1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-11-05 19:51:45 +00:00

emummc: implement SD partition mode; clean up and rename emunand code

This commit is contained in:
hexkyz 2019-06-09 19:33:44 +01:00
parent 4c4f037361
commit 0986b48a55
8 changed files with 274 additions and 136 deletions

View file

@ -4,9 +4,9 @@ stage2_path = atmosphere/fusee-secondary.bin
stage2_addr = 0xF0000000 stage2_addr = 0xF0000000
stage2_entrypoint = 0xF0000000 stage2_entrypoint = 0xF0000000
[emunand] [emummc]
emunand_enabled = 0 emummc_enabled = 0
emunand_path = atmosphere/emunand emummc_path = atmosphere/emummc
[exosphere] [exosphere]
; Note: Disabling debugmode will cause parts of ams.tma to not work, in the future. ; Note: Disabling debugmode will cause parts of ams.tma to not work, in the future.

View file

@ -88,27 +88,33 @@ int emu_device_partition_read_data(device_partition_t *devpart, void *dst, uint6
} }
} }
/* Handle data in multiple parts, if necessary. */ /* Prepare the right file path if using file mode. */
if (num_parts > 0) { if (devpart->emu_use_file && (origin_path != NULL)) {
int target_part = 0; /* Handle data in multiple parts, if necessary. */
uint64_t data_offset = sector * devpart->sector_size; if (num_parts > 0) {
int target_part = 0;
if (data_offset >= part_limit) { uint64_t data_offset = sector * devpart->sector_size;
uint64_t data_offset_aligned = (data_offset + (part_limit - 1)) & ~(part_limit - 1);
target_part = (data_offset_aligned == data_offset) ? (data_offset / part_limit) : (data_offset_aligned / part_limit) - 1;
target_sector = (data_offset - (target_part * part_limit)) / devpart->sector_size;
/* Target part is invalid. */ if (data_offset >= part_limit) {
if (target_part > num_parts) { uint64_t data_offset_aligned = (data_offset + (part_limit - 1)) & ~(part_limit - 1);
return -1; target_part = (data_offset_aligned == data_offset) ? (data_offset / part_limit) : (data_offset_aligned / part_limit) - 1;
target_sector = (data_offset - (target_part * part_limit)) / devpart->sector_size;
/* Target part is invalid. */
if (target_part > num_parts) {
return -1;
}
} }
/* Treat the path as a folder with each part inside. */
snprintf(target_path, sizeof(target_path) - 1, "%s/%02d", origin_path, target_part);
} else {
target_sector = sector;
strcpy(target_path, origin_path);
} }
/* Treat the path as a folder with each part inside. */ /* Update the target file path. */
snprintf(target_path, sizeof(target_path) - 1, "%s/%02d", origin_path, target_part); devpart->emu_file_path = target_path;
} else {
target_sector = sector;
strcpy(target_path, origin_path);
} }
/* Read the partition data. */ /* Read the partition data. */
@ -116,11 +122,8 @@ int emu_device_partition_read_data(device_partition_t *devpart, void *dst, uint6
for (uint64_t i = 0; i < num_sectors; i += devpart->crypto_work_buffer_num_sectors) { for (uint64_t i = 0; i < num_sectors; i += devpart->crypto_work_buffer_num_sectors) {
uint64_t n = (i + devpart->crypto_work_buffer_num_sectors > num_sectors) ? (num_sectors - i) : devpart->crypto_work_buffer_num_sectors; uint64_t n = (i + devpart->crypto_work_buffer_num_sectors > num_sectors) ? (num_sectors - i) : devpart->crypto_work_buffer_num_sectors;
/* Read partition data using our backing file. */ /* Read partition data. */
FILE *origin = fopen(target_path, "rb"); rc = devpart->reader(devpart, devpart->crypto_work_buffer, target_sector + i, n);
fseek(origin, (target_sector + i) * devpart->sector_size, SEEK_CUR);
rc = (fread(dst, devpart->sector_size, n, origin) > 0) ? 0 : -1;
