1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2025-01-22 09:07:10 +00:00
Atmosphere/libraries/libvapours/source/crypto/impl/crypto_sha256_impl.arch.arm64.cpp

327 lines
16 KiB
C++
Raw Normal View History

2020-02-24 01:34:30 +00:00
/*
* Copyright (c) Atmosphère-NX
2020-02-24 01:34:30 +00:00
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <vapours.hpp>
#if defined(ATMOSPHERE_IS_STRATOSPHERE)
#include <arm_neon.h>
2020-02-24 01:34:30 +00:00
namespace ams::crypto::impl {
namespace {
alignas(Sha256Impl::BlockSize) constexpr const u32 RoundConstants[0x40] = {
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
};
}
2020-02-24 01:34:30 +00:00
void Sha256Impl::Initialize() {
/* Reset buffered bytes/bits. */
m_buffered_bytes = 0;
m_bits_consumed = 0;
/* Set intermediate hash. */
m_intermediate_hash[0] = 0x6A09E667;
m_intermediate_hash[1] = 0xBB67AE85;
m_intermediate_hash[2] = 0x3C6EF372;
m_intermediate_hash[3] = 0xA54FF53A;
m_intermediate_hash[4] = 0x510E527F;
m_intermediate_hash[5] = 0x9B05688C;
m_intermediate_hash[6] = 0x1F83D9AB;
m_intermediate_hash[7] = 0x5BE0CD19;
/* Set state. */
m_state = State_Initialized;
2020-02-24 01:34:30 +00:00
}
void Sha256Impl::Update(const void *data, size_t size) {
/* Verify we're in a state to update. */
AMS_ASSERT(m_state == State_Initialized);
/* Advance our input bit count. */
m_bits_consumed += BITSIZEOF(u8) * (((m_buffered_bytes + size) / BlockSize) * BlockSize);
/* Process anything we have buffered. */
const u8 *data8 = static_cast<const u8 *>(data);
size_t remaining = size;
if (m_buffered_bytes > 0) {
const size_t copy_size = std::min(BlockSize - m_buffered_bytes, remaining);
std::memcpy(m_buffer + m_buffered_bytes, data8, copy_size);
data8 += copy_size;
remaining -= copy_size;
m_buffered_bytes += copy_size;
/* Process a block, if we filled one. */
if (m_buffered_bytes == BlockSize) {
this->ProcessBlock(m_buffer);
m_buffered_bytes = 0;
}
}
/* Process blocks, if we have any. */
if (remaining >= BlockSize) {
const size_t blocks = remaining / BlockSize;
this->ProcessBlocks(data8, blocks);
data8 += BlockSize * blocks;
remaining -= BlockSize * blocks;
}
/* Copy any leftover data to our buffer. */
if (remaining > 0) {
m_buffered_bytes = remaining;
std::memcpy(m_buffer, data8, remaining);
}
2020-02-24 01:34:30 +00:00
}
void Sha256Impl::GetHash(void *dst, size_t size) {
/* Verify we're in a state to get hash. */
AMS_ASSERT(m_state == State_Initialized || m_state == State_Done);
2020-02-24 01:34:30 +00:00
AMS_ASSERT(size >= HashSize);
AMS_UNUSED(size);
/* If we need to, process the last block. */
if (m_state == State_Initialized) {
this->ProcessLastBlock();
m_state = State_Done;
}
/* Copy the output hash. */
if constexpr (util::IsLittleEndian()) {
static_assert(HashSize % sizeof(u32) == 0);
u32 *dst_32 = static_cast<u32 *>(dst);
for (size_t i = 0; i < HashSize / sizeof(u32); ++i) {
dst_32[i] = util::LoadBigEndian<u32>(m_intermediate_hash + i);
}
} else {
