1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-12-23 10:52:13 +00:00

util: implement red black trees as templates over macros

This commit is contained in:
Michael Scire 2021-04-20 16:56:33 -07:00
parent 0a11d341b7
commit 57b6c71c1c
6 changed files with 787 additions and 1040 deletions

View file

@ -136,7 +136,7 @@ namespace ams::kern {
static_assert(sizeof(SyncObjectBuffer::m_sync_objects) == sizeof(SyncObjectBuffer::m_handles)); static_assert(sizeof(SyncObjectBuffer::m_sync_objects) == sizeof(SyncObjectBuffer::m_handles));
struct ConditionVariableComparator { struct ConditionVariableComparator {
struct LightCompareType { struct RedBlackKeyType {
uintptr_t m_cv_key; uintptr_t m_cv_key;
s32 m_priority; s32 m_priority;
@ -149,7 +149,7 @@ namespace ams::kern {
} }
}; };
template<typename T> requires (std::same_as<T, KThread> || std::same_as<T, LightCompareType>) template<typename T> requires (std::same_as<T, KThread> || std::same_as<T, RedBlackKeyType>)
static constexpr ALWAYS_INLINE int Compare(const T &lhs, const KThread &rhs) { static constexpr ALWAYS_INLINE int Compare(const T &lhs, const KThread &rhs) {
const uintptr_t l_key = lhs.GetConditionVariableKey(); const uintptr_t l_key = lhs.GetConditionVariableKey();
const uintptr_t r_key = rhs.GetConditionVariableKey(); const uintptr_t r_key = rhs.GetConditionVariableKey();
@ -165,8 +165,8 @@ namespace ams::kern {
} }
} }
}; };
static_assert(ams::util::HasLightCompareType<ConditionVariableComparator>); static_assert(ams::util::HasRedBlackKeyType<ConditionVariableComparator>);
static_assert(std::same_as<ams::util::LightCompareType<ConditionVariableComparator, void>, ConditionVariableComparator::LightCompareType>); static_assert(std::same_as<ams::util::RedBlackKeyType<ConditionVariableComparator, void>, ConditionVariableComparator::RedBlackKeyType>);
private: private:
static inline std::atomic<u64> s_next_thread_id = 0; static inline std::atomic<u64> s_next_thread_id = 0;
private: private:

View file

@ -51,7 +51,7 @@ namespace ams::kern {
{ {
KScopedSchedulerLock sl; KScopedSchedulerLock sl;
auto it = m_tree.nfind_light({ addr, -1 }); auto it = m_tree.nfind_key({ addr, -1 });
while ((it != m_tree.end()) && (count <= 0 || num_waiters < count) && (it->GetAddressArbiterKey() == addr)) { while ((it != m_tree.end()) && (count <= 0 || num_waiters < count) && (it->GetAddressArbiterKey() == addr)) {
KThread *target_thread = std::addressof(*it); KThread *target_thread = std::addressof(*it);
target_thread->SetSyncedObject(nullptr, ResultSuccess()); target_thread->SetSyncedObject(nullptr, ResultSuccess());
@ -78,7 +78,7 @@ namespace ams::kern {
R_UNLESS(UpdateIfEqual(std::addressof(user_value), addr, value, value + 1), svc::ResultInvalidCurrentMemory()); R_UNLESS(UpdateIfEqual(std::addressof(user_value), addr, value, value + 1), svc::ResultInvalidCurrentMemory());
R_UNLESS(user_value == value, svc::ResultInvalidState()); R_UNLESS(user_value == value, svc::ResultInvalidState());
auto it = m_tree.nfind_light({ addr, -1 }); auto it = m_tree.nfind_key({ addr, -1 });
while ((it != m_tree.end()) && (count <= 0 || num_waiters < count) && (it->GetAddressArbiterKey() == addr)) { while ((it != m_tree.end()) && (count <= 0 || num_waiters < count) && (it->GetAddressArbiterKey() == addr)) {
KThread *target_thread = std::addressof(*it); KThread *target_thread = std::addressof(*it);
target_thread->SetSyncedObject(nullptr, ResultSuccess()); target_thread->SetSyncedObject(nullptr, ResultSuccess());
@ -100,7 +100,7 @@ namespace ams::kern {
{ {
KScopedSchedulerLock sl; KScopedSchedulerLock sl;
auto it = m_tree.nfind_light({ addr, -1 }); auto it = m_tree.nfind_key({ addr, -1 });
/* Determine the updated value. */ /* Determine the updated value. */
s32 new_value; s32 new_value;
if (GetTargetFirmware() >= TargetFirmware_7_0_0) { if (GetTargetFirmware() >= TargetFirmware_7_0_0) {

View file

@ -168,7 +168,7 @@ namespace ams::kern {
{ {
KScopedSchedulerLock sl; KScopedSchedulerLock sl;
auto it = m_tree.nfind_light({ cv_key, -1 }); auto it = m_tree.nfind_key({ cv_key, -1 });
while ((it != m_tree.end()) && (count <= 0 || num_waiters < count) && (it->GetConditionVariableKey() == cv_key)) { while ((it != m_tree.end()) && (count <= 0 || num_waiters < count) && (it->GetConditionVariableKey() == cv_key)) {
KThread *target_thread = std::addressof(*it); KThread *target_thread = std::addressof(*it);

View file

@ -1,877 +0,0 @@
/* $NetBSD: tree.h,v 1.8 2004/03/28 19:38:30 provos Exp $ */
/* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ */
/* $FreeBSD$ */
/*-
* Copyright 2002 Niels Provos <provos@citi.umich.edu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _SYS_TREE_H_
#define _SYS_TREE_H_
/* FreeBSD <sys/cdefs.h> has a lot of defines we don't really want. */
/* tree.h only actually uses __inline and __unused, so we'll just define those. */
/* #include <sys/cdefs.h> */
#ifndef __inline
#define __inline inline
#endif
#ifndef __unused
#define __unused __attribute__((__unused__))
#endif
/*
* This file defines data structures for different types of trees:
* splay trees and red-black trees.
*
* A splay tree is a self-organizing data structure. Every operation
* on the tree causes a splay to happen. The splay moves the requested
* node to the root of the tree and partly rebalances it.
*
* This has the benefit that request locality causes faster lookups as
* the requested nodes move to the top of the tree. On the other hand,
* every lookup causes memory writes.
*
* The Balance Theorem bounds the total access time for m operations
* and n inserts on an initially empty tree as O((m + n)lg n). The
* amortized cost for a sequence of m accesses to a splay tree is O(lg n);
*
* A red-black tree is a binary search tree with the node color as an
* extra attribute. It fulfills a set of conditions:
* - every search path from the root to a leaf consists of the
* same number of black nodes,
* - each red node (except for the root) has a black parent,
* - each leaf node is black.
*
* Every operation on a red-black tree is bounded as O(lg n).
* The maximum height of a red-black tree is 2lg (n+1).
*/
#define SPLAY_HEAD(name, type) \
struct name { \
struct type *sph_root; /* root of the tree */ \
}
#define SPLAY_INITIALIZER(root) \
{ NULL }
#define SPLAY_INIT(root) do { \
(root)->sph_root = NULL; \
} while (/*CONSTCOND*/ 0)
#define SPLAY_ENTRY(type) \
struct { \
struct type *spe_left; /* left element */ \
struct type *spe_right; /* right element */ \
}
#define SPLAY_LEFT(elm, field) (elm)->field.spe_left
#define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
#define SPLAY_ROOT(head) (head)->sph_root
#define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
/* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
#define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \
SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \
SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
(head)->sph_root = tmp; \
} while (/*CONSTCOND*/ 0)
#define SPLAY_ROTATE_LEFT(head, tmp, field) do { \
SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \
SPLAY_LEFT(tmp, field) = (head)->sph_root; \
(head)->sph_root = tmp; \
} while (/*CONSTCOND*/ 0)
#define SPLAY_LINKLEFT(head, tmp, field) do { \
SPLAY_LEFT(tmp, field) = (head)->sph_root; \
tmp = (head)->sph_root; \
(head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
} while (/*CONSTCOND*/ 0)
#define SPLAY_LINKRIGHT(head, tmp, field) do { \
SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
tmp = (head)->sph_root; \
(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
} while (/*CONSTCOND*/ 0)
#define SPLAY_ASSEMBLE(head, node, left, right, field) do { \
SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
} while (/*CONSTCOND*/ 0)
/* Generates prototypes and inline functions */
#define SPLAY_PROTOTYPE(name, type, field, cmp) \
void name##_SPLAY(struct name *, struct type *); \
void name##_SPLAY_MINMAX(struct name *, int); \
struct type *name##_SPLAY_INSERT(struct name *, struct type *); \
struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \
\
/* Finds the node with the same key as elm */ \
static __inline struct type * \
name##_SPLAY_FIND(struct name *head, struct type *elm) \
{ \
if (SPLAY_EMPTY(head)) \
return(NULL); \
name##_SPLAY(head, elm); \
if ((cmp)(elm, (head)->sph_root) == 0) \
return (head->sph_root); \
return (NULL); \
} \
\
static __inline struct type * \
name##_SPLAY_NEXT(struct name *head, struct type *elm) \
{ \
name##_SPLAY(head, elm); \
if (SPLAY_RIGHT(elm, field) != NULL) { \
elm = SPLAY_RIGHT(elm, field); \
while (SPLAY_LEFT(elm, field) != NULL) { \
elm = SPLAY_LEFT(elm, field); \
} \
} else \
elm = NULL; \
return (elm); \
} \
\
static __inline struct type * \
name##_SPLAY_MIN_MAX(struct name *head, int val) \
{ \
name##_SPLAY_MINMAX(head, val); \
return (SPLAY_ROOT(head)); \
}
/* Main splay operation.
