1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2025-01-11 20:06:21 +00:00
Atmosphere/emummc/source/emmc/sdmmc_driver.c

1286 lines
31 KiB
C
Raw Normal View History

/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018-2019 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include "mmc.h"
#include "sdmmc.h"
#include "../nx/cache.h"
#include "../power/max7762x.h"
#include "../soc/clock.h"
#include "../soc/gpio.h"
#include "../soc/pinmux.h"
#include "../soc/pmc.h"
#include "../soc/t210.h"
#include "../utils/fatal.h"
#include "../utils/types.h"
#include "../utils/util.h"
#define DPRINTF(...)
/*! SCMMC controller base addresses. */
static const u64 _sdmmc_bases[4] = {
0x700B0000,
0x700B0200,
0x700B0400,
0x700B0600,
};
int sdmmc_get_io_power(sdmmc_t *sdmmc)
{
u32 p = sdmmc->regs->pwrcon;
if (!(p & SDHCI_POWER_ON))
return SDMMC_POWER_OFF;
if (p & SDHCI_POWER_180)
return SDMMC_POWER_1_8;
if (p & SDHCI_POWER_330)
return SDMMC_POWER_3_3;
return -1;
}
static int _sdmmc_set_io_power(sdmmc_t *sdmmc, u32 power)
{
switch (power)
{
case SDMMC_POWER_OFF:
sdmmc->regs->pwrcon &= ~SDHCI_POWER_ON;
break;
case SDMMC_POWER_1_8:
sdmmc->regs->pwrcon = SDHCI_POWER_180;
break;
case SDMMC_POWER_3_3:
sdmmc->regs->pwrcon = SDHCI_POWER_330;
break;
default:
return 0;
}
if (power != SDMMC_POWER_OFF)
sdmmc->regs->pwrcon |= SDHCI_POWER_ON;
return 1;
}
u32 sdmmc_get_bus_width(sdmmc_t *sdmmc)
{
u32 h = sdmmc->regs->hostctl;
if (h & SDHCI_CTRL_8BITBUS)
return SDMMC_BUS_WIDTH_8;
if (h & SDHCI_CTRL_4BITBUS)
return SDMMC_BUS_WIDTH_4;
return SDMMC_BUS_WIDTH_1;
}
void sdmmc_set_bus_width(sdmmc_t *sdmmc, u32 bus_width)
{
u32 host_control = sdmmc->regs->hostctl & ~(SDHCI_CTRL_4BITBUS | SDHCI_CTRL_8BITBUS);
if (bus_width == SDMMC_BUS_WIDTH_1)
sdmmc->regs->hostctl = host_control;
else if (bus_width == SDMMC_BUS_WIDTH_4)
sdmmc->regs->hostctl = host_control | SDHCI_CTRL_4BITBUS;
else if (bus_width == SDMMC_BUS_WIDTH_8)
sdmmc->regs->hostctl = host_control | SDHCI_CTRL_8BITBUS;
}
void sdmmc_set_tap_value(sdmmc_t *sdmmc)
{
sdmmc->venclkctl_tap = sdmmc->regs->venclkctl >> 16;
sdmmc->venclkctl_set = 1;
}
static int _sdmmc_config_tap_val(sdmmc_t *sdmmc, u32 type)
{
const u32 dqs_trim_val = 0x28;
const u32 tap_values[] = { 4, 0, 3, 0 };
u32 tap_val = 0;
if (type == SDHCI_TIMING_MMC_HS400)
sdmmc->regs->vencapover = (sdmmc->regs->vencapover & 0xFFFFC0FF) | (dqs_trim_val << 8);
sdmmc->regs->ventunctl0 &= ~TEGRA_MMC_VNDR_TUN_CTRL0_TAP_VAL_UPDATED_BY_HW;
if (type == SDHCI_TIMING_MMC_HS400)
{
if (!sdmmc->venclkctl_set)
return 0;
tap_val = sdmmc->venclkctl_tap;
}
else
{
tap_val = tap_values[sdmmc->id];
}
sdmmc->regs->venclkctl = (sdmmc->regs->venclkctl & 0xFF00FFFF) | (tap_val << 16);
return 1;
}
static int _sdmmc_get_clkcon(sdmmc_t *sdmmc)
{
return sdmmc->regs->clkcon;
}
static void _sdmmc_pad_config_fallback(sdmmc_t *sdmmc, u32 power)
{
_sdmmc_get_clkcon(sdmmc);
switch (sdmmc->id)
{
case SDMMC_1: // 33 Ohm 2X Driver.
if (power == SDMMC_POWER_OFF)
break;
u32 sdmmc1_pad_cfg = APB_MISC(APB_MISC_GP_SDMMC1_PAD_CFGPADCTRL) & 0xF8080FFF;
if (power == SDMMC_POWER_1_8)
APB_MISC(APB_MISC_GP_SDMMC1_PAD_CFGPADCTRL) = sdmmc1_pad_cfg | (0xB0F << 12); // Up: 11, Dn: 15. For 33 ohm.
else if (power == SDMMC_POWER_3_3)
APB_MISC(APB_MISC_GP_SDMMC1_PAD_CFGPADCTRL) = sdmmc1_pad_cfg | (0xC0C << 12); // Up: 12, Dn: 12. For 33 ohm.
break;
case SDMMC_2:
case SDMMC_4: // 50 Ohm 2X Driver. PU:16, PD:16.
APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL) = (APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL) & 0xFFFFC003) | 0x1040;
break;
}
}
static void _sdmmc_autocal_execute(sdmmc_t *sdmmc, u32 power)
{
bool should_enable_sd_clock = false;
if (sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN)
{
should_enable_sd_clock = true;
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
}
// Enable E_INPUT power.
if (!(sdmmc->regs->sdmemcmppadctl & TEGRA_MMC_SDMEMCOMPPADCTRL_PAD_E_INPUT_PWRD))
{
sdmmc->regs->sdmemcmppadctl |= TEGRA_MMC_SDMEMCOMPPADCTRL_PAD_E_INPUT_PWRD;
_sdmmc_get_clkcon(sdmmc);
usleep(1);
}
// Enable auto calibration and start auto configuration.
sdmmc->regs->autocalcfg |= TEGRA_MMC_AUTOCALCFG_AUTO_CAL_ENABLE | TEGRA_MMC_AUTOCALCFG_AUTO_CAL_START;
_sdmmc_get_clkcon(sdmmc);
usleep(2);
u64 timeout = get_tmr_ms() + 10;
while (sdmmc->regs->autocalsts & TEGRA_MMC_AUTOCALSTS_AUTO_CAL_ACTIVE)
{
if (get_tmr_ms() > timeout)
{
timeout = 0; // Set timeout to 0 if we timed out.
break;
}
}
/*
// Check if PU results are inside limits.
// SDMMC1: CZ pads - 7-bit PU. SDMMC2/4: LV_CZ pads - 5-bit PU.
u8 autocal_pu_status = sdmmc->regs->autocalsts & 0x7F;
switch (sdmmc->id)
{
case SDMMC_1:
if (!autocal_pu_status || autocal_pu_status == 0x7F)
timeout = 0;
break;
case SDMMC_2:
case SDMMC_4:
autocal_pu_status &= 0x1F;
if (!autocal_pu_status || autocal_pu_status == 0x1F)
timeout = 0;
break;
}
*/
// In case auto calibration fails, we load suggested standard values.
if (!timeout)
{
_sdmmc_pad_config_fallback(sdmmc, power);
sdmmc->regs->autocalcfg &= ~TEGRA_MMC_AUTOCALCFG_AUTO_CAL_ENABLE;
}
// Disable E_INPUT to conserve power.
sdmmc->regs->sdmemcmppadctl &= ~TEGRA_MMC_SDMEMCOMPPADCTRL_PAD_E_INPUT_PWRD;
if(should_enable_sd_clock)
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
}
static int _sdmmc_dll_cal_execute(sdmmc_t *sdmmc)
{
int result = 1, should_disable_sd_clock = 0;
if (!(sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN))
{
should_disable_sd_clock = 1;
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
}
sdmmc->regs->vendllcalcfg |= TEGRA_MMC_DLLCAL_CFG_EN_CALIBRATE;
_sdmmc_get_clkcon(sdmmc);
u64 timeout = get_tmr_ms() + 5;
while (sdmmc->regs->vendllcalcfg & TEGRA_MMC_DLLCAL_CFG_EN_CALIBRATE)
{
if (get_tmr_ms() > timeout)
{
result = 0;
goto out;
}
}
timeout = get_tmr_ms() + 10;
while (sdmmc->regs->vendllcalcfgsts & TEGRA_MMC_DLLCAL_CFG_STATUS_DLL_ACTIVE)
{
if (get_tmr_ms() > timeout)
{
result = 0;
goto out;
}
}
out:;
if (should_disable_sd_clock)
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
return result;
}
static void _sdmmc_reset(sdmmc_t *sdmmc)
{
sdmmc->regs->swrst |= SDHCI_RESET_CMD | SDHCI_RESET_DATA;
_sdmmc_get_clkcon(sdmmc);
u64 timeout = get_tmr_ms() + 2000;
while ((sdmmc->regs->swrst & (SDHCI_RESET_CMD | SDHCI_RESET_DATA)) && get_tmr_ms() < timeout)
;
}
int sdmmc_setup_clock(sdmmc_t *sdmmc, u32 type)
{
// Disable the SD clock if it was enabled, and reenable it later.
bool should_enable_sd_clock = false;
if (sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN)
{
should_enable_sd_clock = true;
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
}
_sdmmc_config_tap_val(sdmmc, type);
_sdmmc_reset(sdmmc);
switch (type)
{
case SDHCI_TIMING_MMC_ID:
case SDHCI_TIMING_MMC_LS26:
case SDHCI_TIMING_SD_ID:
case SDHCI_TIMING_SD_DS12:
sdmmc->regs->hostctl &= ~SDHCI_CTRL_HISPD;
sdmmc->regs->hostctl2 &= ~SDHCI_CTRL_VDD_180;
break;
case SDHCI_TIMING_MMC_HS52:
case SDHCI_TIMING_SD_HS25:
sdmmc->regs->hostctl |= SDHCI_CTRL_HISPD;
sdmmc->regs->hostctl2 &= ~SDHCI_CTRL_VDD_180;
break;
case SDHCI_TIMING_MMC_HS200:
case SDHCI_TIMING_UHS_SDR50: // T210 Errata for SDR50, the host must be set to SDR104.
case SDHCI_TIMING_UHS_SDR104:
case SDHCI_TIMING_UHS_SDR82:
case SDHCI_TIMING_UHS_DDR50:
case SDHCI_TIMING_MMC_DDR52:
sdmmc->regs->hostctl2 = (sdmmc->regs->hostctl2 & SDHCI_CTRL_UHS_MASK) | UHS_SDR104_BUS_SPEED;
sdmmc->regs->hostctl2 |= SDHCI_CTRL_VDD_180;
break;
case SDHCI_TIMING_MMC_HS400:
// Non standard.