std::memcpy(dst, m_intermediate_hash, HashSize);
}
2020-02-24 01:34:30 +00:00
}
2020-03-11 10:26:55 +00:00
void Sha256Impl::InitializeWithContext(const Sha256Context *context) {
/* Copy state in from the context. */
std::memcpy(m_intermediate_hash, context->intermediate_hash, sizeof(m_intermediate_hash));
m_bits_consumed = context->bits_consumed;
2020-03-11 10:26:55 +00:00
/* Reset other fields. */
m_buffered_bytes = 0;
m_state = State_Initialized;
2020-03-11 10:26:55 +00:00
}
size_t Sha256Impl::GetContext(Sha256Context *context) const {
/* Check our state. */
AMS_ASSERT(m_state == State_Initialized);
/* Copy out the context. */
std::memcpy(context->intermediate_hash, m_intermediate_hash, sizeof(context->intermediate_hash));
context->bits_consumed = m_bits_consumed;
return m_buffered_bytes;
}
2020-03-11 10:26:55 +00:00
ALWAYS_INLINE void Sha256Impl::ProcessBlock(const void *data) {
return this->ProcessBlocks(static_cast<const u8 *>(data), 1);
2020-03-11 10:26:55 +00:00
}
void Sha256Impl::ProcessBlocks(const u8 *data, size_t block_count) {
/* Load previous hash with intermediate state, current hash with zeroes. */
uint32x4_t prev_hash0 = vld1q_u32(m_intermediate_hash + 0);
uint32x4_t prev_hash1 = vld1q_u32(m_intermediate_hash + 4);
uint32x4_t cur_hash0 = vdupq_n_u32(0);
uint32x4_t cur_hash1 = vdupq_n_u32(0);
/* Process blocks. */
do {
uint32x4_t round_constant0, round_constant1;
uint32x4_t data0, data1, data2, data3;
uint32x4_t tmp0, tmp1, tmp2, tmp3;
uint32x4_t tmp_hash;
2020-02-24 01:34:30 +00:00
/* Use optimized ASM implementation to process the block. */
__asm__ __volatile__ (
"ldp %q[data0], %q[data1], [%[data]], #0x20\n"
"ldp %q[data2], %q[data3], [%[data]], #0x20\n"
"add %[cur_hash0].4s, %[cur_hash0].4s, %[prev_hash0].4s\n"
"ldp %q[round_constant0], %q[round_constant1], [%[round_constants], 0x00]\n"
"add %[cur_hash1].4s, %[cur_hash1].4s, %[prev_hash1].4s\n"
"rev32 %[data0].16b, %[data0].16b\n"
"rev32 %[data1].16b, %[data1].16b\n"
"rev32 %[data2].16b, %[data2].16b\n"
"rev32 %[data3].16b, %[data3].16b\n"
"add %[tmp0].4s, %[data0].4s, %[round_constant0].4s\n"
"add %[tmp1].4s, %[data1].4s, %[round_constant1].4s\n"
"ldp %q[round_constant0], %q[round_constant1], [%[round_constants], 0x20]\n"
"sha256su0 %[data0].4s, %[data1].4s\n"
"mov %[prev_hash0].16b, %[cur_hash0].16b\n"
"sha256h %q[cur_hash0], %q[cur_hash1], %[tmp0].4s\n"
"mov %[prev_hash1].16b, %[cur_hash1].16b\n"
"sha256h2 %q[cur_hash1], %q[prev_hash0], %[tmp0].4s\n"
"sha256su0 %[data1].4s, %[data2].4s\n"
"sha256su1 %[data0].4s, %[data2].4s, %[data3].4s\n"
"add %[tmp2].4s, %[data2].4s, %[round_constant0].4s\n"
"mov %[tmp_hash].16b, %[cur_hash0].16b\n"
"sha256h %q[cur_hash0], %q[cur_hash1], %[tmp1].4s\n"
"sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp1].4s\n"
"sha256su0 %[data2].4s, %[data3].4s\n"
"sha256su1 %[data1].4s, %[data3].4s, %[data0].4s\n"
"add %[tmp3].4s, %[data3].4s, %[round_constant1].4s\n"
"mov %[tmp_hash].16b, %[cur_hash0].16b\n"
