lot_code_1 = fuse_chip->FUSE_OPT_LOT_CODE_1 & 0x0FFFFFFF;
uint32_t fab_code = fuse_chip->FUSE_OPT_FAB_CODE & 0x3F;
uint32_t vendor_code = fuse_chip->FUSE_OPT_VENDOR_CODE & 0xF;
/* Hardware Info = OPS_RESERVED || Y_COORD || X_COORD || WAFER_ID || LOT_CODE || FAB_CODE || VENDOR_ID */
hw_info[0] = (uint32_t)((lot_code_1 << 30) | (wafer_id << 24) | (x_coord << 15) | (y_coord << 6) | (ops_reserved));
2019-02-20 12:52:11 +00:00
hw_info[1] = (uint32_t)((lot_code_0 << 26) | (lot_code_1 >> 2));
hw_info[2] = (uint32_t)((fab_code << 26) | (lot_code_0 >> 6));
hw_info[3] = (uint32_t)(vendor_code);
memcpy(dst, hw_info, 0x10);
}