sdmmc->regs->hostctl2 = (sdmmc->regs->hostctl2 & SDHCI_CTRL_UHS_MASK) | HS400_BUS_SPEED;
sdmmc->regs->hostctl2 |= SDHCI_CTRL_VDD_180;
break;
case SDHCI_TIMING_UHS_SDR25:
sdmmc->regs->hostctl2 = (sdmmc->regs->hostctl2 & SDHCI_CTRL_UHS_MASK) | UHS_SDR25_BUS_SPEED;
sdmmc->regs->hostctl2 |= SDHCI_CTRL_VDD_180;
break;
case SDHCI_TIMING_UHS_SDR12:
sdmmc->regs->hostctl2 = (sdmmc->regs->hostctl2 & SDHCI_CTRL_UHS_MASK) | UHS_SDR12_BUS_SPEED;
sdmmc->regs->hostctl2 |= SDHCI_CTRL_VDD_180;
break;
}
_sdmmc_get_clkcon(sdmmc);
u32 clock;
u16 divisor;
clock_sdmmc_get_card_clock_div(&clock, &divisor, type);
clock_sdmmc_config_clock_source(&clock, sdmmc->id, clock);
sdmmc->divisor = (clock + divisor - 1) / divisor;
//if divisor != 1 && divisor << 31 -> error
u16 div = divisor >> 1;
divisor = 0;
if (div > 0xFF)
divisor = div >> SDHCI_DIVIDER_SHIFT;
sdmmc->regs->clkcon = (sdmmc->regs->clkcon & ~(SDHCI_DIV_MASK | SDHCI_DIV_HI_MASK))
| (div << SDHCI_DIVIDER_SHIFT) | (divisor << SDHCI_DIVIDER_HI_SHIFT);
// Enable the SD clock again.
if (should_enable_sd_clock)
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
if (type == SDHCI_TIMING_MMC_HS400)
return _sdmmc_dll_cal_execute(sdmmc);
return 1;
}
static void _sdmmc_card_clock_enable(sdmmc_t *sdmmc)
{
// Recalibrate conditionally.
if ((sdmmc->id == SDMMC_1) && !sdmmc->auto_cal_enabled)
_sdmmc_autocal_execute(sdmmc, sdmmc_get_io_power(sdmmc));
if (!sdmmc->auto_cal_enabled)
{
if (!(sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN))
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
}
sdmmc->card_clock_enabled = 1;
}
static void _sdmmc_sd_clock_disable(sdmmc_t *sdmmc)
{
sdmmc->card_clock_enabled = 0;
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
}
void sdmmc_card_clock_ctrl(sdmmc_t *sdmmc, int auto_cal_enable)
{
// Recalibrate periodically for SDMMC1.
if ((sdmmc->id == SDMMC_1) && !auto_cal_enable && sdmmc->card_clock_enabled)
_sdmmc_autocal_execute(sdmmc, sdmmc_get_io_power(sdmmc));
sdmmc->auto_cal_enabled = auto_cal_enable;
if (auto_cal_enable)
{
if (!(sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN))
return;
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
return;
}
if (sdmmc->card_clock_enabled)
if (!(sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN))
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
}
static int _sdmmc_cache_rsp(sdmmc_t *sdmmc, u32 *rsp, u32 size, u32 type)
{
switch (type)
{
case SDMMC_RSP_TYPE_1:
case SDMMC_RSP_TYPE_3:
case SDMMC_RSP_TYPE_4:
case SDMMC_RSP_TYPE_5:
if (size < 4)
return 0;
rsp[0] = sdmmc->regs->rspreg0;
break;
case SDMMC_RSP_TYPE_2:
if (size < 0x10)
return 0;
// CRC is stripped, so shifting is needed.
u32 tempreg;
for (int i = 0; i < 4; i++)
{
switch(i)
{
case 0:
tempreg = sdmmc->regs->rspreg3;
break;
case 1:
tempreg = sdmmc->regs->rspreg2;
break;
case 2:
tempreg = sdmmc->regs->rspreg1;
break;
case 3:
tempreg = sdmmc->regs->rspreg0;
break;
}
rsp[i] = tempreg << 8;
if (i != 0)
rsp[i - 1] |= (tempreg >> 24) & 0xFF;
}
break;
default:
return 0;
break;
}
return 1;
}
int sdmmc_get_rsp(sdmmc_t *sdmmc, u32 *rsp, u32 size, u32 type)
{
if (!rsp || sdmmc->expected_rsp_type != type)
return 0;
switch (type)
{
case SDMMC_RSP_TYPE_1:
case SDMMC_RSP_TYPE_3:
case SDMMC_RSP_TYPE_4:
case SDMMC_RSP_TYPE_5:
if (size < 4)
return 0;
rsp[0] = sdmmc->rsp[0];
break;
case SDMMC_RSP_TYPE_2:
if (size < 0x10)
return 0;
rsp[0] = sdmmc->rsp[0];
rsp[1] = sdmmc->rsp[1];
rsp[2] = sdmmc->rsp[2];
rsp[3] = sdmmc->rsp[3];
break;
default:
return 0;
break;
}
return 1;
}
static int _sdmmc_wait_cmd_data_inhibit(sdmmc_t *sdmmc, bool wait_dat)
{
_sdmmc_get_clkcon(sdmmc);
u64 timeout = get_tmr_ms() + 2000;
while(sdmmc->regs->prnsts & SDHCI_CMD_INHIBIT)
if (get_tmr_ms() > timeout)
{
_sdmmc_reset(sdmmc);
return 0;
}
if (wait_dat)
{
timeout = get_tmr_ms() + 2000;