"ldp %q[round_constant0], %q[round_constant1], [%[round_constants], 0x40]\n"
"sha256h %q[cur_hash0], %q[cur_hash1], %[tmp2].4s\n"
"sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp2].4s\n"
"sha256su0 %[data3].4s, %[data0].4s\n"
"sha256su1 %[data2].4s, %[data0].4s, %[data1].4s\n"
"add %[tmp0].4s, %[data0].4s, %[round_constant0].4s\n"
"mov %[tmp_hash].16b, %[cur_hash0].16b\n"
"sha256h %q[cur_hash0], %q[cur_hash1], %[tmp3].4s\n"
"sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp3].4s\n"
"sha256su0 %[data0].4s, %[data1].4s\n"
"sha256su1 %[data3].4s, %[data1].4s, %[data2].4s\n"
"add %[tmp1].4s, %[data1].4s, %[round_constant1].4s\n"
"mov %[tmp_hash].16b, %[cur_hash0].16b\n"
"ldp %q[round_constant0], %q[round_constant1], [%[round_constants], 0x60]\n"
"sha256h %q[cur_hash0], %q[cur_hash1], %[tmp0].4s\n"
"sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp0].4s\n"
"sha256su0 %[data1].4s, %[data2].4s\n"
"sha256su1 %[data0].4s, %[data2].4s, %[data3].4s\n"
"add %[tmp2].4s, %[data2].4s, %[round_constant0].4s\n"
"mov %[tmp_hash].16b, %[cur_hash0].16b\n"
"sha256h %q[cur_hash0], %q[cur_hash1], %[tmp1].4s\n"
"sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp1].4s\n"
"sha256su0 %[data2].4s, %[data3].4s\n"
"sha256su1 %[data1].4s, %[data3].4s, %[data0].4s\n"
"add %[tmp3].4s, %[data3].4s, %[round_constant1].4s\n"
"mov %[tmp_hash].16b, %[cur_hash0].16b\n"
"ldp %q[round_constant0], %q[round_constant1], [%[round_constants], 0x80]\n"
"sha256h %q[cur_hash0], %q[cur_hash1], %[tmp2].4s\n"
"sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp2].4s\n"
"sha256su0 %[data3].4s, %[data0].4s\n"
"sha256su1 %[data2].4s, %[data0].4s, %[data1].4s\n"
"add %[tmp0].4s, %[data0].4s, %[round_constant0].4s\n"
"mov %[tmp_hash].16b, %[cur_hash0].16b\n"
"sha256h %q[cur_hash0], %q[cur_hash1], %[tmp3].4s\n"
"sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp3].4s\n"
"sha256su0 %[data0].4s, %[data1].4s\n"
"sha256su1 %[data3].4s, %[data1].4s, %[data2].4s\n"
"add %[tmp1].4s, %[data1].4s, %[round_constant1].4s\n"
"mov %[tmp_hash].16b, %[cur_hash0].16b\n"
"ldp %q[round_constant0], %q[round_constant1], [%[round_constants], 0xA0]\n"
"sha256h %q[cur_hash0], %q[cur_hash1], %[tmp0].4s\n"
"sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp0].4s\n"
"sha256su0 %[data1].4s, %[data2].4s\n"
"sha256su1 %[data0].4s, %[data2].4s, %[data3].4s\n"
"add %[tmp2].4s, %[data2].4s, %[round_constant0].4s\n"
"mov %[tmp_hash].16b, %[cur_hash0].16b\n"
"sha256h %q[cur_hash0], %q[cur_hash1], %[tmp1].4s\n"
"sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp1].4s\n"
"sha256su0 %[data2].4s, %[data3].4s\n"
"sha256su1 %[data1].4s, %[data3].4s, %[data0].4s\n"
"add %[tmp3].4s, %[data3].4s, %[round_constant1].4s\n"
"mov %[tmp_hash].16b, %[cur_hash0].16b\n"
"ldp %q[round_constant0], %q[round_constant1], [%[round_constants], 0xC0]\n"
"sha256h %q[cur_hash0], %q[cur_hash1], %[tmp2].4s\n"
"sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp2].4s\n"