* Moves node close to the key of elm to top
*/
#define SPLAY_GENERATE(name, type, field, cmp) \
struct type * \
name##_SPLAY_INSERT(struct name *head, struct type *elm) \
{ \
if (SPLAY_EMPTY(head)) { \
SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \
} else { \
int __comp; \
name##_SPLAY(head, elm); \
__comp = (cmp)(elm, (head)->sph_root); \
if(__comp < 0) { \
SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
SPLAY_RIGHT(elm, field) = (head)->sph_root; \
SPLAY_LEFT((head)->sph_root, field) = NULL; \
} else if (__comp > 0) { \
SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
SPLAY_LEFT(elm, field) = (head)->sph_root; \
SPLAY_RIGHT((head)->sph_root, field) = NULL; \
} else \
return ((head)->sph_root); \
} \
(head)->sph_root = (elm); \
return (NULL); \
} \
\
struct type * \
name##_SPLAY_REMOVE(struct name *head, struct type *elm) \
{ \
struct type *__tmp; \
if (SPLAY_EMPTY(head)) \
return (NULL); \
name##_SPLAY(head, elm); \
if ((cmp)(elm, (head)->sph_root) == 0) { \
if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \
(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
} else { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
name##_SPLAY(head, elm); \
SPLAY_RIGHT((head)->sph_root, field) = __tmp; \
} \
return (elm); \
} \
return (NULL); \
} \
\
void \
name##_SPLAY(struct name *head, struct type *elm) \
{ \
struct type __node, *__left, *__right, *__tmp; \
int __comp; \
\
SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
__left = __right = &__node; \
\
while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) { \
if (__comp < 0) { \
__tmp = SPLAY_LEFT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if ((cmp)(elm, __tmp) < 0){ \
SPLAY_ROTATE_RIGHT(head, __tmp, field); \
if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKLEFT(head, __right, field); \
} else if (__comp > 0) { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if ((cmp)(elm, __tmp) > 0){ \
SPLAY_ROTATE_LEFT(head, __tmp, field); \
if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKRIGHT(head, __left, field); \
} \
} \
SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
} \
\
/* Splay with either the minimum or the maximum element \
* Used to find minimum or maximum element in tree. \
*/ \
void name##_SPLAY_MINMAX(struct name *head, int __comp) \
{ \
struct type __node, *__left, *__right, *__tmp; \
\
SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
__left = __right = &__node; \
\
while (1) { \
if (__comp < 0) { \
__tmp = SPLAY_LEFT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if (__comp < 0){ \
SPLAY_ROTATE_RIGHT(head, __tmp, field); \
if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKLEFT(head, __right, field); \
} else if (__comp > 0) { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if (__comp > 0) { \
SPLAY_ROTATE_LEFT(head, __tmp, field); \
if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKRIGHT(head, __left, field); \
} \
} \
SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
}
#define SPLAY_NEGINF -1
#define SPLAY_INF 1
#define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
#define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
#define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
#define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
#define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \
: name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
#define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \
: name##_SPLAY_MIN_MAX(x, SPLAY_INF))
#define SPLAY_FOREACH(x, name, head) \
for ((x) = SPLAY_MIN(name, head); \
(x) != NULL; \
(x) = SPLAY_NEXT(name, head, x))
/* Macros that define a red-black tree */
#define RB_HEAD(name, type) \
struct name { \
struct type *rbh_root; /* root of the tree */ \
}
#define RB_INITIALIZER(root) \
{ NULL }
#define RB_INIT(root) do { \
(root)->rbh_root = NULL; \
} while (/*CONSTCOND*/ 0)
#define RB_BLACK 0
#define RB_RED 1
#define RB_ENTRY(type) \
struct { \
struct type *rbe_left; /* left element */ \
struct type *rbe_right; /* right element */ \
struct type *rbe_parent; /* parent element */ \
int rbe_color; /* node color */ \
}
#define RB_LEFT(elm, field) (elm)->field.rbe_left
#define RB_RIGHT(elm, field) (elm)->field.rbe_right
#define RB_PARENT(elm, field) (elm)->field.rbe_parent
#define RB_COLOR(elm, field) (elm)->field.rbe_color
#define RB_ROOT(head) (head)->rbh_root
#define RB_EMPTY(head) (RB_ROOT(head) == NULL)
#define RB_SET(elm, parent, field) do { \
RB_PARENT(elm, field) = parent; \
RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
RB_COLOR(elm, field) = RB_RED; \
} while (/*CONSTCOND*/ 0)
#define RB_SET_BLACKRED(black, red, field) do { \
RB_COLOR(black, field) = RB_BLACK; \
RB_COLOR(red, field) = RB_RED; \
} while (/*CONSTCOND*/ 0)
#ifndef RB_AUGMENT
#define RB_AUGMENT(x) do {} while (0)
#endif
#define RB_ROTATE_LEFT(head, elm, tmp, field) do { \
(tmp) = RB_RIGHT(elm, field); \
if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field)) != NULL) { \
RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \
} \
RB_AUGMENT(elm); \
if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \
if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
else \
RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
} else \
(head)->rbh_root = (tmp); \
RB_LEFT(tmp, field) = (elm); \
RB_PARENT(elm, field) = (tmp); \
RB_AUGMENT(tmp); \
if ((RB_PARENT(tmp, field))) \
RB_AUGMENT(RB_PARENT(tmp, field)); \
} while (/*CONSTCOND*/ 0)
#define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \
(tmp) = RB_LEFT(elm, field); \
if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field)) != NULL) { \
RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \
} \
RB_AUGMENT(elm); \
if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) { \
if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
else \
RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
} else \
(head)->rbh_root = (tmp); \
RB_RIGHT(tmp, field) = (elm); \
RB_PARENT(elm, field) = (tmp); \
RB_AUGMENT(tmp); \
if ((RB_PARENT(tmp, field))) \
RB_AUGMENT(RB_PARENT(tmp, field)); \
} while (/*CONSTCOND*/ 0)
/* Generates prototypes and inline functions */
#define RB_PROTOTYPE(name, type, field, cmp) \
RB_PROTOTYPE_INTERNAL(name, type, field, cmp,)
#define RB_PROTOTYPE_STATIC(name, type, field, cmp) \
RB_PROTOTYPE_INTERNAL(name, type, field, cmp, __unused static)
#define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr) \
RB_PROTOTYPE_INSERT_COLOR(name, type, attr); \
RB_PROTOTYPE_REMOVE_COLOR(name, type, attr); \
RB_PROTOTYPE_INSERT(name, type, attr); \
RB_PROTOTYPE_REMOVE(name, type, attr); \
RB_PROTOTYPE_FIND(name, type, attr); \
RB_PROTOTYPE_NFIND(name, type, attr); \
RB_PROTOTYPE_FIND_LIGHT(name, type, attr); \
RB_PROTOTYPE_NFIND_LIGHT(name, type, attr); \
RB_PROTOTYPE_NEXT(name, type, attr); \
RB_PROTOTYPE_PREV(name, type, attr); \
RB_PROTOTYPE_MINMAX(name, type, attr);
#define RB_PROTOTYPE_INSERT_COLOR(name, type, attr) \
attr void name##_RB_INSERT_COLOR(struct name *, struct type *)
#define RB_PROTOTYPE_REMOVE_COLOR(name, type, attr) \
attr void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *)
#define RB_PROTOTYPE_REMOVE(name, type, attr) \
attr struct type *name##_RB_REMOVE(struct name *, struct type *)
#define RB_PROTOTYPE_INSERT(name, type, attr) \
attr struct type *name##_RB_INSERT(struct name *, struct type *)
#define RB_PROTOTYPE_FIND(name, type, attr) \
attr struct type *name##_RB_FIND(struct name *, struct type *)
#define RB_PROTOTYPE_NFIND(name, type, attr) \
attr struct type *name##_RB_NFIND(struct name *, struct type *)
#define RB_PROTOTYPE_FIND_LIGHT(name, type, attr) \
attr struct type *name##_RB_FIND_LIGHT(struct name *, const void *)
#define RB_PROTOTYPE_NFIND_LIGHT(name, type, attr) \
attr struct type *name##_RB_NFIND_LIGHT(struct name *, const void *)
#define RB_PROTOTYPE_NEXT(name, type, attr) \
attr struct type *name##_RB_NEXT(struct type *)
#define RB_PROTOTYPE_PREV(name, type, attr) \
attr struct type *name##_RB_PREV(struct type *)
#define RB_PROTOTYPE_MINMAX(name, type, attr) \
attr struct type *name##_RB_MINMAX(struct name *, int)
/* Main rb operation.