while (sdmmc->regs->prnsts & SDHCI_DATA_INHIBIT)
if (get_tmr_ms() > timeout)
{
_sdmmc_reset(sdmmc);
return 0;
}
}
return 1;
}
static int _sdmmc_wait_card_busy(sdmmc_t *sdmmc)
{
_sdmmc_get_clkcon(sdmmc);
u64 timeout = get_tmr_ms() + 2000;
while (!(sdmmc->regs->prnsts & SDHCI_DATA_0_LVL_MASK))
if (get_tmr_ms() > timeout)
{
_sdmmc_reset(sdmmc);
return 0;
}
return 1;
}
static int _sdmmc_setup_read_small_block(sdmmc_t *sdmmc)
{
switch (sdmmc_get_bus_width(sdmmc))
{
case SDMMC_BUS_WIDTH_1:
return 0;
break;
case SDMMC_BUS_WIDTH_4:
sdmmc->regs->blksize = 64;
break;
case SDMMC_BUS_WIDTH_8:
sdmmc->regs->blksize = 128;
break;
}
sdmmc->regs->blkcnt = 1;
sdmmc->regs->trnmod = SDHCI_TRNS_READ;
return 1;
}
static int _sdmmc_send_cmd(sdmmc_t *sdmmc, sdmmc_cmd_t *cmd, bool is_data_present)
{
u16 cmdflags = 0;
switch (cmd->rsp_type)
{
case SDMMC_RSP_TYPE_0:
break;
case SDMMC_RSP_TYPE_1:
case SDMMC_RSP_TYPE_4:
case SDMMC_RSP_TYPE_5:
if (cmd->check_busy)
cmdflags = SDHCI_CMD_RESP_LEN48_BUSY | SDHCI_CMD_INDEX | SDHCI_CMD_CRC;
else
cmdflags = SDHCI_CMD_RESP_LEN48 | SDHCI_CMD_INDEX | SDHCI_CMD_CRC;
break;
case SDMMC_RSP_TYPE_2:
cmdflags = SDHCI_CMD_RESP_LEN136 | SDHCI_CMD_CRC;
break;
case SDMMC_RSP_TYPE_3:
cmdflags = SDHCI_CMD_RESP_LEN48;
break;
default:
return 0;
break;
}
if (is_data_present)
cmdflags |= SDHCI_CMD_DATA;
sdmmc->regs->argument = cmd->arg;
sdmmc->regs->cmdreg = (cmd->cmd << 8) | cmdflags;
return 1;
}
static void _sdmmc_send_tuning_cmd(sdmmc_t *sdmmc, u32 cmd)
{
sdmmc_cmd_t cmdbuf;
cmdbuf.cmd = cmd;
cmdbuf.arg = 0;
cmdbuf.rsp_type = SDMMC_RSP_TYPE_1;
cmdbuf.check_busy = 0;
_sdmmc_send_cmd(sdmmc, &cmdbuf, true);
}
static int _sdmmc_tuning_execute_once(sdmmc_t *sdmmc, u32 cmd)
{
if (sdmmc->auto_cal_enabled)
return 0;
if (!_sdmmc_wait_cmd_data_inhibit(sdmmc, true))
return 0;
_sdmmc_setup_read_small_block(sdmmc);
sdmmc->regs->norintstsen |= SDHCI_INT_DATA_AVAIL;
sdmmc->regs->norintsts = sdmmc->regs->norintsts;
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
_sdmmc_send_tuning_cmd(sdmmc, cmd);
_sdmmc_get_clkcon(sdmmc);
usleep(1);
_sdmmc_reset(sdmmc);
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
_sdmmc_get_clkcon(sdmmc);
u64 timeout = get_tmr_us() + 5000;
while (get_tmr_us() < timeout)
{
if (sdmmc->regs->norintsts & SDHCI_INT_DATA_AVAIL)
{
sdmmc->regs->norintsts = SDHCI_INT_DATA_AVAIL;
sdmmc->regs->norintstsen &= ~SDHCI_INT_DATA_AVAIL;
_sdmmc_get_clkcon(sdmmc);
usleep((1000 * 8 + sdmmc->divisor - 1) / sdmmc->divisor);
return 1;
}
}
_sdmmc_reset(sdmmc);
sdmmc->regs->norintstsen &= ~SDHCI_INT_DATA_AVAIL;
_sdmmc_get_clkcon(sdmmc);
usleep((1000 * 8 + sdmmc->divisor - 1) / sdmmc->divisor);
return 0;
}
int sdmmc_tuning_execute(sdmmc_t *sdmmc, u32 type, u32 cmd)
{
u32 max = 0, flag = 0;
switch (type)
{
case SDHCI_TIMING_MMC_HS200:
case SDHCI_TIMING_MMC_HS400:
case SDHCI_TIMING_UHS_SDR104:
case SDHCI_TIMING_UHS_SDR82:
max = 128;
flag = (2 << 13); // 128 iterations.
break;
case SDHCI_TIMING_UHS_SDR50:
case SDHCI_TIMING_UHS_DDR50:
case SDHCI_TIMING_MMC_DDR52:
max = 256;
flag = (4 << 13); // 256 iterations.
break;
case SDHCI_TIMING_UHS_SDR12:
case SDHCI_TIMING_UHS_SDR25:
return 1;
default:
return 0;
}
sdmmc->regs->ventunctl1 = 0; // step_size 1.
sdmmc->regs->ventunctl0 = (sdmmc->regs->ventunctl0 & 0xFFFF1FFF) | flag; // Tries.
sdmmc->regs->ventunctl0 = (sdmmc->regs->ventunctl0 & 0xFFFFE03F) | (1 << 6); // 1x Multiplier.
sdmmc->regs->ventunctl0 |= TEGRA_MMC_VNDR_TUN_CTRL0_TAP_VAL_UPDATED_BY_HW;
sdmmc->regs->hostctl2 |= SDHCI_CTRL_EXEC_TUNING;
for (u32 i = 0; i < max; i++)
{
_sdmmc_tuning_execute_once(sdmmc, cmd);
if (!(sdmmc->regs->hostctl2 & SDHCI_CTRL_EXEC_TUNING))
break;
}
if (sdmmc->regs->hostctl2 & SDHCI_CTRL_TUNED_CLK)
return 1;
return 0;
}
static int _sdmmc_enable_internal_clock(sdmmc_t *sdmmc)
{
//Enable internal clock and wait till it is stable.