fclose(origin);
if (rc != 0) { if (rc != 0) {
return rc; return rc;
@ -137,11 +140,8 @@ int emu_device_partition_read_data(device_partition_t *devpart, void *dst, uint6
memcpy(dst + (size_t)(devpart->sector_size * i), devpart->crypto_work_buffer, (size_t)(devpart->sector_size * n)); memcpy(dst + (size_t)(devpart->sector_size * i), devpart->crypto_work_buffer, (size_t)(devpart->sector_size * n));
} }
} else { } else {
/* Read partition data using our backing file. */ /* Read partition data. */
FILE *origin = fopen(target_path, "rb"); rc = devpart->reader(devpart, dst, target_sector, num_sectors);
fseek(origin, target_sector * devpart->sector_size, SEEK_CUR);
rc = (fread(dst, devpart->sector_size, num_sectors, origin) > 0) ? 0 : -1;
fclose(origin);
} }
return rc; return rc;
@ -161,27 +161,33 @@ int emu_device_partition_write_data(device_partition_t *devpart, const void *src
} }
} }
/* Handle data in multiple parts, if necessary. */ /* Prepare the right file path if using file mode. */
if (num_parts > 0) { if (devpart->emu_use_file && (origin_path != NULL)) {
int target_part = 0; /* Handle data in multiple parts, if necessary. */
uint64_t data_offset = sector * devpart->sector_size; if (num_parts > 0) {
int target_part = 0;
if (data_offset >= part_limit) { uint64_t data_offset = sector * devpart->sector_size;
uint64_t data_offset_aligned = (data_offset + (part_limit - 1)) & ~(part_limit - 1);
target_part = (data_offset_aligned == data_offset) ? (data_offset / part_limit) : (data_offset_aligned / part_limit) - 1;
target_sector = (data_offset - (target_part * part_limit)) / devpart->sector_size;
/* Target part is invalid. */ if (data_offset >= part_limit) {
if (target_part > num_parts) { uint64_t data_offset_aligned = (data_offset + (part_limit - 1)) & ~(part_limit - 1);
return -1; target_part = (data_offset_aligned == data_offset) ? (data_offset / part_limit) : (data_offset_aligned / part_limit) - 1;
target_sector = (data_offset - (target_part * part_limit)) / devpart->sector_size;
/* Target part is invalid. */
if (target_part > num_parts) {
return -1;
}
} }
/* Treat the path as a folder with each part inside. */
snprintf(target_path, sizeof(target_path) - 1, "%s/%02d", origin_path, target_part);
} else {
target_sector = sector;
strcpy(target_path, origin_path);
} }
/* Treat the path as a folder with each part inside. */ /* Update the target file path. */
snprintf(target_path, sizeof(target_path) - 1, "%s/%02d", origin_path, target_part); devpart->emu_file_path = target_path;
} else {
target_sector = sector;
strcpy(target_path, origin_path);
} }
/* Write the partition data. */ /* Write the partition data. */
@ -199,22 +205,16 @@ int emu_device_partition_write_data(device_partition_t *devpart, const void *src
return rc; return rc;
} }
/* Write partition data using our backing file. */ /* Write partition data. */
FILE *origin = fopen(target_path, "wb"); rc = devpart->writer(devpart, devpart->crypto_work_buffer, target_sector + i, n);
fseek(origin, (target_sector + i) * devpart->sector_size, SEEK_CUR);
rc = (fwrite(src, devpart->sector_size, n, origin) > 0) ? 0 : -1;
fclose(origin);
if (rc != 0) { if (rc != 0) {
return rc; return rc;
} }
} }
} else { } else {
/* Write partition data using our backing file. */ /* Write partition data. */
FILE *origin = fopen(target_path, "wb"); rc = devpart->writer(devpart, src, sector, num_sectors);
fseek(origin, sector * devpart->sector_size, SEEK_CUR);
rc = (fwrite(src, devpart->sector_size, num_sectors, origin) > 0) ? 0 : -1;
fclose(origin);
} }
return rc; return rc;