* Moves node close to the key of elm to top
*/
#define RB_GENERATE_WITHOUT_COMPARE(name, type, field) \
RB_GENERATE_WITHOUT_COMPARE_INTERNAL(name, type, field,)
#define RB_GENERATE_WITHOUT_COMPARE_STATIC(name, type, field) \
RB_GENERATE_WITHOUT_COMPARE_INTERNAL(name, type, field, __unused static)
#define RB_GENERATE_WITHOUT_COMPARE_INTERNAL(name, type, field, attr) \
RB_GENERATE_REMOVE_COLOR(name, type, field, attr) \
RB_GENERATE_REMOVE(name, type, field, attr) \
RB_GENERATE_NEXT(name, type, field, attr) \
RB_GENERATE_PREV(name, type, field, attr) \
RB_GENERATE_MINMAX(name, type, field, attr)
#define RB_GENERATE_WITH_COMPARE(name, type, field, cmp, lcmp) \
RB_GENERATE_WITH_COMPARE_INTERNAL(name, type, field, cmp, lcmp,)
#define RB_GENERATE_WITH_COMPARE_STATIC(name, type, field, cmp, lcmp) \
RB_GENERATE_WITH_COMPARE_INTERNAL(name, type, field, cmp, lcmp, __unused static)
#define RB_GENERATE_WITH_COMPARE_INTERNAL(name, type, field, cmp, lcmp, attr) \
RB_GENERATE_INSERT_COLOR(name, type, field, attr) \
RB_GENERATE_INSERT(name, type, field, cmp, attr) \
RB_GENERATE_FIND(name, type, field, cmp, attr) \
RB_GENERATE_NFIND(name, type, field, cmp, attr) \
RB_GENERATE_FIND_LIGHT(name, type, field, lcmp, attr) \
RB_GENERATE_NFIND_LIGHT(name, type, field, lcmp, attr)
#define RB_GENERATE_ALL(name, type, field, cmp) \
RB_GENERATE_ALL_INTERNAL(name, type, field, cmp,)
#define RB_GENERATE_ALL_STATIC(name, type, field, cmp) \
RB_GENERATE_ALL_INTERNAL(name, type, field, cmp, __unused static)
#define RB_GENERATE_ALL_INTERNAL(name, type, field, cmp, attr) \
RB_GENERATE_WITHOUT_COMPARE_INTERNAL(name, type, field, attr) \
RB_GENERATE_WITH_COMPARE_INTERNAL(name, type, field, cmp, attr)
#define RB_GENERATE_INSERT_COLOR(name, type, field, attr) \
attr void \
name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \
{ \
struct type *parent, *gparent, *tmp; \
while ((parent = RB_PARENT(elm, field)) != NULL && \
RB_COLOR(parent, field) == RB_RED) { \
gparent = RB_PARENT(parent, field); \
if (parent == RB_LEFT(gparent, field)) { \
tmp = RB_RIGHT(gparent, field); \
if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
RB_COLOR(tmp, field) = RB_BLACK; \
RB_SET_BLACKRED(parent, gparent, field);\
elm = gparent; \
continue; \
} \
if (RB_RIGHT(parent, field) == elm) { \
RB_ROTATE_LEFT(head, parent, tmp, field);\
tmp = parent; \
parent = elm; \
elm = tmp; \
} \
RB_SET_BLACKRED(parent, gparent, field); \
RB_ROTATE_RIGHT(head, gparent, tmp, field); \
} else { \
tmp = RB_LEFT(gparent, field); \
if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
RB_COLOR(tmp, field) = RB_BLACK; \
RB_SET_BLACKRED(parent, gparent, field);\
elm = gparent; \
continue; \
} \
if (RB_LEFT(parent, field) == elm) { \
RB_ROTATE_RIGHT(head, parent, tmp, field);\
tmp = parent; \
parent = elm; \
elm = tmp; \
} \
RB_SET_BLACKRED(parent, gparent, field); \
RB_ROTATE_LEFT(head, gparent, tmp, field); \
} \
} \
RB_COLOR(head->rbh_root, field) = RB_BLACK; \
}
#define RB_GENERATE_REMOVE_COLOR(name, type, field, attr) \
attr void \
name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, struct type *elm) \
{ \
struct type *tmp; \
while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \
elm != RB_ROOT(head)) { \
if (RB_LEFT(parent, field) == elm) { \
tmp = RB_RIGHT(parent, field); \
if (RB_COLOR(tmp, field) == RB_RED) { \
RB_SET_BLACKRED(tmp, parent, field); \
RB_ROTATE_LEFT(head, parent, tmp, field);\
tmp = RB_RIGHT(parent, field); \
} \
if ((RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
(RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
RB_COLOR(tmp, field) = RB_RED; \
elm = parent; \
parent = RB_PARENT(elm, field); \
} else { \
if (RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\
struct type *oleft; \
if ((oleft = RB_LEFT(tmp, field)) \
!= NULL) \
RB_COLOR(oleft, field) = RB_BLACK;\
RB_COLOR(tmp, field) = RB_RED; \
RB_ROTATE_RIGHT(head, tmp, oleft, field);\
tmp = RB_RIGHT(parent, field); \
} \
RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
RB_COLOR(parent, field) = RB_BLACK; \
if (RB_RIGHT(tmp, field)) \
RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\
RB_ROTATE_LEFT(head, parent, tmp, field);\
elm = RB_ROOT(head); \
break; \
} \
} else { \
tmp = RB_LEFT(parent, field); \
if (RB_COLOR(tmp, field) == RB_RED) { \
RB_SET_BLACKRED(tmp, parent, field); \
RB_ROTATE_RIGHT(head, parent, tmp, field);\
tmp = RB_LEFT(parent, field); \
} \
if ((RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
(RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
RB_COLOR(tmp, field) = RB_RED; \
elm = parent; \
parent = RB_PARENT(elm, field); \
} else { \
if (RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\
struct type *oright; \
if ((oright = RB_RIGHT(tmp, field)) \
!= NULL) \
RB_COLOR(oright, field) = RB_BLACK;\
RB_COLOR(tmp, field) = RB_RED; \
RB_ROTATE_LEFT(head, tmp, oright, field);\
tmp = RB_LEFT(parent, field); \
} \
RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
RB_COLOR(parent, field) = RB_BLACK; \
if (RB_LEFT(tmp, field)) \
RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\
RB_ROTATE_RIGHT(head, parent, tmp, field);\
elm = RB_ROOT(head); \
break; \
} \
} \
} \
if (elm) \
RB_COLOR(elm, field) = RB_BLACK; \
}
#define RB_GENERATE_REMOVE(name, type, field, attr) \
attr struct type * \
name##_RB_REMOVE(struct name *head, struct type *elm) \
{ \
struct type *child, *parent, *old = elm; \
int color; \
if (RB_LEFT(elm, field) == NULL) \
child = RB_RIGHT(elm, field); \
else if (RB_RIGHT(elm, field) == NULL) \
child = RB_LEFT(elm, field); \
else { \
struct type *left; \
elm = RB_RIGHT(elm, field); \
while ((left = RB_LEFT(elm, field)) != NULL) \
elm = left; \
child = RB_RIGHT(elm, field); \
parent = RB_PARENT(elm, field); \
color = RB_COLOR(elm, field); \
if (child) \
RB_PARENT(child, field) = parent; \
if (parent) { \
if (RB_LEFT(parent, field) == elm) \
RB_LEFT(parent, field) = child; \
else \
RB_RIGHT(parent, field) = child; \
RB_AUGMENT(parent); \
} else \
RB_ROOT(head) = child; \
if (RB_PARENT(elm, field) == old) \
parent = elm; \
(elm)->field = (old)->field; \
if (RB_PARENT(old, field)) { \
if (RB_LEFT(RB_PARENT(old, field), field) == old)\
RB_LEFT(RB_PARENT(old, field), field) = elm;\
else \
RB_RIGHT(RB_PARENT(old, field), field) = elm;\
RB_AUGMENT(RB_PARENT(old, field)); \
} else \
RB_ROOT(head) = elm; \
RB_PARENT(RB_LEFT(old, field), field) = elm; \
if (RB_RIGHT(old, field)) \
RB_PARENT(RB_RIGHT(old, field), field) = elm; \
if (parent) { \
left = parent; \
do { \
RB_AUGMENT(left); \
} while ((left = RB_PARENT(left, field)) != NULL); \
} \
goto color; \
} \
parent = RB_PARENT(elm, field); \
color = RB_COLOR(elm, field); \
if (child) \
RB_PARENT(child, field) = parent; \
if (parent) { \
if (RB_LEFT(parent, field) == elm) \
RB_LEFT(parent, field) = child; \
else \
RB_RIGHT(parent, field) = child; \
RB_AUGMENT(parent); \
} else \
RB_ROOT(head) = child; \
color: \
if (color == RB_BLACK) \
name##_RB_REMOVE_COLOR(head, parent, child); \
return (old); \
} \
#define RB_GENERATE_INSERT(name, type, field, cmp, attr) \
/* Inserts a node into the RB tree */ \
attr struct type * \
name##_RB_INSERT(struct name *head, struct type *elm) \
{ \
struct type *tmp; \
struct type *parent = NULL; \
int comp = 0; \
tmp = RB_ROOT(head); \
while (tmp) { \
parent = tmp; \
comp = (cmp)(elm, parent); \
if (comp < 0) \
tmp = RB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
RB_SET(elm, parent, field); \
if (parent != NULL) { \
if (comp < 0) \
RB_LEFT(parent, field) = elm; \
else \
RB_RIGHT(parent, field) = elm; \
RB_AUGMENT(parent); \
} else \
RB_ROOT(head) = elm; \
name##_RB_INSERT_COLOR(head, elm); \
return (NULL); \
}
#define RB_GENERATE_FIND(name, type, field, cmp, attr) \
/* Finds the node with the same key as elm */ \
attr struct type * \
name##_RB_FIND(struct name *head, struct type *elm) \
{ \
struct type *tmp = RB_ROOT(head); \
int comp; \
while (tmp) { \
comp = cmp(elm, tmp); \
if (comp < 0) \
tmp = RB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (NULL); \
}
#define RB_GENERATE_NFIND(name, type, field, cmp, attr) \
/* Finds the first node greater than or equal to the search key */ \
attr struct type * \
name##_RB_NFIND(struct name *head, struct type *elm) \
{ \
struct type *tmp = RB_ROOT(head); \
struct type *res = NULL; \
int comp; \
while (tmp) { \
comp = cmp(elm, tmp); \
if (comp < 0) { \
res = tmp; \
tmp = RB_LEFT(tmp, field); \
} \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (res); \
}
#define RB_GENERATE_FIND_LIGHT(name, type, field, lcmp, attr) \
/* Finds the node with the same key as elm */ \
attr struct type * \
name##_RB_FIND_LIGHT(struct name *head, const void *lelm) \
{ \
struct type *tmp = RB_ROOT(head); \
int comp; \
while (tmp) { \
comp = lcmp(lelm, tmp); \
if (comp < 0) \
tmp = RB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (NULL); \
}
#define RB_GENERATE_NFIND_LIGHT(name, type, field, lcmp, attr) \
/* Finds the first node greater than or equal to the search key */ \
attr struct type * \
name##_RB_NFIND_LIGHT(struct name *head, const void *lelm) \
{ \
struct type *tmp = RB_ROOT(head); \
struct type *res = NULL; \
int comp; \
while (tmp) { \
comp = lcmp(lelm, tmp); \
if (comp < 0) { \
res = tmp; \
tmp = RB_LEFT(tmp, field); \
} \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (res); \
}
#define RB_GENERATE_NEXT(name, type, field, attr) \
/* ARGSUSED */ \
attr struct type * \
name##_RB_NEXT(struct type *elm) \
{ \
if (RB_RIGHT(elm, field)) { \
elm = RB_RIGHT(elm, field); \
while (RB_LEFT(elm, field)) \
elm = RB_LEFT(elm, field); \
} else { \
if (RB_PARENT(elm, field) && \
(elm == RB_LEFT(RB_PARENT(elm, field), field))) \
elm = RB_PARENT(elm, field); \
else { \
while (RB_PARENT(elm, field) && \
(elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
elm = RB_PARENT(elm, field); \
elm = RB_PARENT(elm, field); \
} \
} \
return (elm); \
}
#define RB_GENERATE_PREV(name, type, field, attr) \
/* ARGSUSED */ \
attr struct type * \
name##_RB_PREV(struct type *elm) \
{ \
if (RB_LEFT(elm, field)) { \
elm = RB_LEFT(elm, field); \
while (RB_RIGHT(elm, field)) \
elm = RB_RIGHT(elm, field); \
} else { \
if (RB_PARENT(elm, field) && \
(elm == RB_RIGHT(RB_PARENT(elm, field), field))) \
elm = RB_PARENT(elm, field); \
else { \
while (RB_PARENT(elm, field) && \
(elm == RB_LEFT(RB_PARENT(elm, field), field)))\
elm = RB_PARENT(elm, field); \
elm = RB_PARENT(elm, field); \
} \
} \
return (elm); \
}
#define RB_GENERATE_MINMAX(name, type, field, attr) \
attr struct type * \
name##_RB_MINMAX(struct name *head, int val) \
{ \
struct type *tmp = RB_ROOT(head); \
struct type *parent = NULL; \
while (tmp) { \
parent = tmp; \
if (val < 0) \
tmp = RB_LEFT(tmp, field); \
else \
tmp = RB_RIGHT(tmp, field); \
} \
return (parent); \
}
#define RB_NEGINF -1
#define RB_INF 1
#define RB_INSERT(name, x, y) name##_RB_INSERT(x, y)
#define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y)
#define RB_FIND(name, x, y) name##_RB_FIND(x, y)
#define RB_NFIND(name, x, y) name##_RB_NFIND(x, y)
#define RB_FIND_LIGHT(name, x, y) name##_RB_FIND_LIGHT(x, y)
#define RB_NFIND_LIGHT(name, x, y) name##_RB_NFIND_LIGHT(x, y)
#define RB_NEXT(name, x, y) name##_RB_NEXT(y)
#define RB_PREV(name, x, y) name##_RB_PREV(y)
#define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF)
#define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF)
#define RB_FOREACH(x, name, head) \
for ((x) = RB_MIN(name, head); \
(x) != NULL; \
(x) = name##_RB_NEXT(x))
#define RB_FOREACH_FROM(x, name, y) \
for ((x) = (y); \
((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); \
(x) = (y))
#define RB_FOREACH_SAFE(x, name, head, y) \
for ((x) = RB_MIN(name, head); \
((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); \
(x) = (y))
#define RB_FOREACH_REVERSE(x, name, head) \
for ((x) = RB_MAX(name, head); \
(x) != NULL; \
(x) = name##_RB_PREV(x))
#define RB_FOREACH_REVERSE_FROM(x, name, y) \
for ((x) = (y); \
((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); \
(x) = (y))
#define RB_FOREACH_REVERSE_SAFE(x, name, head, y) \
for ((x) = RB_MAX(name, head); \
((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); \
(x) = (y))
#endif /* _SYS_TREE_H_ */

View file

@ -0,0 +1,623 @@
/* $NetBSD: tree.h,v 1.8 2004/03/28 19:38:30 provos Exp $ */
/* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ */
/* $FreeBSD$ */
/*-
* Copyright 2002 Niels Provos <provos@citi.umich.edu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <vapours/common.hpp>
#include <vapours/assert.hpp>
#pragma GCC push_options
#pragma GCC optimize ("-O3")
/*
* This file defines data structures for red-black trees.