"sha256su0 %[data3].4s, %[data0].4s\n"
"sha256su1 %[data2].4s, %[data0].4s, %[data1].4s\n"
"add %[tmp0].4s, %[data0].4s, %[round_constant0].4s\n"
"mov %[tmp_hash].16b, %[cur_hash0].16b\n"
"sha256h %q[cur_hash0], %q[cur_hash1], %[tmp3].4s\n"
"sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp3].4s\n"
"sha256su1 %[data3].4s, %[data1].4s, %[data2].4s\n"
"add %[tmp1].4s, %[data1].4s, %[round_constant1].4s\n"
"mov %[tmp_hash].16b, %[cur_hash0].16b\n"
"ldp %q[round_constant0], %q[round_constant1], [%[round_constants], 0xE0]\n"
"sha256h %q[cur_hash0], %q[cur_hash1], %[tmp0].4s\n"
"sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp0].4s\n"
"add %[tmp2].4s, %[data2].4s, %[round_constant0].4s\n"
"mov %[tmp_hash].16b, %[cur_hash0].16b\n"
"sha256h %q[cur_hash0], %q[cur_hash1], %[tmp1].4s\n"
"sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp1].4s\n"
"add %[tmp3].4s, %[data3].4s, %[round_constant1].4s\n"
"mov %[tmp_hash].16b, %[cur_hash0].16b\n"
"sha256h %q[cur_hash0], %q[cur_hash1], %[tmp2].4s\n"
"sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp2].4s\n"
"mov %[tmp_hash].16b, %[cur_hash0].16b\n"
"sha256h %q[cur_hash0], %q[cur_hash1], %[tmp3].4s\n"
"sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp3].4s\n"
: [data0]"=w"(data0), [data1]"=w"(data1), [data2]"=w"(data2), [data3]"=w"(data3),
[tmp0]"=w"(tmp0), [tmp1]"=w"(tmp1), [tmp2]"=w"(tmp2), [tmp3]"=w"(tmp3),
[round_constant0]"=w"(round_constant0), [round_constant1]"=w"(round_constant1),
[cur_hash0]"+w"(cur_hash0), [cur_hash1]"+w"(cur_hash1),
[prev_hash0]"+w"(prev_hash0), [prev_hash1]"+w"(prev_hash1),
[tmp_hash]"=w"(tmp_hash), [data]"+r"(data)
: [round_constants]"r"(RoundConstants)
:
);
} while (--block_count != 0);
/* Add hashes together, and store. */
cur_hash0 = vaddq_u32(prev_hash0, cur_hash0);
cur_hash1 = vaddq_u32(prev_hash1, cur_hash1);
vst1q_u32(m_intermediate_hash + 0, cur_hash0);
vst1q_u32(m_intermediate_hash + 4, cur_hash1);
}
2020-02-24 01:34:30 +00:00
void Sha256Impl::ProcessLastBlock() {
/* Setup the final block. */
constexpr const auto BlockSizeWithoutSizeField = BlockSize - sizeof(u64);
/* Increment our bits consumed. */
m_bits_consumed += BITSIZEOF(u8) * m_buffered_bytes;
/* Add 0x80 terminator. */
m_buffer[m_buffered_bytes++] = 0x80;
/* If we can process the size field directly, do so, otherwise set up to process it. */
if (m_buffered_bytes <= BlockSizeWithoutSizeField) {
/* Clear up to size field. */
std::memset(m_buffer + m_buffered_bytes, 0, BlockSizeWithoutSizeField - m_buffered_bytes);
} else {
/* Consume full block */
std::memset(m_buffer + m_buffered_bytes, 0, BlockSize - m_buffered_bytes);
this->ProcessBlock(m_buffer);
/* Clear up to size field. */
std::memset(m_buffer, 0, BlockSizeWithoutSizeField);
}
/* Store the size field. */
util::StoreBigEndian<u64>(reinterpret_cast<u64 *>(m_buffer + BlockSizeWithoutSizeField), m_bits_consumed);
/* Process the final block. */
this->ProcessBlock(m_buffer);
}
2020-02-24 01:34:30 +00:00
}
#endif