View file

@ -65,6 +65,9 @@ typedef struct device_partition_t {
uint8_t __attribute__((aligned(16))) keys[DEVPART_KEY_MAX][DEVPART_KEY_MAX_SIZE]; /* Key. */ uint8_t __attribute__((aligned(16))) keys[DEVPART_KEY_MAX][DEVPART_KEY_MAX_SIZE]; /* Key. */
uint8_t __attribute__((aligned(16))) iv[DEVPART_IV_MAX_SIZE]; /* IV. */ uint8_t __attribute__((aligned(16))) iv[DEVPART_IV_MAX_SIZE]; /* IV. */
bool initialized; bool initialized;
char *emu_file_path; /* Emulated device file path. */
bool emu_use_file;
} device_partition_t; } device_partition_t;
int device_partition_read_data(device_partition_t *devpart, void *dst, uint64_t sector, uint64_t num_sectors); int device_partition_read_data(device_partition_t *devpart, void *dst, uint64_t sector, uint64_t num_sectors);

View file

@ -114,7 +114,11 @@ int emudev_mount_device(const char *name, const device_partition_t *devpart, con
strcpy(device->name, name); strcpy(device->name, name);
strcpy(device->root_path, name); strcpy(device->root_path, name);
strcat(device->root_path, ":/"); strcat(device->root_path, ":/");
strcpy(device->origin_path, origin_path);
/* Copy the file path for file mode. */
if (devpart->emu_use_file)
strcpy(device->origin_path, origin_path);
device->num_parts = 0; device->num_parts = 0;
device->part_limit = 0; device->part_limit = 0;