*
* A red-black tree is a binary search tree with the node color as an
* extra attribute. It fulfills a set of conditions:
* - every search path from the root to a leaf consists of the
* same number of black nodes,
* - each red node (except for the root) has a black parent,
* - each leaf node is black.
*
* Every operation on a red-black tree is bounded as O(lg n).
* The maximum height of a red-black tree is 2lg (n+1).
*/
namespace ams::freebsd {
enum class RBColor {
RB_BLACK = 0,
RB_RED = 1,
};
template<typename T>
class RBEntry {
private:
T *rbe_left = nullptr;
T *rbe_right = nullptr;
T *rbe_parent = nullptr;
RBColor rbe_color = RBColor::RB_BLACK;
public:
[[nodiscard]] constexpr ALWAYS_INLINE T *Left() { return this->rbe_left; }
[[nodiscard]] constexpr ALWAYS_INLINE const T *Left() const { return this->rbe_left; }
ALWAYS_INLINE void SetLeft(T *e) { this->rbe_left = e; }
[[nodiscard]] constexpr ALWAYS_INLINE T *Right() { return this->rbe_right; }
[[nodiscard]] constexpr ALWAYS_INLINE const T *Right() const { return this->rbe_right; }
ALWAYS_INLINE void SetRight(T *e) { this->rbe_right = e; }
[[nodiscard]] constexpr ALWAYS_INLINE T *Parent() { return this->rbe_parent; }
[[nodiscard]] constexpr ALWAYS_INLINE const T *Parent() const { return this->rbe_parent; }
ALWAYS_INLINE void SetParent(T *e) { this->rbe_parent = e; }
[[nodiscard]] constexpr ALWAYS_INLINE bool IsBlack() const { return this->rbe_color == RBColor::RB_BLACK; }
[[nodiscard]] constexpr ALWAYS_INLINE bool IsRed() const { return this->rbe_color == RBColor::RB_RED; }
[[nodiscard]] constexpr ALWAYS_INLINE RBColor Color() const { return this->rbe_color; }
ALWAYS_INLINE void SetColor(RBColor c) { this->rbe_color = c; }
};
template<typename T> struct CheckRBEntry { static constexpr bool value = false; };
template<typename T> struct CheckRBEntry<RBEntry<T>> { static constexpr bool value = true; };
template<typename T>
concept IsRBEntry = CheckRBEntry<T>::value;
template<typename T>
concept HasRBEntry = requires (T &t, const T &ct) {
{ t.GetRBEntry() } -> std::same_as< RBEntry<T> &>;
{ ct.GetRBEntry() } -> std::same_as<const RBEntry<T> &>;
};
template<typename T> requires HasRBEntry<T>
class RBHead {
private:
T *rbh_root = nullptr;
public:
[[nodiscard]] constexpr ALWAYS_INLINE T *Root() { return this->rbh_root; }
[[nodiscard]] constexpr ALWAYS_INLINE const T *Root() const { return this->rbh_root; }
ALWAYS_INLINE void SetRoot(T *root) { this->rbh_root = root; }
[[nodiscard]] constexpr ALWAYS_INLINE bool IsEmpty() const { return this->Root() == nullptr; }
};
template<typename T> requires HasRBEntry<T> [[nodiscard]] constexpr ALWAYS_INLINE RBEntry<T> &RB_ENTRY( T *t) { return t->GetRBEntry(); }
template<typename T> requires HasRBEntry<T> [[nodiscard]] constexpr ALWAYS_INLINE const RBEntry<T> &RB_ENTRY(const T *t) { return t->GetRBEntry(); }
template<typename T> requires HasRBEntry<T> [[nodiscard]] constexpr ALWAYS_INLINE T *RB_LEFT( T *t) { return RB_ENTRY(t).Left(); }
template<typename T> requires HasRBEntry<T> [[nodiscard]] constexpr ALWAYS_INLINE const T *RB_LEFT(const T *t) { return RB_ENTRY(t).Left(); }
template<typename T> requires HasRBEntry<T> [[nodiscard]] constexpr ALWAYS_INLINE T *RB_RIGHT( T *t) { return RB_ENTRY(t).Right(); }
template<typename T> requires HasRBEntry<T> [[nodiscard]] constexpr ALWAYS_INLINE const T *RB_RIGHT(const T *t) { return RB_ENTRY(t).Right(); }
template<typename T> requires HasRBEntry<T> [[nodiscard]] constexpr ALWAYS_INLINE T *RB_PARENT( T *t) { return RB_ENTRY(t).Parent(); }
template<typename T> requires HasRBEntry<T> [[nodiscard]] constexpr ALWAYS_INLINE const T *RB_PARENT(const T *t) { return RB_ENTRY(t).Parent(); }
template<typename T> requires HasRBEntry<T> constexpr ALWAYS_INLINE void RB_SET_LEFT(T *t, T *e) { RB_ENTRY(t).SetLeft(e); }
template<typename T> requires HasRBEntry<T> constexpr ALWAYS_INLINE void RB_SET_RIGHT(T *t, T *e) { RB_ENTRY(t).SetRight(e); }
template<typename T> requires HasRBEntry<T> constexpr ALWAYS_INLINE void RB_SET_PARENT(T *t, T *e) { RB_ENTRY(t).SetParent(e); }
template<typename T> requires HasRBEntry<T> [[nodiscard]] constexpr ALWAYS_INLINE bool RB_IS_BLACK(const T *t) { return RB_ENTRY(t).IsBlack(); }
template<typename T> requires HasRBEntry<T> [[nodiscard]] constexpr ALWAYS_INLINE bool RB_IS_RED(const T *t) { return RB_ENTRY(t).IsRed(); }
template<typename T> requires HasRBEntry<T> [[nodiscard]] constexpr ALWAYS_INLINE RBColor RB_COLOR(const T *t) { return RB_ENTRY(t).Color(); }
template<typename T> requires HasRBEntry<T> constexpr ALWAYS_INLINE void RB_SET_COLOR(T *t, RBColor c) { RB_ENTRY(t).SetColor(c); }
template<typename T> requires HasRBEntry<T>
constexpr ALWAYS_INLINE void RB_SET(T *elm, T *parent) {
auto &rb_entry = RB_ENTRY(elm);
rb_entry.SetParent(parent);
rb_entry.SetLeft(nullptr);
rb_entry.SetRight(nullptr);
rb_entry.SetColor(RBColor::RB_RED);
}
template<typename T> requires HasRBEntry<T>
constexpr ALWAYS_INLINE void RB_SET_BLACKRED(T *black, T *red) {
RB_SET_COLOR(black, RBColor::RB_BLACK);
RB_SET_COLOR(red, RBColor::RB_RED);
}
template<typename T> requires HasRBEntry<T>
constexpr ALWAYS_INLINE void RB_ROTATE_LEFT(RBHead<T> &head, T *elm, T *&tmp) {
tmp = RB_RIGHT(elm);
if (RB_SET_RIGHT(elm, RB_LEFT(tmp)); RB_RIGHT(elm) != nullptr) {
RB_SET_PARENT(RB_LEFT(tmp), elm);
}
if (RB_SET_PARENT(tmp, RB_PARENT(elm)); RB_PARENT(tmp) != nullptr) {
if (elm == RB_LEFT(RB_PARENT(elm))) {
RB_SET_LEFT(RB_PARENT(elm), tmp);
} else {
RB_SET_RIGHT(RB_PARENT(elm), tmp);
}
} else {
head.SetRoot(tmp);
}
RB_SET_LEFT(tmp, elm);
RB_SET_PARENT(elm, tmp);
}
template<typename T> requires HasRBEntry<T>
constexpr ALWAYS_INLINE void RB_ROTATE_RIGHT(RBHead<T> &head, T *elm, T *&tmp) {
tmp = RB_LEFT(elm);
if (RB_SET_LEFT(elm, RB_RIGHT(tmp)); RB_LEFT(elm) != nullptr) {
RB_SET_PARENT(RB_RIGHT(tmp), elm);
}
if (RB_SET_PARENT(tmp, RB_PARENT(elm)); RB_PARENT(tmp) != nullptr) {
if (elm == RB_LEFT(RB_PARENT(elm))) {
RB_SET_LEFT(RB_PARENT(elm), tmp);
} else {
RB_SET_RIGHT(RB_PARENT(elm), tmp);
}
} else {
head.SetRoot(tmp);
}
RB_SET_RIGHT(tmp, elm);
RB_SET_PARENT(elm, tmp);
}
template<typename T> requires HasRBEntry<T>
constexpr void RB_INSERT_COLOR(RBHead<T> &head, T *elm) {
T *parent = nullptr, *tmp = nullptr;
while ((parent = RB_PARENT(elm)) != nullptr && RB_IS_RED(parent)) {
T *gparent = RB_PARENT(parent);
if (parent == RB_LEFT(gparent)) {
tmp = RB_RIGHT(gparent);
if (tmp && RB_IS_RED(tmp)) {
RB_SET_COLOR(tmp, RBColor::RB_BLACK);
RB_SET_BLACKRED(parent, gparent);
elm = gparent;
continue;
}
if (RB_RIGHT(parent) == elm) {
RB_ROTATE_LEFT(head, parent, tmp);
tmp = parent;
parent = elm;
elm = tmp;
}
RB_SET_BLACKRED(parent, gparent);
RB_ROTATE_RIGHT(head, gparent, tmp);
} else {
tmp = RB_LEFT(gparent);
if (tmp && RB_IS_RED(tmp)) {
RB_SET_COLOR(tmp, RBColor::RB_BLACK);
RB_SET_BLACKRED(parent, gparent);
elm = gparent;
continue;
}
if (RB_LEFT(parent) == elm) {
RB_ROTATE_RIGHT(head, parent, tmp);
tmp = parent;
parent = elm;
elm = tmp;
}
RB_SET_BLACKRED(parent, gparent);
RB_ROTATE_LEFT(head, gparent, tmp);
}
}
RB_SET_COLOR(head.Root(), RBColor::RB_BLACK);
}
template <typename T> requires HasRBEntry<T>
constexpr void RB_REMOVE_COLOR(RBHead<T> &head, T *parent, T *elm) {
T *tmp;
while ((elm == nullptr || RB_IS_BLACK(elm)) && elm != head.Root()) {
if (RB_LEFT(parent) == elm) {
tmp = RB_RIGHT(parent);
if (RB_IS_RED(tmp)) {
RB_SET_BLACKRED(tmp, parent);
RB_ROTATE_LEFT(head, parent, tmp);
tmp = RB_RIGHT(parent);
}
if ((RB_LEFT(tmp) == nullptr || RB_IS_BLACK(RB_LEFT(tmp))) &&
(RB_RIGHT(tmp) == nullptr || RB_IS_BLACK(RB_RIGHT(tmp)))) {
RB_SET_COLOR(tmp, RBColor::RB_RED);
elm = parent;
parent = RB_PARENT(elm);
} else {