sdmmc->regs->clkcon |= SDHCI_CLOCK_INT_EN;
_sdmmc_get_clkcon(sdmmc);
u64 timeout = get_tmr_ms() + 2000;
while (!(sdmmc->regs->clkcon & SDHCI_CLOCK_INT_STABLE))
{
if (get_tmr_ms() > timeout)
return 0;
}
sdmmc->regs->hostctl2 &= ~SDHCI_CTRL_PRESET_VAL_EN;
sdmmc->regs->clkcon &= ~SDHCI_PROG_CLOCK_MODE;
sdmmc->regs->hostctl2 |= SDHCI_HOST_VERSION_4_EN;
if (!(sdmmc->regs->capareg & SDHCI_CAN_64BIT))
return 0;
sdmmc->regs->hostctl2 |= SDHCI_ADDRESSING_64BIT_EN;
sdmmc->regs->hostctl &= ~SDHCI_CTRL_DMA_MASK;
sdmmc->regs->timeoutcon = (sdmmc->regs->timeoutcon & 0xF0) | 0xE;
return 1;
}
static int _sdmmc_autocal_config_offset(sdmmc_t *sdmmc, u32 power)
{
u32 off_pd = 0;
u32 off_pu = 0;
switch (sdmmc->id)
{
case SDMMC_2:
case SDMMC_4:
if (power != SDMMC_POWER_1_8)
return 0;
off_pd = 5;
off_pu = 5;
break;
case SDMMC_1:
case SDMMC_3:
if (power == SDMMC_POWER_1_8)
{
off_pd = 123;
off_pu = 123;
}
else if (power == SDMMC_POWER_3_3)
{
off_pd = 125;
off_pu = 0;
}
else
return 0;
break;
}
sdmmc->regs->autocalcfg = (sdmmc->regs->autocalcfg & 0xFFFF8080) | (off_pd << 8) | off_pu;
return 1;
}
static void _sdmmc_enable_interrupts(sdmmc_t *sdmmc)
{
sdmmc->regs->norintstsen |= SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE;
sdmmc->regs->errintstsen |= SDHCI_ERR_INT_ALL_EXCEPT_ADMA_BUSPWR;
sdmmc->regs->norintsts = sdmmc->regs->norintsts;
sdmmc->regs->errintsts = sdmmc->regs->errintsts;
}
static void _sdmmc_mask_interrupts(sdmmc_t *sdmmc)
{
sdmmc->regs->errintstsen &= ~SDHCI_ERR_INT_ALL_EXCEPT_ADMA_BUSPWR;
sdmmc->regs->norintstsen &= ~(SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE);
}
static int _sdmmc_check_mask_interrupt(sdmmc_t *sdmmc, u16 *pout, u16 mask)
{
u16 norintsts = sdmmc->regs->norintsts;
u16 errintsts = sdmmc->regs->errintsts;
DPRINTF("norintsts %08X; errintsts %08X\n", norintsts, errintsts);
if (pout)
*pout = norintsts;
// Check for error interrupt.
if (norintsts & SDHCI_INT_ERROR)
{
sdmmc->regs->errintsts = errintsts;
return SDMMC_MASKINT_ERROR;
}
else if (norintsts & mask)
{
sdmmc->regs->norintsts = norintsts & mask;
return SDMMC_MASKINT_MASKED;
}
return SDMMC_MASKINT_NOERROR;
}
static int _sdmmc_wait_response(sdmmc_t *sdmmc)
{
_sdmmc_get_clkcon(sdmmc);
u64 timeout = get_tmr_ms() + 2000;
while (true)
{
int result = _sdmmc_check_mask_interrupt(sdmmc, NULL, SDHCI_INT_RESPONSE);
if (result == SDMMC_MASKINT_MASKED)
break;
if (result != SDMMC_MASKINT_NOERROR || get_tmr_ms() > timeout)
{
_sdmmc_reset(sdmmc);
return 0;
}
}
return 1;
}
static int _sdmmc_stop_transmission_inner(sdmmc_t *sdmmc, u32 *rsp)
{
sdmmc_cmd_t cmd;
if (!_sdmmc_wait_cmd_data_inhibit(sdmmc, false))
return 0;
_sdmmc_enable_interrupts(sdmmc);
cmd.cmd = MMC_STOP_TRANSMISSION;
cmd.arg = 0;
cmd.rsp_type = SDMMC_RSP_TYPE_1;
cmd.check_busy = 1;
_sdmmc_send_cmd(sdmmc, &cmd, false);
int result = _sdmmc_wait_response(sdmmc);
_sdmmc_mask_interrupts(sdmmc);
if (!result)
return 0;
_sdmmc_cache_rsp(sdmmc, rsp, 4, SDMMC_RSP_TYPE_1);
return _sdmmc_wait_card_busy(sdmmc);
}
int sdmmc_stop_transmission(sdmmc_t *sdmmc, u32 *rsp)
{
if (!sdmmc->card_clock_enabled)
return 0;
// Recalibrate periodically for SDMMC1.
if ((sdmmc->id == SDMMC_1) && sdmmc->auto_cal_enabled)
_sdmmc_autocal_execute(sdmmc, sdmmc_get_io_power(sdmmc));
bool should_disable_sd_clock = false;
if (!(sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN))
{
should_disable_sd_clock = true;
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
_sdmmc_get_clkcon(sdmmc);
usleep((8000 + sdmmc->divisor - 1) / sdmmc->divisor);
}
int result = _sdmmc_stop_transmission_inner(sdmmc, rsp);
usleep((8000 + sdmmc->divisor - 1) / sdmmc->divisor);
if (should_disable_sd_clock)
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
return result;
}
static int _sdmmc_config_dma(sdmmc_t *sdmmc, u32 *blkcnt_out, sdmmc_req_t *req)
{
if (!req->blksize || !req->num_sectors)
return 0;
u32 blkcnt = req->num_sectors;
if (blkcnt >= 0xFFFF)
blkcnt = 0xFFFF;
u64 admaaddr = (u64)sdmmc_calculate_dma_addr(_current_accessor, req->buf, blkcnt);
if (!admaaddr)
{
// buf is on a heap
int dma_idx = sdmmc_calculate_fitting_dma_index(_current_accessor, blkcnt);
admaaddr = (u64)&_current_accessor->parent->dmaBuffers[dma_idx].device_addr_buffer_masked[0];
sdmmc->last_dma_idx = dma_idx;
}
// Check alignment.