View file

@ -100,17 +100,21 @@ static const uint8_t dev_pkc_modulus[0x100] = {
0xD5, 0x52, 0xDA, 0xEC, 0x41, 0xA4, 0xAD, 0x7B, 0x36, 0x86, 0x18, 0xB4, 0x5B, 0xD1, 0x30, 0xBB 0xD5, 0x52, 0xDA, 0xEC, 0x41, 0xA4, 0xAD, 0x7B, 0x36, 0x86, 0x18, 0xB4, 0x5B, 0xD1, 0x30, 0xBB
}; };
static int emunand_ini_handler(void *user, const char *section, const char *name, const char *value) { static int emummc_ini_handler(void *user, const char *section, const char *name, const char *value) {
emunand_config_t *emunand_cfg = (emunand_config_t *)user; emummc_config_t *emummc_cfg = (emummc_config_t *)user;
if (strcmp(section, "emunand") == 0) { if (strcmp(section, "emummc") == 0) {
if (strcmp(name, EMUNAND_ENABLED_KEY) == 0) { if (strcmp(name, EMUMMC_ENABLED_KEY) == 0) {
int tmp = 0; int tmp = 0;
sscanf(value, "%d", &tmp); sscanf(value, "%d", &tmp);
emunand_cfg->enabled = (tmp != 0); emummc_cfg->enabled = (tmp != 0);
} }
if (strcmp(name, EMUNAND_PATH_KEY) == 0) { if (strcmp(name, EMUMMC_SECTOR_KEY) == 0) {
strncpy(emunand_cfg->path, value, sizeof(emunand_cfg->path) - 1); uint64_t sector = 0;
emunand_cfg->path[sizeof(emunand_cfg->path) - 1] = '\0'; sscanf(value, "%llu", &sector);
emummc_cfg->sector = sector;
} else if (strcmp(name, EMUMMC_PATH_KEY) == 0) {
strncpy(emummc_cfg->path, value, sizeof(emummc_cfg->path) - 1);
emummc_cfg->path[sizeof(emummc_cfg->path) - 1] = '\0';
} else { } else {
return 0; return 0;
} }
@ -204,59 +208,63 @@ static uint32_t nxboot_get_target_firmware(const void *package1loader) {
} }
} }
static bool nxboot_configure_emunand() { static bool nxboot_configure_emummc() {
emunand_config_t emunand_cfg = {.enabled = false, .path = ""}; emummc_config_t emummc_cfg = {.enabled = false, .sector = -1, .path = ""};
/* Load emunand settings from BCT.ini file. */ /* Load emummc settings from BCT.ini file. */
if (ini_parse_string(get_loader_ctx()->bct0, emunand_ini_handler, &emunand_cfg) < 0) { if (ini_parse_string(get_loader_ctx()->bct0, emummc_ini_handler, &emummc_cfg) < 0) {
fatal_error("[NXBOOT] Failed to parse BCT.ini!\n"); fatal_error("[NXBOOT] Failed to parse BCT.ini!\n");
} }
if (emunand_cfg.enabled) { if (emummc_cfg.enabled) {
int num_parts = 0; if (emummc_cfg.sector >= 0) {
uint64_t part_limit = 0; /* Mount emulated NAND from SD card partition. */
char emunand_boot0_path[0x300 + 1] = {0}; if (nxfs_mount_emummc_partition(emummc_cfg.sector) < 0) {
char emunand_boot1_path[0x300 + 1] = {0}; fatal_error("[NXBOOT] Failed to mount EmuMMC from SD card partition!\n");
char emunand_rawnand_path[0x300 + 1] = {0};
/* Check if the supplied path is valid. */
if (!is_valid_folder(emunand_cfg.path)) {
fatal_error("[NXBOOT] Failed to find EmuNAND folder!\n");
}
/* Prepare expected file paths. */
snprintf(emunand_boot0_path, sizeof(emunand_boot0_path) - 1, "sdmc:/%s/%s", emunand_cfg.path, "boot0");
snprintf(emunand_boot1_path, sizeof(emunand_boot1_path) - 1, "sdmc:/%s/%s", emunand_cfg.path, "boot1");
/* Check if boot0 and boot1 image files are present. */