if (RB_RIGHT(tmp) == nullptr || RB_IS_BLACK(RB_RIGHT(tmp))) {
T *oleft;
if ((oleft = RB_LEFT(tmp)) != nullptr) {
RB_SET_COLOR(oleft, RBColor::RB_BLACK);
}
RB_SET_COLOR(tmp, RBColor::RB_RED);
RB_ROTATE_RIGHT(head, tmp, oleft);
tmp = RB_RIGHT(parent);
}
RB_SET_COLOR(tmp, RB_COLOR(parent));
RB_SET_COLOR(parent, RBColor::RB_BLACK);
if (RB_RIGHT(tmp)) {
RB_SET_COLOR(RB_RIGHT(tmp), RBColor::RB_BLACK);
}
RB_ROTATE_LEFT(head, parent, tmp);
elm = head.Root();
break;
}
} else {
tmp = RB_LEFT(parent);
if (RB_IS_RED(tmp)) {
RB_SET_BLACKRED(tmp, parent);
RB_ROTATE_RIGHT(head, parent, tmp);
tmp = RB_LEFT(parent);
}
if ((RB_LEFT(tmp) == nullptr || RB_IS_BLACK(RB_LEFT(tmp))) &&
(RB_RIGHT(tmp) == nullptr || RB_IS_BLACK(RB_RIGHT(tmp)))) {
RB_SET_COLOR(tmp, RBColor::RB_RED);
elm = parent;
parent = RB_PARENT(elm);
} else {
if (RB_LEFT(tmp) == nullptr || RB_IS_BLACK(RB_LEFT(tmp))) {
T *oright;
if ((oright = RB_RIGHT(tmp)) != nullptr) {
RB_SET_COLOR(oright, RBColor::RB_BLACK);
}
RB_SET_COLOR(tmp, RBColor::RB_RED);
RB_ROTATE_LEFT(head, tmp, oright);
tmp = RB_LEFT(parent);
}
RB_SET_COLOR(tmp, RB_COLOR(parent));
RB_SET_COLOR(parent, RBColor::RB_BLACK);
if (RB_LEFT(tmp)) {
RB_SET_COLOR(RB_LEFT(tmp), RBColor::RB_BLACK);
}
RB_ROTATE_RIGHT(head, parent, tmp);
elm = head.Root();
break;
}
}
}
if (elm) {
RB_SET_COLOR(elm, RBColor::RB_BLACK);
}
}
template <typename T> requires HasRBEntry<T>
constexpr T *RB_REMOVE(RBHead<T> &head, T *elm) {
T *child = nullptr;
T *parent = nullptr;
T *old = elm;
RBColor color = RBColor::RB_BLACK;
if (RB_LEFT(elm) == nullptr) {
child = RB_RIGHT(elm);
} else if (RB_RIGHT(elm) == nullptr) {
child = RB_LEFT(elm);
} else {
T *left;
elm = RB_RIGHT(elm);
while ((left = RB_LEFT(elm)) != nullptr) {
elm = left;
}
child = RB_RIGHT(elm);
parent = RB_PARENT(elm);
color = RB_COLOR(elm);
if (child) {
RB_SET_PARENT(child, parent);
}
if (parent) {
if (RB_LEFT(parent) == elm) {
RB_SET_LEFT(parent, child);
} else {
RB_SET_RIGHT(parent, child);
}
} else {
head.SetRoot(child);
}
if (RB_PARENT(elm) == old) {
parent = elm;
}
elm->SetRBEntry(old->GetRBEntry());
if (RB_PARENT(old)) {
if (RB_LEFT(RB_PARENT(old)) == old) {
RB_SET_LEFT(RB_PARENT(old), elm);
} else {
RB_SET_RIGHT(RB_PARENT(old), elm);
}
} else {
head.SetRoot(elm);
}
RB_SET_PARENT(RB_LEFT(old), elm);
if (RB_RIGHT(old)) {
RB_SET_PARENT(RB_RIGHT(old), elm);
}
if (parent) {
left = parent;
}
if (color == RBColor::RB_BLACK) {
RB_REMOVE_COLOR(head, parent, child);
}
return old;
}
parent = RB_PARENT(elm);
color = RB_COLOR(elm);
if (child) {
RB_SET_PARENT(child, parent);
}
if (parent) {
if (RB_LEFT(parent) == elm) {
RB_SET_LEFT(parent, child);
} else {
RB_SET_RIGHT(parent, child);
}
} else {
head.SetRoot(child);
}
if (color == RBColor::RB_BLACK) {
RB_REMOVE_COLOR(head, parent, child);
}
return old;
}
template <typename T, typename Compare> requires HasRBEntry<T>
constexpr ALWAYS_INLINE T *RB_INSERT(RBHead<T> &head, T *elm, Compare cmp) {
T *parent = nullptr;
T *tmp = head.Root();
int comp = 0;
while (tmp) {
parent = tmp;
comp = cmp(elm, parent);
if (comp < 0) {
tmp = RB_LEFT(tmp);
} else if (comp > 0) {
tmp = RB_RIGHT(tmp);
} else {
return tmp;
}
}
RB_SET(elm, parent);
if (parent != nullptr) {
if (comp < 0) {
RB_SET_LEFT(parent, elm);
} else {
RB_SET_RIGHT(parent, elm);
}
} else {
head.SetRoot(elm);
}
RB_INSERT_COLOR(head, elm);
return nullptr;
}
template<typename T, typename Compare> requires HasRBEntry<T>
constexpr ALWAYS_INLINE T *RB_FIND(RBHead<T> &head, T *elm, Compare cmp) {
T *tmp = head.Root();
while (tmp) {
const int comp = cmp(elm, tmp);
if (comp < 0) {
tmp = RB_LEFT(tmp);
} else if (comp > 0) {
tmp = RB_RIGHT(tmp);
} else {
return tmp;
}
}
return nullptr;
}
template<typename T, typename Compare> requires HasRBEntry<T>
constexpr ALWAYS_INLINE T *RB_NFIND(RBHead<T> &head, T *elm, Compare cmp) {
T *tmp = head.Root();
T* res = nullptr;
while (tmp) {
const int comp = cmp(elm, tmp);
if (comp < 0) {
res = tmp;
tmp = RB_LEFT(tmp);
} else if (comp > 0) {
tmp = RB_RIGHT(tmp);
} else {
return tmp;
}
}
return res;
}
template<typename T, typename U, typename Compare> requires HasRBEntry<T>
constexpr ALWAYS_INLINE T *RB_FIND_KEY(RBHead<T> &head, const U &key, Compare cmp) {
T *tmp = head.Root();
while (tmp) {
const int comp = cmp(key, tmp);
if (comp < 0) {
tmp = RB_LEFT(tmp);
} else if (comp > 0) {
tmp = RB_RIGHT(tmp);
} else {
return tmp;
}
}
return nullptr;
}
template<typename T, typename U, typename Compare> requires HasRBEntry<T>
constexpr ALWAYS_INLINE T *RB_NFIND_KEY(RBHead<T> &head, const U &key, Compare cmp) {
T *tmp = head.Root();
T* res = nullptr;
while (tmp) {
const int comp = cmp(key, tmp);
if (comp < 0) {
res = tmp;
tmp = RB_LEFT(tmp);
} else if (comp > 0) {
tmp = RB_RIGHT(tmp);
} else {
return tmp;
}
}
return res;
}
template<typename T, typename Compare> requires HasRBEntry<T>
constexpr ALWAYS_INLINE T *RB_FIND_EXISTING(RBHead<T> &head, T *elm, Compare cmp) {
T *tmp = head.Root();
while (true) {
const int comp = cmp(elm, tmp);
if (comp < 0) {
tmp = RB_LEFT(tmp);
} else if (comp > 0) {
tmp = RB_RIGHT(tmp);
} else {
return tmp;
}
}
}
template<typename T, typename U, typename Compare> requires HasRBEntry<T>
constexpr ALWAYS_INLINE T *RB_FIND_EXISTING_KEY(RBHead<T> &head, const U &key, Compare cmp) {
T *tmp = head.Root();
while (true) {
const int comp = cmp(key, tmp);
if (comp < 0) {
tmp = RB_LEFT(tmp);
} else if (comp > 0) {
tmp = RB_RIGHT(tmp);
} else {
return tmp;
}
}
}
template<typename T> requires HasRBEntry<T>
constexpr ALWAYS_INLINE T *RB_NEXT(T *elm) {
if (RB_RIGHT(elm)) {
elm = RB_RIGHT(elm);
while (RB_LEFT(elm)) {
elm = RB_LEFT(elm);
}
} else {
if (RB_PARENT(elm) && (elm == RB_LEFT(RB_PARENT(elm)))) {
elm = RB_PARENT(elm);
} else {
while (RB_PARENT(elm) && (elm == RB_RIGHT(RB_PARENT(elm)))) {
elm = RB_PARENT(elm);
}
elm = RB_PARENT(elm);
}
}
return elm;
}
template<typename T> requires HasRBEntry<T>
constexpr ALWAYS_INLINE T *RB_PREV(T *elm) {
if (RB_LEFT(elm)) {
elm = RB_LEFT(elm);
while (RB_RIGHT(elm)) {
elm = RB_RIGHT(elm);
}
} else {
if (RB_PARENT(elm) && (elm == RB_RIGHT(RB_PARENT(elm)))) {
elm = RB_PARENT(elm);
} else {
while (RB_PARENT(elm) && (elm == RB_LEFT(RB_PARENT(elm)))) {
elm = RB_PARENT(elm);
}
elm = RB_PARENT(elm);
}
}
return elm;
}
template<typename T> requires HasRBEntry<T>
constexpr ALWAYS_INLINE T *RB_MIN(RBHead<T> &head) {
T *tmp = head.Root();
T *parent = nullptr;
while (tmp) {
parent = tmp;
tmp = RB_LEFT(tmp);
}
return parent;
}
template<typename T> requires HasRBEntry<T>
constexpr ALWAYS_INLINE T *RB_MAX(RBHead<T> &head) {
T *tmp = head.Root();
T *parent = nullptr;
while (tmp) {
parent = tmp;
tmp = RB_RIGHT(tmp);
}
return parent;
}
}
#pragma GCC pop_options

View file

@ -15,10 +15,10 @@
*/ */
#pragma once #pragma once
#include <freebsd/sys/tree.h>
#include <vapours/common.hpp> #include <vapours/common.hpp>
#include <vapours/assert.hpp> #include <vapours/assert.hpp>
#include <vapours/util/util_parent_of_member.hpp> #include <vapours/util/util_parent_of_member.hpp>
#include <vapours/freebsd/tree.hpp>
namespace ams::util { namespace ams::util {
@ -33,17 +33,18 @@ namespace ams::util {
struct IntrusiveRedBlackTreeNode { struct IntrusiveRedBlackTreeNode {
NON_COPYABLE(IntrusiveRedBlackTreeNode); NON_COPYABLE(IntrusiveRedBlackTreeNode);
private:
RB_ENTRY(IntrusiveRedBlackTreeNode) entry;
friend class impl::IntrusiveRedBlackTreeImpl;
template<class, class, class>
friend class IntrusiveRedBlackTree;
public: public:
constexpr ALWAYS_INLINE IntrusiveRedBlackTreeNode() : entry() { /* ... */} using RBEntry = freebsd::RBEntry<IntrusiveRedBlackTreeNode>;
private:
RBEntry m_entry;
public:
constexpr ALWAYS_INLINE IntrusiveRedBlackTreeNode() = default;