if (admaaddr & 7)
return 0;
sdmmc->regs->admaaddr = admaaddr & 0xFFFFFFFFF;
sdmmc->regs->admaaddr_hi = (admaaddr >> 32) & 0xFFFFFFFFF;
sdmmc->dma_addr_next = (admaaddr + 0x80000) & 0xFFFFFFFFFFF80000;
sdmmc->regs->blksize = req->blksize | 0x7000;
sdmmc->regs->blkcnt = blkcnt;
if (blkcnt_out)
*blkcnt_out = blkcnt;
u32 trnmode = SDHCI_TRNS_DMA;
if (req->is_multi_block)
trnmode = SDHCI_TRNS_MULTI | SDHCI_TRNS_BLK_CNT_EN | SDHCI_TRNS_DMA;
if (!req->is_write)
trnmode |= SDHCI_TRNS_READ;
if (req->is_auto_cmd12)
trnmode = (trnmode & ~(SDHCI_TRNS_AUTO_CMD12 | SDHCI_TRNS_AUTO_CMD23)) | SDHCI_TRNS_AUTO_CMD12;
sdmmc->regs->trnmod = trnmode;
return 1;
}
static int _sdmmc_update_dma(sdmmc_t *sdmmc)
{
u16 blkcnt = 0;
do
{
blkcnt = sdmmc->regs->blkcnt;
u64 timeout = get_tmr_ms() + 1500;
do
{
int result = 0;
while (true)
{
u16 intr = 0;
result = _sdmmc_check_mask_interrupt(sdmmc, &intr,
SDHCI_INT_DATA_END | SDHCI_INT_DMA_END);
if (result < 0)
break;
if (intr & SDHCI_INT_DATA_END)
return 1; // Transfer complete.
if (intr & SDHCI_INT_DMA_END)
{
// Update DMA.
sdmmc->regs->admaaddr = sdmmc->dma_addr_next & 0xFFFFFFFFF;
sdmmc->regs->admaaddr_hi = (sdmmc->dma_addr_next >> 32) & 0xFFFFFFFFF;
sdmmc->dma_addr_next += 0x80000;
}
}
if (result != SDMMC_MASKINT_NOERROR)
{
_sdmmc_reset(sdmmc);
return 0;
}
} while (get_tmr_ms() < timeout);
} while (sdmmc->regs->blkcnt != blkcnt);
_sdmmc_reset(sdmmc);
return 0;
}
static int _sdmmc_execute_cmd_inner(sdmmc_t *sdmmc, sdmmc_cmd_t *cmd, sdmmc_req_t *req, u32 *blkcnt_out)
{
int has_req_or_check_busy = req || cmd->check_busy;
if (!_sdmmc_wait_cmd_data_inhibit(sdmmc, has_req_or_check_busy))
return 0;
u32 blkcnt = 0;
bool is_data_present = false;
if (req)
{
if (!_sdmmc_config_dma(sdmmc, &blkcnt, req))
return 0;
if(!sdmmc_memcpy_buf)
{
// Flush from/to phys
armDCacheFlush(req->buf, req->blksize * blkcnt);
}
else
{
if(req->is_write)
{
void* dma_addr = &_current_accessor->parent->dmaBuffers[sdmmc->last_dma_idx].device_addr_buffer[0];
memcpy(dma_addr, req->buf, req->blksize * blkcnt);
// Flush to phys
armDCacheFlush(dma_addr, req->blksize * blkcnt);
}
}
is_data_present = true;
}
else
is_data_present = false;
_sdmmc_enable_interrupts(sdmmc);
if (!_sdmmc_send_cmd(sdmmc, cmd, is_data_present))
return 0;
int result = _sdmmc_wait_response(sdmmc);
DPRINTF("rsp(%d): %08X, %08X, %08X, %08X\n", result,
sdmmc->regs->rspreg0, sdmmc->regs->rspreg1, sdmmc->regs->rspreg2, sdmmc->regs->rspreg3);
if (result)
{
if (cmd->rsp_type)
{
sdmmc->expected_rsp_type = cmd->rsp_type;
result = _sdmmc_cache_rsp(sdmmc, sdmmc->rsp, 0x10, cmd->rsp_type);
/*if(sdmmc->rsp[0] & 0xFDF9A080)
{
res = 0;
sdmmc->rsp[0] = 0; // Reset error
}*/
}
if (req && result)
result = _sdmmc_update_dma(sdmmc);
}
_sdmmc_mask_interrupts(sdmmc);
if (result)
{
if (req)
{
if(!req->is_write)
{
if(!sdmmc_memcpy_buf)
{
// Flush from phys
armDCacheFlush(req->buf, req->blksize * blkcnt);
}
else
{
void* dma_addr = &_current_accessor->parent->dmaBuffers[sdmmc->last_dma_idx].device_addr_buffer[0];
// Flush from phys
armDCacheFlush(dma_addr, req->blksize * blkcnt);
// Copy to buffer
memcpy(req->buf, dma_addr, req->blksize * blkcnt);
}
}
if (blkcnt_out)
*blkcnt_out = blkcnt;
if (req->is_auto_cmd12)
sdmmc->rsp3 = sdmmc->regs->rspreg3;
}
if (cmd->check_busy || req)
return _sdmmc_wait_card_busy(sdmmc);
}
return result;
}
int sdmmc_get_sd_power_enabled()
{
return gpio_read(GPIO_PORT_E, GPIO_PIN_4);
}
bool sdmmc_get_sd_inserted()
{
return (!gpio_read(GPIO_PORT_Z, GPIO_PIN_1));
}
static int _sdmmc_config_sdmmc1()
{
// Configure SD card detect.