if (!is_valid_file(emunand_boot0_path) || !is_valid_file(emunand_boot1_path)) {
fatal_error("[NXBOOT] Failed to find EmuNAND boot0/boot1 image files!\n");
}
/* Find raw image files (single or multi part). */
for (int i = 0; i < 64; i++) {
snprintf(emunand_rawnand_path, sizeof(emunand_rawnand_path) - 1, "sdmc:/%s/%02d", emunand_cfg.path, i);
if (is_valid_file(emunand_rawnand_path)) {
if (i == 0) {
/* The size of the first file should tell us the part limit. */
part_limit = get_file_size(emunand_rawnand_path);
}
num_parts++;
} }
} } else if (is_valid_folder(emummc_cfg.path)) {
int num_parts = 0;
/* Check if at least one raw image file is present. */ uint64_t part_limit = 0;
if ((num_parts == 0) || (part_limit == 0)) { char emummc_boot0_path[0x300 + 1] = {0};
fatal_error("[NXBOOT] Failed to find EmuNAND raw image files!\n"); char emummc_boot1_path[0x300 + 1] = {0};
} char emummc_rawnand_path[0x300 + 1] = {0};
/* Mount emulated NAND. */ /* Prepare expected file paths. */
if (nxfs_mount_emu_emmc(emunand_cfg.path, num_parts, part_limit) < 0) { snprintf(emummc_boot0_path, sizeof(emummc_boot0_path) - 1, "sdmc:/%s/%s", emummc_cfg.path, "boot0");
fatal_error("[NXBOOT] Failed to mount emulated eMMC!\n"); snprintf(emummc_boot1_path, sizeof(emummc_boot1_path) - 1, "sdmc:/%s/%s", emummc_cfg.path, "boot1");
/* Check if boot0 and boot1 image files are present. */
if (!is_valid_file(emummc_boot0_path) || !is_valid_file(emummc_boot1_path)) {
fatal_error("[NXBOOT] Failed to find EmuMMC boot0/boot1 image files!\n");
}
/* Find raw image files (single or multi part). */
for (int i = 0; i < 64; i++) {
snprintf(emummc_rawnand_path, sizeof(emummc_rawnand_path) - 1, "sdmc:/%s/%02d", emummc_cfg.path, i);
if (is_valid_file(emummc_rawnand_path)) {
if (i == 0) {
/* The size of the first file should tell us the part limit. */
part_limit = get_file_size(emummc_rawnand_path);
}
num_parts++;
}
}
/* Check if at least one raw image file is present. */
if ((num_parts == 0) || (part_limit == 0)) {
fatal_error("[NXBOOT] Failed to find EmuMMC raw image files!\n");
}
/* Mount emulated NAND from files. */
if (nxfs_mount_emummc_file(emummc_cfg.path, num_parts, part_limit) < 0) {
fatal_error("[NXBOOT] Failed to mount EmuMMC from files!\n");
}
} else {
fatal_error("[NXBOOT] Invalid EmuMMC setting!\n");
} }
} }
return emunand_cfg.enabled; return emummc_cfg.enabled;
} }
static void nxboot_configure_exosphere(uint32_t target_firmware, unsigned int keygen_type) { static void nxboot_configure_exosphere(uint32_t target_firmware, unsigned int keygen_type) {
@ -417,8 +425,8 @@ uint32_t nxboot_main(void) {
FILE *boot0, *pk2file; FILE *boot0, *pk2file;
void *exosphere_memaddr; void *exosphere_memaddr;
/* Configure emunand or mount the real NAND. */ /* Configure emummc or mount the real NAND. */
if (!nxboot_configure_emunand()) { if (!nxboot_configure_emummc()) {
if (nxfs_mount_emmc() < 0) { if (nxfs_mount_emmc() < 0) {
fatal_error("[NXBOOT] Failed to mount eMMC!\n"); fatal_error("[NXBOOT] Failed to mount eMMC!\n");
} }