[[nodiscard]] constexpr ALWAYS_INLINE RBEntry &GetRBEntry() { return m_entry; }
[[nodiscard]] constexpr ALWAYS_INLINE const RBEntry &GetRBEntry() const { return m_entry; }
constexpr ALWAYS_INLINE void SetRBEntry(const RBEntry &entry) { m_entry = entry; }
}; };
static_assert(std::is_literal_type<IntrusiveRedBlackTreeNode>::value);
template<class T, class Traits, class Comparator> template<class T, class Traits, class Comparator>
class IntrusiveRedBlackTree; class IntrusiveRedBlackTree;
@ -56,10 +57,9 @@ namespace ams::util {
template<class, class, class> template<class, class, class>
friend class ::ams::util::IntrusiveRedBlackTree; friend class ::ams::util::IntrusiveRedBlackTree;
private: private:
RB_HEAD(IntrusiveRedBlackTreeRoot, IntrusiveRedBlackTreeNode); using RootType = freebsd::RBHead<IntrusiveRedBlackTreeNode>;
using RootType = IntrusiveRedBlackTreeRoot;
private: private:
IntrusiveRedBlackTreeRoot root; RootType m_root;
public: public:
template<bool Const> template<bool Const>
class Iterator; class Iterator;
@ -83,152 +83,142 @@ namespace ams::util {
using pointer = typename std::conditional<Const, IntrusiveRedBlackTreeImpl::const_pointer, IntrusiveRedBlackTreeImpl::pointer>::type; using pointer = typename std::conditional<Const, IntrusiveRedBlackTreeImpl::const_pointer, IntrusiveRedBlackTreeImpl::pointer>::type;
using reference = typename std::conditional<Const, IntrusiveRedBlackTreeImpl::const_reference, IntrusiveRedBlackTreeImpl::reference>::type; using reference = typename std::conditional<Const, IntrusiveRedBlackTreeImpl::const_reference, IntrusiveRedBlackTreeImpl::reference>::type;
private: private:
pointer node; pointer m_node;
public: public:
explicit ALWAYS_INLINE Iterator(pointer n) : node(n) { /* ... */ } constexpr explicit ALWAYS_INLINE Iterator(pointer n) : m_node(n) { /* ... */ }
ALWAYS_INLINE bool operator==(const Iterator &rhs) const { constexpr ALWAYS_INLINE bool operator==(const Iterator &rhs) const {
return this->node == rhs.node; return m_node == rhs.m_node;
} }
ALWAYS_INLINE bool operator!=(const Iterator &rhs) const { constexpr ALWAYS_INLINE bool operator!=(const Iterator &rhs) const {
return !(*this == rhs); return !(*this == rhs);
} }
ALWAYS_INLINE pointer operator->() const { constexpr ALWAYS_INLINE pointer operator->() const {
return this->node; return m_node;
} }
ALWAYS_INLINE reference operator*() const { constexpr ALWAYS_INLINE reference operator*() const {
return *this->node; return *m_node;
} }
ALWAYS_INLINE Iterator &operator++() { constexpr ALWAYS_INLINE Iterator &operator++() {
this->node = GetNext(this->node); m_node = GetNext(m_node);
return *this; return *this;
} }
ALWAYS_INLINE Iterator &operator--() { constexpr ALWAYS_INLINE Iterator &operator--() {
this->node = GetPrev(this->node); m_node = GetPrev(m_node);
return *this; return *this;
} }
ALWAYS_INLINE Iterator operator++(int) { constexpr ALWAYS_INLINE Iterator operator++(int) {
const Iterator it{*this}; const Iterator it{*this};
++(*this); ++(*this);
return it; return it;
} }
ALWAYS_INLINE Iterator operator--(int) { constexpr ALWAYS_INLINE Iterator operator--(int) {
const Iterator it{*this}; const Iterator it{*this};
--(*this); --(*this);
return it; return it;
} }
ALWAYS_INLINE operator Iterator<true>() const { constexpr ALWAYS_INLINE operator Iterator<true>() const {
return Iterator<true>(this->node); return Iterator<true>(m_node);
} }
}; };
protected:
/* Generate static implementations for non-comparison operations for IntrusiveRedBlackTreeRoot. */
RB_GENERATE_WITHOUT_COMPARE_STATIC(IntrusiveRedBlackTreeRoot, IntrusiveRedBlackTreeNode, entry);
private: private:
/* Define accessors using RB_* functions. */ constexpr ALWAYS_INLINE bool EmptyImpl() const {
constexpr ALWAYS_INLINE void InitializeImpl() { return m_root.IsEmpty();
RB_INIT(&this->root);
} }
ALWAYS_INLINE bool EmptyImpl() const { constexpr ALWAYS_INLINE IntrusiveRedBlackTreeNode *GetMinImpl() const {
return RB_EMPTY(&this->root); return freebsd::RB_MIN(const_cast<RootType &>(m_root));
} }
ALWAYS_INLINE IntrusiveRedBlackTreeNode *GetMinImpl() const { constexpr ALWAYS_INLINE IntrusiveRedBlackTreeNode *GetMaxImpl() const {
return RB_MIN(IntrusiveRedBlackTreeRoot, const_cast<IntrusiveRedBlackTreeRoot *>(&this->root)); return freebsd::RB_MAX(const_cast<RootType &>(m_root));
} }
ALWAYS_INLINE IntrusiveRedBlackTreeNode *GetMaxImpl() const { constexpr ALWAYS_INLINE IntrusiveRedBlackTreeNode *RemoveImpl(IntrusiveRedBlackTreeNode *node) {
return RB_MAX(IntrusiveRedBlackTreeRoot, const_cast<IntrusiveRedBlackTreeRoot *>(&this->root)); return freebsd::RB_REMOVE(m_root, node);
}
ALWAYS_INLINE IntrusiveRedBlackTreeNode *RemoveImpl(IntrusiveRedBlackTreeNode *node) {
return RB_REMOVE(IntrusiveRedBlackTreeRoot, &this->root, node);
} }
public: public:
static ALWAYS_INLINE IntrusiveRedBlackTreeNode *GetNext(IntrusiveRedBlackTreeNode *node) { static constexpr IntrusiveRedBlackTreeNode *GetNext(IntrusiveRedBlackTreeNode *node) {
return RB_NEXT(IntrusiveRedBlackTreeRoot, nullptr, node); return freebsd::RB_NEXT(node);
} }
static ALWAYS_INLINE IntrusiveRedBlackTreeNode *GetPrev(IntrusiveRedBlackTreeNode *node) { static constexpr IntrusiveRedBlackTreeNode *GetPrev(IntrusiveRedBlackTreeNode *node) {
return RB_PREV(IntrusiveRedBlackTreeRoot, nullptr, node); return freebsd::RB_PREV(node);
} }
static ALWAYS_INLINE IntrusiveRedBlackTreeNode const *GetNext(IntrusiveRedBlackTreeNode const *node) { static constexpr ALWAYS_INLINE IntrusiveRedBlackTreeNode const *GetNext(IntrusiveRedBlackTreeNode const *node) {
return static_cast<const IntrusiveRedBlackTreeNode *>(GetNext(const_cast<IntrusiveRedBlackTreeNode *>(node))); return static_cast<const IntrusiveRedBlackTreeNode *>(GetNext(const_cast<IntrusiveRedBlackTreeNode *>(node)));
} }
static ALWAYS_INLINE IntrusiveRedBlackTreeNode const *GetPrev(IntrusiveRedBlackTreeNode const *node) { static constexpr ALWAYS_INLINE IntrusiveRedBlackTreeNode const *GetPrev(IntrusiveRedBlackTreeNode const *node) {
return static_cast<const IntrusiveRedBlackTreeNode *>(GetPrev(const_cast<IntrusiveRedBlackTreeNode *>(node))); return static_cast<const IntrusiveRedBlackTreeNode *>(GetPrev(const_cast<IntrusiveRedBlackTreeNode *>(node)));
} }
public: public:
ALWAYS_INLINE constexpr IntrusiveRedBlackTreeImpl() : root() { constexpr ALWAYS_INLINE IntrusiveRedBlackTreeImpl() = default;
this->InitializeImpl();
}
/* Iterator accessors. */ /* Iterator accessors. */
ALWAYS_INLINE iterator begin() { constexpr ALWAYS_INLINE iterator begin() {
return iterator(this->GetMinImpl()); return iterator(this->GetMinImpl());
} }
ALWAYS_INLINE const_iterator begin() const { constexpr ALWAYS_INLINE const_iterator begin() const {
return const_iterator(this->GetMinImpl()); return const_iterator(this->GetMinImpl());
} }
ALWAYS_INLINE iterator end() { constexpr ALWAYS_INLINE iterator end() {
return iterator(static_cast<IntrusiveRedBlackTreeNode *>(nullptr)); return iterator(static_cast<IntrusiveRedBlackTreeNode *>(nullptr));
} }
ALWAYS_INLINE const_iterator end() const { constexpr ALWAYS_INLINE const_iterator end() const {
return const_iterator(static_cast<const IntrusiveRedBlackTreeNode *>(nullptr)); return const_iterator(static_cast<const IntrusiveRedBlackTreeNode *>(nullptr));
} }
ALWAYS_INLINE const_iterator cbegin() const { constexpr ALWAYS_INLINE const_iterator cbegin() const {
return this->begin(); return this->begin();
} }
ALWAYS_INLINE const_iterator cend() const { constexpr ALWAYS_INLINE const_iterator cend() const {
return this->end(); return this->end();
} }
ALWAYS_INLINE iterator iterator_to(reference ref) { constexpr ALWAYS_INLINE iterator iterator_to(reference ref) {