PINMUX_AUX(PINMUX_AUX_GPIO_PZ1) = PINMUX_INPUT_ENABLE | PINMUX_PULL_UP | 2; // GPIO control, pull up.
APB_MISC(APB_MISC_GP_VGPIO_GPIO_MUX_SEL) = 0;
gpio_config(GPIO_PORT_Z, GPIO_PIN_1, GPIO_MODE_GPIO);
gpio_output_enable(GPIO_PORT_Z, GPIO_PIN_1, GPIO_OUTPUT_DISABLE);
usleep(100);
// Check if SD card is inserted.
if(!sdmmc_get_sd_inserted())
return 0;
/*
* Pinmux config:
* DRV_TYPE = DRIVE_2X
* E_SCHMT = ENABLE (for 1.8V), DISABLE (for 3.3V)
* E_INPUT = ENABLE
* TRISTATE = PASSTHROUGH
* APB_MISC_GP_SDMMCx_CLK_LPBK_CONTROL = SDMMCx_CLK_PAD_E_LPBK for CLK
*/
// Configure SDMMC1 pinmux.
APB_MISC(APB_MISC_GP_SDMMC1_CLK_LPBK_CONTROL) = 1; // Enable deep loopback for SDMMC1 CLK pad.
PINMUX_AUX(PINMUX_AUX_SDMMC1_CLK) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PARKED;
PINMUX_AUX(PINMUX_AUX_SDMMC1_CMD) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PARKED | PINMUX_PULL_UP;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT3) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PARKED | PINMUX_PULL_UP;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT2) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PARKED | PINMUX_PULL_UP;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT1) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PARKED | PINMUX_PULL_UP;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT0) = PINMUX_DRIVE_2X | PINMUX_INPUT_ENABLE | PINMUX_PARKED | PINMUX_PULL_UP;
// Make sure the SDMMC1 controller is powered.
smcReadWriteRegister(PMC_BASE + APBDEV_PMC_NO_IOPOWER, PMC_NO_IOPOWER_SDMMC1_IO_EN, PMC_NO_IOPOWER_SDMMC1_IO_EN);
usleep(1000);
smcReadWriteRegister(PMC_BASE + APBDEV_PMC_NO_IOPOWER, ~PMC_NO_IOPOWER_SDMMC1_IO_EN, PMC_NO_IOPOWER_SDMMC1_IO_EN);
// Inform IO pads that voltage is gonna be 3.3V.
smcReadWriteRegister(PMC_BASE + APBDEV_PMC_PWR_DET_VAL, PMC_PWR_DET_SDMMC1_IO_EN, PMC_PWR_DET_SDMMC1_IO_EN);
// Set enable SD card power.
//PINMUX_AUX(PINMUX_AUX_DMIC3_CLK) = PINMUX_PULL_DOWN | 2; // Pull down.
PINMUX_AUX(PINMUX_AUX_DMIC3_CLK) = PINMUX_INPUT_ENABLE | PINMUX_PULL_DOWN | 1; // GPIO control, pull down.
gpio_config(GPIO_PORT_E, GPIO_PIN_4, GPIO_MODE_GPIO);
gpio_write(GPIO_PORT_E, GPIO_PIN_4, GPIO_HIGH);
gpio_output_enable(GPIO_PORT_E, GPIO_PIN_4, GPIO_OUTPUT_ENABLE);
usleep(1000);
// Enable SD card power.
max77620_regulator_set_voltage(REGULATOR_LDO2, 3300000);
max77620_regulator_enable(REGULATOR_LDO2, 1);
usleep(1000);
// Set pad slew codes to get good quality clock.
APB_MISC(APB_MISC_GP_SDMMC1_PAD_CFGPADCTRL) = (APB_MISC(APB_MISC_GP_SDMMC1_PAD_CFGPADCTRL) & 0xFFFFFFF) | 0x50000000;
usleep(1000);
return 1;
}
static void _sdmmc_config_emmc(u32 id)
{
switch (id)
{
case SDMMC_2:
// Unset park for pads.
APB_MISC(APB_MISC_GP_EMMC2_PAD_CFGPADCTRL) &= 0xF8003FFF;
break;
case SDMMC_4:
// Unset park for pads.
APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL) &= 0xF8003FFF;
// Set default pad cfg.
APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL) = (APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL) & 0xFFFFC003) | 0x1040;
// Enabled schmitt trigger.
APB_MISC(APB_MISC_GP_EMMC4_PAD_CFGPADCTRL) |= 1; // Enable Schmitt trigger.
break;
}
}
int sdmmc_init(sdmmc_t *sdmmc, u32 id, u32 power, u32 bus_width, u32 type, int auto_cal_enable)
{
const u32 trim_values[] = { 2, 8, 3, 8 };
if (id > SDMMC_4)
return 0;
memset(sdmmc, 0, sizeof(sdmmc_t));
sdmmc->regs = (t210_sdmmc_t *)QueryIoMapping(_sdmmc_bases[id], 0x200);
sdmmc->id = id;
sdmmc->clock_stopped = 1;
// Do specific SDMMC HW configuration.
switch (id)
{
case SDMMC_1:
if (!_sdmmc_config_sdmmc1())
return 0;
break;
case SDMMC_2:
case SDMMC_4:
_sdmmc_config_emmc(id);
break;
}
if (clock_sdmmc_is_not_reset_and_enabled(id))
{
_sdmmc_sd_clock_disable(sdmmc);
_sdmmc_get_clkcon(sdmmc);
}
u32 clock;
u16 divisor;
clock_sdmmc_get_card_clock_div(&clock, &divisor, type);
clock_sdmmc_enable(id, clock);
sdmmc->clock_stopped = 0;
//TODO: make this skip-able.