View file

@ -19,13 +19,15 @@
#include "utils.h" #include "utils.h"
#define EMUNAND_ENABLED_KEY "emunand_enabled" #define EMUMMC_ENABLED_KEY "emummc_enabled"
#define EMUNAND_PATH_KEY "emunand_path" #define EMUMMC_SECTOR_KEY "emummc_sector"
#define EMUMMC_PATH_KEY "emummc_path"
typedef struct { typedef struct {
bool enabled; bool enabled;
uint64_t sector;
char path[0x100]; char path[0x100];
} emunand_config_t; } emummc_config_t;
#define MAILBOX_NX_BOOTLOADER_BASE_100_620 0x40002E00 #define MAILBOX_NX_BOOTLOADER_BASE_100_620 0x40002E00
#define MAILBOX_NX_BOOTLOADER_BASE_700 0x40000000 #define MAILBOX_NX_BOOTLOADER_BASE_700 0x40000000

View file

@ -180,6 +180,36 @@ static void emummc_partition_finalize(device_partition_t *devpart) {
} }
} }
static int emummc_partition_read(device_partition_t *devpart, void *dst, uint64_t sector, uint64_t num_sectors) {
if (devpart->emu_use_file) {
/* Read partition data using our backing file. */
int rc = 0;
FILE *emummc_file = fopen(devpart->emu_file_path, "rb");
fseek(emummc_file, sector * devpart->sector_size, SEEK_CUR);
rc = (fread(dst, devpart->sector_size, num_sectors, emummc_file) > 0) ? 0 : -1;
fclose(emummc_file);
return rc;
} else {
/* Read partition data directly from the SD card device. */
return sdmmc_device_read(&g_sd_device, (uint32_t)(devpart->start_sector + sector), (uint32_t)num_sectors, dst) ? 0 : EIO;
}
}
static int emummc_partition_write(device_partition_t *devpart, const void *src, uint64_t sector, uint64_t num_sectors) {
if (devpart->emu_use_file) {
/* Write partition data using our backing file. */
int rc = 0;
FILE *emummc_file = fopen(devpart->emu_file_path, "wb");
fseek(emummc_file, sector * devpart->sector_size, SEEK_CUR);
rc = (fwrite(src, devpart->sector_size, num_sectors, emummc_file) > 0) ? 0 : -1;
fclose(emummc_file);
return rc;
} else {
/* Write partition data directly to the SD card device. */
return sdmmc_device_write(&g_sd_device, (uint32_t)(devpart->start_sector + sector), (uint32_t)num_sectors, (void *)src) ? 0 : EIO;
}
}
static int nxfs_bis_crypto_decrypt(device_partition_t *devpart, uint64_t sector, uint64_t num_sectors) { static int nxfs_bis_crypto_decrypt(device_partition_t *devpart, uint64_t sector, uint64_t num_sectors) {
unsigned int keyslot_a = 4; /* These keyslots are never used by exosphere, and should be safe. */ unsigned int keyslot_a = 4; /* These keyslots are never used by exosphere, and should be safe. */
unsigned int keyslot_b = 5; unsigned int keyslot_b = 5;
@ -232,8 +262,8 @@ static const device_partition_t g_emummc_devpart_template = {
.sector_size = 512, .sector_size = 512,
.initializer = emummc_partition_initialize, .initializer = emummc_partition_initialize,
.finalizer = emummc_partition_finalize, .finalizer = emummc_partition_finalize,
.reader = NULL, .reader = emummc_partition_read,
.writer = NULL, .writer = emummc_partition_write,
}; };
static int nxfs_mount_partition_gpt_callback(const efi_entry_t *entry, void *param, size_t entry_offset, FILE *disk) { static int nxfs_mount_partition_gpt_callback(const efi_entry_t *entry, void *param, size_t entry_offset, FILE *disk) {
@ -517,14 +547,101 @@ int nxfs_mount_emmc() {
return rc; return rc;
} }
int nxfs_mount_emu_emmc(const char *emunand_path, int num_parts, uint64_t part_limit) { int nxfs_mount_emummc_partition(uint64_t emummc_start_sector) {
device_partition_t model;
int rc;
FILE *rawnand;
/* Setup an emulation template for boot0. */
model = g_emummc_devpart_template;
model.start_sector = emummc_start_sector;
model.num_sectors = 0x184000 / model.sector_size;
model.emu_use_file = false;
/* Mount emulated boot0 device. */
rc = emudev_mount_device("boot0", &model, NULL);
/* Failed to mount boot0 device. */
if (rc == -1) {
return -1;
}
/* Register emulated boot0 device. */
rc = emudev_register_device("boot0");
/* Failed to register boot0 device. */
if (rc == -1) {
return -1;
}
/* Setup an emulation template for boot1. */