return iterator(&ref); return iterator(std::addressof(ref));
} }
ALWAYS_INLINE const_iterator iterator_to(const_reference ref) const { constexpr ALWAYS_INLINE const_iterator iterator_to(const_reference ref) const {
return const_iterator(&ref); return const_iterator(std::addressof(ref));
} }
/* Content management. */ /* Content management. */
ALWAYS_INLINE bool empty() const { constexpr ALWAYS_INLINE bool empty() const {
return this->EmptyImpl(); return this->EmptyImpl();
} }
ALWAYS_INLINE reference back() { constexpr ALWAYS_INLINE reference back() {
return *this->GetMaxImpl(); return *this->GetMaxImpl();
} }
ALWAYS_INLINE const_reference back() const { constexpr ALWAYS_INLINE const_reference back() const {
return *this->GetMaxImpl(); return *this->GetMaxImpl();
} }
ALWAYS_INLINE reference front() { constexpr ALWAYS_INLINE reference front() {
return *this->GetMinImpl(); return *this->GetMinImpl();
} }
ALWAYS_INLINE const_reference front() const { constexpr ALWAYS_INLINE const_reference front() const {
return *this->GetMinImpl(); return *this->GetMinImpl();
} }
ALWAYS_INLINE iterator erase(iterator it) { constexpr ALWAYS_INLINE iterator erase(iterator it) {
auto cur = std::addressof(*it); auto cur = std::addressof(*it);
auto next = GetNext(cur); auto next = GetNext(cur);
this->RemoveImpl(cur); this->RemoveImpl(cur);
@ -239,16 +229,16 @@ namespace ams::util {
} }
template<typename T> template<typename T>
concept HasLightCompareType = requires { concept HasRedBlackKeyType = requires {
{ std::is_same<typename T::LightCompareType, void>::value } -> std::convertible_to<bool>; { std::is_same<typename T::RedBlackKeyType, void>::value } -> std::convertible_to<bool>;
}; };
namespace impl { namespace impl {
template<typename T, typename Default> template<typename T, typename Default>
consteval auto *GetLightCompareType() { consteval auto *GetRedBlackKeyType() {
if constexpr (HasLightCompareType<T>) { if constexpr (HasRedBlackKeyType<T>) {
return static_cast<typename T::LightCompareType *>(nullptr); return static_cast<typename T::RedBlackKeyType *>(nullptr);
} else { } else {
return static_cast<Default *>(nullptr); return static_cast<Default *>(nullptr);
} }
@ -257,7 +247,7 @@ namespace ams::util {
} }
template<typename T, typename Default> template<typename T, typename Default>
using LightCompareType = typename std::remove_pointer<decltype(impl::GetLightCompareType<T, Default>())>::type; using RedBlackKeyType = typename std::remove_pointer<decltype(impl::GetRedBlackKeyType<T, Default>())>::type;
template<class T, class Traits, class Comparator> template<class T, class Traits, class Comparator>
class IntrusiveRedBlackTree { class IntrusiveRedBlackTree {
@ -265,10 +255,8 @@ namespace ams::util {
public: public:
using ImplType = impl::IntrusiveRedBlackTreeImpl; using ImplType = impl::IntrusiveRedBlackTreeImpl;
private: private:
ImplType impl; ImplType m_impl;
public: public:
struct IntrusiveRedBlackTreeRootWithCompare : ImplType::IntrusiveRedBlackTreeRoot{};
template<bool Const> template<bool Const>
class Iterator; class Iterator;
@ -282,9 +270,9 @@ namespace ams::util {
using iterator = Iterator<false>; using iterator = Iterator<false>;
using const_iterator = Iterator<true>; using const_iterator = Iterator<true>;
using light_value_type = LightCompareType<Comparator, value_type>; using key_type = RedBlackKeyType<Comparator, value_type>;
using const_light_pointer = const light_value_type *; using const_key_pointer = const key_type *;
using const_light_reference = const light_value_type &; using const_key_reference = const key_type &;
template<bool Const> template<bool Const>
class Iterator { class Iterator {
@ -299,171 +287,184 @@ namespace ams::util {
using pointer = typename std::conditional<Const, IntrusiveRedBlackTree::const_pointer, IntrusiveRedBlackTree::pointer>::type; using pointer = typename std::conditional<Const, IntrusiveRedBlackTree::const_pointer, IntrusiveRedBlackTree::pointer>::type;
using reference = typename std::conditional<Const, IntrusiveRedBlackTree::const_reference, IntrusiveRedBlackTree::reference>::type; using reference = typename std::conditional<Const, IntrusiveRedBlackTree::const_reference, IntrusiveRedBlackTree::reference>::type;
private: private:
ImplIterator iterator; ImplIterator m_impl;
private: private:
explicit ALWAYS_INLINE Iterator(ImplIterator it) : iterator(it) { /* ... */ } constexpr explicit ALWAYS_INLINE Iterator(ImplIterator it) : m_impl(it) { /* ... */ }
explicit ALWAYS_INLINE Iterator(ImplIterator::pointer p) : iterator(p) { /* ... */ } constexpr explicit ALWAYS_INLINE Iterator(ImplIterator::pointer p) : m_impl(p) { /* ... */ }
ALWAYS_INLINE ImplIterator GetImplIterator() const { constexpr ALWAYS_INLINE ImplIterator GetImplIterator() const {
return this->iterator; return m_impl;
} }
public: public:
ALWAYS_INLINE bool operator==(const Iterator &rhs) const { constexpr ALWAYS_INLINE bool operator==(const Iterator &rhs) const {
return this->iterator == rhs.iterator; return m_impl == rhs.m_impl;
} }
ALWAYS_INLINE bool operator!=(const Iterator &rhs) const { constexpr ALWAYS_INLINE bool operator!=(const Iterator &rhs) const {
return !(*this == rhs); return !(*this == rhs);
} }
ALWAYS_INLINE pointer operator->() const { constexpr ALWAYS_INLINE pointer operator->() const {
return Traits::GetParent(std::addressof(*this->iterator)); return Traits::GetParent(std::addressof(*m_impl));
} }
ALWAYS_INLINE reference operator*() const { constexpr ALWAYS_INLINE reference operator*() const {
return *Traits::GetParent(std::addressof(*this->iterator)); return *Traits::GetParent(std::addressof(*m_impl));
} }
ALWAYS_INLINE Iterator &operator++() { constexpr ALWAYS_INLINE Iterator &operator++() {
++this->iterator; ++m_impl;
return *this; return *this;
} }
ALWAYS_INLINE Iterator &operator--() { constexpr ALWAYS_INLINE Iterator &operator--() {
--this->iterator; --m_impl;
return *this; return *this;
} }
ALWAYS_INLINE Iterator operator++(int) { constexpr ALWAYS_INLINE Iterator operator++(int) {
const Iterator it{*this}; const Iterator it{*this};
++this->iterator; ++m_impl;
return it; return it;
} }
ALWAYS_INLINE Iterator operator--(int) { constexpr ALWAYS_INLINE Iterator operator--(int) {
const Iterator it{*this}; const Iterator it{*this};
--this->iterator; --m_impl;
return it; return it;
} }
ALWAYS_INLINE operator Iterator<true>() const { constexpr ALWAYS_INLINE operator Iterator<true>() const {
return Iterator<true>(this->iterator); return Iterator<true>(m_impl);
} }
}; };
private: private:
/* Generate static implementations for comparison operations for IntrusiveRedBlackTreeRoot. */ static constexpr ALWAYS_INLINE int CompareImpl(const IntrusiveRedBlackTreeNode *lhs, const IntrusiveRedBlackTreeNode *rhs) {
RB_GENERATE_WITH_COMPARE_STATIC(IntrusiveRedBlackTreeRootWithCompare, IntrusiveRedBlackTreeNode, entry, CompareImpl, LightCompareImpl);
private:
static ALWAYS_INLINE int CompareImpl(const IntrusiveRedBlackTreeNode *lhs, const IntrusiveRedBlackTreeNode *rhs) {
return Comparator::Compare(*Traits::GetParent(lhs), *Traits::GetParent(rhs)); return Comparator::Compare(*Traits::GetParent(lhs), *Traits::GetParent(rhs));
} }
static ALWAYS_INLINE int LightCompareImpl(const void *elm, const IntrusiveRedBlackTreeNode *rhs) { static constexpr ALWAYS_INLINE int CompareKeyImpl(const_key_reference key, const IntrusiveRedBlackTreeNode *rhs) {
return Comparator::Compare(*static_cast<const_light_pointer>(elm), *Traits::GetParent(rhs)); return Comparator::Compare(key, *Traits::GetParent(rhs));
} }
/* Define accessors using RB_* functions. */ /* Define accessors using RB_* functions. */