sdmmc->regs->iospare |= 0x80000; // Enable muxing.
sdmmc->regs->veniotrimctl &= 0xFFFFFFFB; // Set Band Gap VREG to supply DLL.
sdmmc->regs->venclkctl = (sdmmc->regs->venclkctl & 0xE0FFFFFB) | (trim_values[sdmmc->id] << 24);
sdmmc->regs->sdmemcmppadctl =
(sdmmc->regs->sdmemcmppadctl & TEGRA_MMC_SDMEMCOMPPADCTRL_COMP_VREF_SEL_MASK) | 7;
if (!_sdmmc_autocal_config_offset(sdmmc, power))
return 0;
_sdmmc_autocal_execute(sdmmc, power);
if (_sdmmc_enable_internal_clock(sdmmc))
{
sdmmc_set_bus_width(sdmmc, bus_width);
_sdmmc_set_io_power(sdmmc, power);
if (sdmmc_setup_clock(sdmmc, type))
{
sdmmc_card_clock_ctrl(sdmmc, auto_cal_enable);
_sdmmc_card_clock_enable(sdmmc);
_sdmmc_get_clkcon(sdmmc);
return 1;
}
return 0;
}
return 0;
}
void sdmmc_end(sdmmc_t *sdmmc)
{
if (!sdmmc->clock_stopped)
{
_sdmmc_sd_clock_disable(sdmmc);
// Disable SDMMC power.
_sdmmc_set_io_power(sdmmc, SDMMC_POWER_OFF);
// Disable SD card power.
if (sdmmc->id == SDMMC_1)
{
gpio_output_enable(GPIO_PORT_E, GPIO_PIN_4, GPIO_OUTPUT_DISABLE);
max77620_regulator_enable(REGULATOR_LDO2, 0);
// Inform IO pads that next voltage might be 3.3V.
smcReadWriteRegister(PMC_BASE + APBDEV_PMC_PWR_DET_VAL, PMC_PWR_DET_SDMMC1_IO_EN, PMC_PWR_DET_SDMMC1_IO_EN);
msleep(100); // To power cycle min 1ms without power is needed.
}
_sdmmc_get_clkcon(sdmmc);
clock_sdmmc_disable(sdmmc->id);
sdmmc->clock_stopped = 1;
}
}
void sdmmc_init_cmd(sdmmc_cmd_t *cmdbuf, u16 cmd, u32 arg, u32 rsp_type, u32 check_busy)
{
cmdbuf->cmd = cmd;
cmdbuf->arg = arg;
cmdbuf->rsp_type = rsp_type;
cmdbuf->check_busy = check_busy;
}
int sdmmc_execute_cmd(sdmmc_t *sdmmc, sdmmc_cmd_t *cmd, sdmmc_req_t *req, u32 *blkcnt_out)
{
if (!sdmmc->card_clock_enabled)
return 0;
// Recalibrate periodically for SDMMC1.
if (sdmmc->id == SDMMC_1 && sdmmc->auto_cal_enabled)
_sdmmc_autocal_execute(sdmmc, sdmmc_get_io_power(sdmmc));
int should_disable_sd_clock = 0;
if (!(sdmmc->regs->clkcon & SDHCI_CLOCK_CARD_EN))
{
should_disable_sd_clock = 1;
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
_sdmmc_get_clkcon(sdmmc);
usleep((8000 + sdmmc->divisor - 1) / sdmmc->divisor);
}
int result = _sdmmc_execute_cmd_inner(sdmmc, cmd, req, blkcnt_out);
usleep((8000 + sdmmc->divisor - 1) / sdmmc->divisor);
if (should_disable_sd_clock)
sdmmc->regs->clkcon &= ~SDHCI_CLOCK_CARD_EN;
return result;
}
int sdmmc_enable_low_voltage(sdmmc_t *sdmmc)
{
if(sdmmc->id != SDMMC_1)
return 0;
if (!sdmmc_setup_clock(sdmmc, SDHCI_TIMING_UHS_SDR12))
return 0;
_sdmmc_get_clkcon(sdmmc);
// Switch to 1.8V and wait for regulator to stabilize. Assume max possible wait needed.
max77620_regulator_set_voltage(REGULATOR_LDO2, 1800000);
usleep(300);
// Inform IO pads that we switched to 1.8V.
smcReadWriteRegister(PMC_BASE + APBDEV_PMC_PWR_DET_VAL, ~PMC_PWR_DET_SDMMC1_IO_EN, PMC_PWR_DET_SDMMC1_IO_EN);
// Enable schmitt trigger for better duty cycle and low jitter clock.
PINMUX_AUX(PINMUX_AUX_SDMMC1_CLK) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC1_CMD) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT3) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT2) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT1) |= PINMUX_SCHMT;
PINMUX_AUX(PINMUX_AUX_SDMMC1_DAT0) |= PINMUX_SCHMT;
_sdmmc_autocal_config_offset(sdmmc, SDMMC_POWER_1_8);
_sdmmc_autocal_execute(sdmmc, SDMMC_POWER_1_8);
_sdmmc_set_io_power(sdmmc, SDMMC_POWER_1_8);
_sdmmc_get_clkcon(sdmmc);
msleep(5); // Wait minimum 5ms before turning on the card clock.
// Turn on SDCLK.
if (sdmmc->regs->hostctl2 & SDHCI_CTRL_VDD_180)
{
sdmmc->regs->clkcon |= SDHCI_CLOCK_CARD_EN;
_sdmmc_get_clkcon(sdmmc);
usleep(1000);
if ((sdmmc->regs->prnsts & 0xF00000) == 0xF00000)
return 1;
}
return 0;
}