model = g_emummc_devpart_template;
model.start_sector = emummc_start_sector;
model.num_sectors = 0x80000 / model.sector_size;
model.emu_use_file = false;
/* Mount emulated boot1 device. */
rc = emudev_mount_device("boot1", &model, NULL);
/* Failed to mount boot1. */
if (rc == -1) {
return -1;
}
/* Don't register emulated boot1 for now. */
/* Setup a template for raw NAND. */
model = g_emummc_devpart_template;
model.start_sector = emummc_start_sector;
model.num_sectors = (256ull << 30) / model.sector_size;
model.emu_use_file = false;
/* Mount emulated raw NAND device. */
rc = emudev_mount_device("rawnand", &model, NULL);
/* Failed to mount raw NAND. */
if (rc == -1) {
return -1;
}
/* Register emulated raw NAND device. */
rc = emudev_register_device("rawnand");
/* Failed to register raw NAND device. */
if (rc == -1) {
return -1;
}
/* Open emulated raw NAND device. */
rawnand = fopen("rawnand:/", "rb");
/* Failed to open emulated raw NAND device. */
if (rawnand == NULL) {
return -1;
}
/* Iterate the GPT and mount each emulated raw NAND partition. */
rc = gpt_iterate_through_emu_entries(rawnand, model.sector_size, nxfs_mount_emu_partition_gpt_callback, &model, NULL, false, 0, 0);
/* Close emulated raw NAND device. */
fclose(rawnand);
/* All emulated devices are ready. */
if (rc == 0) {
g_emudev_ready = true;
}
return rc;
}
int nxfs_mount_emummc_file(const char *emummc_path, int num_parts, uint64_t part_limit) {
device_partition_t model; device_partition_t model;
int rc; int rc;
FILE *rawnand; FILE *rawnand;
bool is_exfat; bool is_exfat;
char emunand_boot0_path[0x300 + 1] = {0}; char emummc_boot0_path[0x300 + 1] = {0};
char emunand_boot1_path[0x300 + 1] = {0}; char emummc_boot1_path[0x300 + 1] = {0};
char emunand_rawnand_path[0x300 + 1] = {0}; char emummc_rawnand_path[0x300 + 1] = {0};
/* Check if the SD card is EXFAT formatted. */ /* Check if the SD card is EXFAT formatted. */
rc = fsdev_is_exfat("sdmc"); rc = fsdev_is_exfat("sdmc");
@ -538,7 +655,7 @@ int nxfs_mount_emu_emmc(const char *emunand_path, int num_parts, uint64_t part_l
is_exfat = (rc == 1); is_exfat = (rc == 1);
/* We want a folder with the archive bit set. */ /* We want a folder with the archive bit set. */
rc = fsdev_get_attr(emunand_path); rc = fsdev_get_attr(emummc_path);
/* Failed to get file DOS attributes. */ /* Failed to get file DOS attributes. */
if (rc == -1) { if (rc == -1) {
@ -553,7 +670,7 @@ int nxfs_mount_emu_emmc(const char *emunand_path, int num_parts, uint64_t part_l
/* Check if the archive bit is not set. */ /* Check if the archive bit is not set. */
if (!(rc & AM_ARC)) { if (!(rc & AM_ARC)) {
/* Try to set the archive bit. */ /* Try to set the archive bit. */
rc = fsdev_set_attr(emunand_path, AM_ARC, AM_ARC); rc = fsdev_set_attr(emummc_path, AM_ARC, AM_ARC);
/* Failed to set file DOS attributes. */ /* Failed to set file DOS attributes. */
if (rc == -1) { if (rc == -1) {
@ -565,12 +682,13 @@ int nxfs_mount_emu_emmc(const char *emunand_path, int num_parts, uint64_t part_l
model = g_emummc_devpart_template; model = g_emummc_devpart_template;
model.start_sector = 0; model.start_sector = 0;
model.num_sectors = 0x184000 / model.sector_size; model.num_sectors = 0x184000 / model.sector_size;
model.emu_use_file = true;
/* Prepare boot0 file path. */ /* Prepare boot0 file path. */
snprintf(emunand_boot0_path, sizeof(emunand_boot0_path) - 1, "sdmc:/%s/%s", emunand_path, "boot0"); snprintf(emummc_boot0_path, sizeof(emummc_boot0_path) - 1, "sdmc:/%s/%s", emummc_path, "boot0");
/* Mount emulated boot0 device. */ /* Mount emulated boot0 device. */
rc = emudev_mount_device("boot0", &model, emunand_boot0_path); rc = emudev_mount_device("boot0", &model, emummc_boot0_path);
/* Failed to mount boot0 device. */ /* Failed to mount boot0 device. */
if (rc == -1) { if (rc == -1) {
@ -589,12 +707,13 @@ int nxfs_mount_emu_emmc(const char *emunand_path, int num_parts, uint64_t part_l
model = g_emummc_devpart_template; model = g_emummc_devpart_template;