ALWAYS_INLINE IntrusiveRedBlackTreeNode *InsertImpl(IntrusiveRedBlackTreeNode *node) { constexpr IntrusiveRedBlackTreeNode *InsertImpl(IntrusiveRedBlackTreeNode *node) {
return RB_INSERT(IntrusiveRedBlackTreeRootWithCompare, static_cast<IntrusiveRedBlackTreeRootWithCompare *>(&this->impl.root), node); return freebsd::RB_INSERT(m_impl.m_root, node, CompareImpl);
} }
ALWAYS_INLINE IntrusiveRedBlackTreeNode *FindImpl(IntrusiveRedBlackTreeNode const *node) const { constexpr ALWAYS_INLINE IntrusiveRedBlackTreeNode *FindImpl(IntrusiveRedBlackTreeNode const *node) const {
return RB_FIND(IntrusiveRedBlackTreeRootWithCompare, const_cast<IntrusiveRedBlackTreeRootWithCompare *>(static_cast<const IntrusiveRedBlackTreeRootWithCompare *>(&this->impl.root)), const_cast<IntrusiveRedBlackTreeNode *>(node)); return freebsd::RB_FIND(const_cast<ImplType::RootType &>(m_impl.m_root), const_cast<IntrusiveRedBlackTreeNode *>(node), CompareImpl);
} }
ALWAYS_INLINE IntrusiveRedBlackTreeNode *NFindImpl(IntrusiveRedBlackTreeNode const *node) const { constexpr ALWAYS_INLINE IntrusiveRedBlackTreeNode *NFindImpl(IntrusiveRedBlackTreeNode const *node) const {
return RB_NFIND(IntrusiveRedBlackTreeRootWithCompare, const_cast<IntrusiveRedBlackTreeRootWithCompare *>(static_cast<const IntrusiveRedBlackTreeRootWithCompare *>(&this->impl.root)), const_cast<IntrusiveRedBlackTreeNode *>(node)); return freebsd::RB_NFIND(const_cast<ImplType::RootType &>(m_impl.m_root), const_cast<IntrusiveRedBlackTreeNode *>(node), CompareImpl);
} }
ALWAYS_INLINE IntrusiveRedBlackTreeNode *FindLightImpl(const_light_pointer lelm) const { constexpr ALWAYS_INLINE IntrusiveRedBlackTreeNode *FindKeyImpl(const_key_reference key) const {
return RB_FIND_LIGHT(IntrusiveRedBlackTreeRootWithCompare, const_cast<IntrusiveRedBlackTreeRootWithCompare *>(static_cast<const IntrusiveRedBlackTreeRootWithCompare *>(&this->impl.root)), static_cast<const void *>(lelm)); return freebsd::RB_FIND_KEY(const_cast<ImplType::RootType &>(m_impl.m_root), key, CompareKeyImpl);
} }
ALWAYS_INLINE IntrusiveRedBlackTreeNode *NFindLightImpl(const_light_pointer lelm) const { constexpr ALWAYS_INLINE IntrusiveRedBlackTreeNode *NFindKeyImpl(const_key_reference key) const {
return RB_NFIND_LIGHT(IntrusiveRedBlackTreeRootWithCompare, const_cast<IntrusiveRedBlackTreeRootWithCompare *>(static_cast<const IntrusiveRedBlackTreeRootWithCompare *>(&this->impl.root)), static_cast<const void *>(lelm)); return freebsd::RB_NFIND_KEY(const_cast<ImplType::RootType &>(m_impl.m_root), key, CompareKeyImpl);
}
constexpr ALWAYS_INLINE IntrusiveRedBlackTreeNode *FindExistingImpl(IntrusiveRedBlackTreeNode const *node) const {
return freebsd::RB_FIND_EXISTING(const_cast<ImplType::RootType &>(m_impl.m_root), const_cast<IntrusiveRedBlackTreeNode *>(node), CompareImpl);
}
constexpr ALWAYS_INLINE IntrusiveRedBlackTreeNode *FindExistingKeyImpl(const_key_reference key) const {
return freebsd::RB_FIND_EXISTING_KEY(const_cast<ImplType::RootType &>(m_impl.m_root), key, CompareKeyImpl);
} }
public: public:
constexpr ALWAYS_INLINE IntrusiveRedBlackTree() : impl() { /* ... */ } constexpr ALWAYS_INLINE IntrusiveRedBlackTree() = default;
/* Iterator accessors. */ /* Iterator accessors. */
ALWAYS_INLINE iterator begin() { constexpr ALWAYS_INLINE iterator begin() {
return iterator(this->impl.begin()); return iterator(m_impl.begin());
} }
ALWAYS_INLINE const_iterator begin() const { constexpr ALWAYS_INLINE const_iterator begin() const {
return const_iterator(this->impl.begin()); return const_iterator(m_impl.begin());
} }
ALWAYS_INLINE iterator end() { constexpr ALWAYS_INLINE iterator end() {
return iterator(this->impl.end()); return iterator(m_impl.end());
} }
ALWAYS_INLINE const_iterator end() const { constexpr ALWAYS_INLINE const_iterator end() const {
return const_iterator(this->impl.end()); return const_iterator(m_impl.end());
} }
ALWAYS_INLINE const_iterator cbegin() const { constexpr ALWAYS_INLINE const_iterator cbegin() const {
return this->begin(); return this->begin();
} }
ALWAYS_INLINE const_iterator cend() const { constexpr ALWAYS_INLINE const_iterator cend() const {
return this->end(); return this->end();
} }
ALWAYS_INLINE iterator iterator_to(reference ref) { constexpr ALWAYS_INLINE iterator iterator_to(reference ref) {
return iterator(this->impl.iterator_to(*Traits::GetNode(std::addressof(ref)))); return iterator(m_impl.iterator_to(*Traits::GetNode(std::addressof(ref))));
} }
ALWAYS_INLINE const_iterator iterator_to(const_reference ref) const { constexpr ALWAYS_INLINE const_iterator iterator_to(const_reference ref) const {
return const_iterator(this->impl.iterator_to(*Traits::GetNode(std::addressof(ref)))); return const_iterator(m_impl.iterator_to(*Traits::GetNode(std::addressof(ref))));
} }
/* Content management. */ /* Content management. */
ALWAYS_INLINE bool empty() const { constexpr ALWAYS_INLINE bool empty() const {
return this->impl.empty(); return m_impl.empty();
} }
ALWAYS_INLINE reference back() { constexpr ALWAYS_INLINE reference back() {
return *Traits::GetParent(std::addressof(this->impl.back())); return *Traits::GetParent(std::addressof(m_impl.back()));
} }
ALWAYS_INLINE const_reference back() const { constexpr ALWAYS_INLINE const_reference back() const {
return *Traits::GetParent(std::addressof(this->impl.back())); return *Traits::GetParent(std::addressof(m_impl.back()));
} }
ALWAYS_INLINE reference front() { constexpr ALWAYS_INLINE reference front() {
return *Traits::GetParent(std::addressof(this->impl.front())); return *Traits::GetParent(std::addressof(m_impl.front()));
} }
ALWAYS_INLINE const_reference front() const { constexpr ALWAYS_INLINE const_reference front() const {
return *Traits::GetParent(std::addressof(this->impl.front())); return *Traits::GetParent(std::addressof(m_impl.front()));
} }
ALWAYS_INLINE iterator erase(iterator it) { constexpr ALWAYS_INLINE iterator erase(iterator it) {
return iterator(this->impl.erase(it.GetImplIterator())); return iterator(m_impl.erase(it.GetImplIterator()));
} }
ALWAYS_INLINE iterator insert(reference ref) { constexpr ALWAYS_INLINE iterator insert(reference ref) {
ImplType::pointer node = Traits::GetNode(std::addressof(ref)); ImplType::pointer node = Traits::GetNode(std::addressof(ref));
this->InsertImpl(node); this->InsertImpl(node);
return iterator(node); return iterator(node);
} }
ALWAYS_INLINE iterator find(const_reference ref) const { constexpr ALWAYS_INLINE iterator find(const_reference ref) const {
return iterator(this->FindImpl(Traits::GetNode(std::addressof(ref)))); return iterator(this->FindImpl(Traits::GetNode(std::addressof(ref))));
} }
ALWAYS_INLINE iterator nfind(const_reference ref) const { constexpr ALWAYS_INLINE iterator nfind(const_reference ref) const {
return iterator(this->NFindImpl(Traits::GetNode(std::addressof(ref)))); return iterator(this->NFindImpl(Traits::GetNode(std::addressof(ref))));
} }
ALWAYS_INLINE iterator find_light(const_light_reference ref) const { constexpr ALWAYS_INLINE iterator find_key(const_key_reference ref) const {
return iterator(this->FindLightImpl(std::addressof(ref))); return iterator(this->FindKeyImpl(ref));
} }
ALWAYS_INLINE iterator nfind_light(const_light_reference ref) const { constexpr ALWAYS_INLINE iterator nfind_key(const_key_reference ref) const {
return iterator(this->NFindLightImpl(std::addressof(ref))); return iterator(this->NFindKeyImpl(ref));
}
constexpr ALWAYS_INLINE iterator find_existing(const_reference ref) const {
return iterator(this->FindExistingImpl(Traits::GetNode(std::addressof(ref))));
}
constexpr ALWAYS_INLINE iterator find_existing_key(const_key_reference ref) const {
return iterator(this->FindExistingKeyImpl(ref));
} }
}; };