model.start_sector = 0; model.start_sector = 0;
model.num_sectors = 0x80000 / model.sector_size; model.num_sectors = 0x80000 / model.sector_size;
model.emu_use_file = true;
/* Prepare boot1 file path. */ /* Prepare boot1 file path. */
snprintf(emunand_boot1_path, sizeof(emunand_boot1_path) - 1, "sdmc:/%s/%s", emunand_path, "boot1"); snprintf(emummc_boot1_path, sizeof(emummc_boot1_path) - 1, "sdmc:/%s/%s", emummc_path, "boot1");
/* Mount emulated boot1 device. */ /* Mount emulated boot1 device. */
rc = emudev_mount_device("boot1", &model, emunand_boot1_path); rc = emudev_mount_device("boot1", &model, emummc_boot1_path);
/* Failed to mount boot1. */ /* Failed to mount boot1. */
if (rc == -1) { if (rc == -1) {
@ -607,15 +726,16 @@ int nxfs_mount_emu_emmc(const char *emunand_path, int num_parts, uint64_t part_l
model = g_emummc_devpart_template; model = g_emummc_devpart_template;
model.start_sector = 0; model.start_sector = 0;
model.num_sectors = (256ull << 30) / model.sector_size; model.num_sectors = (256ull << 30) / model.sector_size;
model.emu_use_file = true;
/* Prepare single raw NAND file path. */ /* Prepare single raw NAND file path. */
snprintf(emunand_rawnand_path, sizeof(emunand_rawnand_path) - 1, "sdmc:/%s/%02d", emunand_path, 0); snprintf(emummc_rawnand_path, sizeof(emummc_rawnand_path) - 1, "sdmc:/%s/%02d", emummc_path, 0);
/* Mount emulated raw NAND device from single or multiple parts. */ /* Mount emulated raw NAND device from single or multiple parts. */
if (!is_exfat) { if (!is_exfat) {
rc = emudev_mount_device_multipart("rawnand", &model, emunand_path, num_parts, part_limit); rc = emudev_mount_device_multipart("rawnand", &model, emummc_path, num_parts, part_limit);
} else { } else {
rc = emudev_mount_device("rawnand", &model, emunand_rawnand_path); rc = emudev_mount_device("rawnand", &model, emummc_rawnand_path);
} }
/* Failed to mount raw NAND. */ /* Failed to mount raw NAND. */
@ -641,9 +761,9 @@ int nxfs_mount_emu_emmc(const char *emunand_path, int num_parts, uint64_t part_l
/* Iterate the GPT and mount each emulated raw NAND partition. */ /* Iterate the GPT and mount each emulated raw NAND partition. */
if (!is_exfat) { if (!is_exfat) {
rc = gpt_iterate_through_emu_entries(rawnand, model.sector_size, nxfs_mount_emu_partition_gpt_callback, &model, emunand_path, true, num_parts, part_limit); rc = gpt_iterate_through_emu_entries(rawnand, model.sector_size, nxfs_mount_emu_partition_gpt_callback, &model, emummc_path, true, num_parts, part_limit);
} else { } else {
rc = gpt_iterate_through_emu_entries(rawnand, model.sector_size, nxfs_mount_emu_partition_gpt_callback, &model, emunand_rawnand_path, false, num_parts, part_limit); rc = gpt_iterate_through_emu_entries(rawnand, model.sector_size, nxfs_mount_emu_partition_gpt_callback, &model, emummc_rawnand_path, false, 0, 0);
} }
/* Close emulated raw NAND device. */ /* Close emulated raw NAND device. */
@ -681,7 +801,7 @@ int nxfs_unmount_emmc() {
return rc; return rc;
} }
int nxfs_unmount_emu_emmc() { int nxfs_unmount_emummc() {
int rc = 0; int rc = 0;
/* Unmount all emulated devices. */ /* Unmount all emulated devices. */
@ -708,5 +828,5 @@ int nxfs_init() {
} }
int nxfs_end() { int nxfs_end() {
return ((nxfs_unmount_sd() || nxfs_unmount_emmc() || nxfs_unmount_emu_emmc()) ? -1 : 0); return ((nxfs_unmount_sd() || nxfs_unmount_emmc() || nxfs_unmount_emummc()) ? -1 : 0);
} }

View file

@ -26,9 +26,10 @@ int nxfs_end();
int nxfs_mount_sd(); int nxfs_mount_sd();
int nxfs_mount_emmc(); int nxfs_mount_emmc();
int nxfs_mount_emu_emmc(const char *emunand_path, int num_parts, uint64_t part_limit); int nxfs_mount_emummc_partition(uint64_t emummc_start_sector);
int nxfs_mount_emummc_file(const char *emummc_path, int num_parts, uint64_t part_limit);
int nxfs_unmount_sd(); int nxfs_unmount_sd();
int nxfs_unmount_emmc(); int nxfs_unmount_emmc();
int nxfs_unmount_emu_emmc(); int nxfs_unmount_emummc();
#endif #endif