mirror of
https://github.com/Atmosphere-NX/Atmosphere.git
synced 2024-11-22 20:06:40 +00:00
crypto: add ability to hash data at compile time, for future diag use
This commit is contained in:
parent
646f84bad1
commit
79b1835a2b
2 changed files with 296 additions and 0 deletions
|
@ -19,6 +19,7 @@
|
|||
#include <vapours/assert.hpp>
|
||||
#include <vapours/util.hpp>
|
||||
#include <vapours/crypto/impl/crypto_sha256_impl.hpp>
|
||||
#include <vapours/crypto/impl/crypto_sha256_impl_constexpr.hpp>
|
||||
|
||||
namespace ams::crypto {
|
||||
|
||||
|
@ -85,4 +86,16 @@ namespace ams::crypto {
|
|||
return GenerateSha256(dst, dst_size, src, src_size);
|
||||
}
|
||||
|
||||
template<typename T, typename = typename std::enable_if<std::same_as<T, u8> || std::same_as<T, s8> || std::same_as<T, char> || std::same_as<T, unsigned char>>::type>
|
||||
constexpr ALWAYS_INLINE void GenerateSha256(u8 *dst, size_t dst_size, const T *src, size_t src_size) {
|
||||
if (std::is_constant_evaluated()) {
|
||||
impl::Sha256CompileTimeImpl sha;
|
||||
sha.Initialize();
|
||||
sha.Update(src, src_size);
|
||||
sha.GetHash(dst, dst_size);
|
||||
} else {
|
||||
return GenerateSha256(static_cast<void *>(dst), dst_size, static_cast<const void *>(src), src_size);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -0,0 +1,283 @@
|
|||
/*
|
||||
* Copyright (c) Atmosphère-NX
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms and conditions of the GNU General Public License,
|
||||
* version 2, as published by the Free Software Foundation.
|
||||
*
|
||||
* This program is distributed in the hope it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
* more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include <vapours/common.hpp>
|
||||
#include <vapours/assert.hpp>
|
||||
#include <vapours/util.hpp>
|
||||
|
||||
namespace ams::crypto::impl {
|
||||
|
||||
class Sha256CompileTimeImpl {
|
||||
public:
|
||||
static constexpr size_t HashSize = 0x20;
|
||||
static constexpr size_t BlockSize = 0x40;
|
||||
private:
|
||||
enum State {
|
||||
State_None,
|
||||
State_Initialized,
|
||||
State_Done,
|
||||
};
|
||||
private:
|
||||
u32 m_intermediate_hash[HashSize / sizeof(u32)];
|
||||
u8 m_buffer[BlockSize];
|
||||
size_t m_buffered_bytes;
|
||||
u64 m_bits_consumed;
|
||||
State m_state;
|
||||
public:
|
||||
constexpr Sha256CompileTimeImpl() : m_intermediate_hash(), m_buffer(), m_buffered_bytes(), m_bits_consumed(), m_state(State_None) {
|
||||
/* ... */
|
||||
}
|
||||
|
||||
constexpr void Initialize() {
|
||||
/* Reset buffered bytes/bits. */
|
||||
m_buffered_bytes = 0;
|
||||
m_bits_consumed = 0;
|
||||
|
||||
/* Set intermediate hash. */
|
||||
m_intermediate_hash[0] = 0x6A09E667;
|
||||
m_intermediate_hash[1] = 0xBB67AE85;
|
||||
m_intermediate_hash[2] = 0x3C6EF372;
|
||||
m_intermediate_hash[3] = 0xA54FF53A;
|
||||
m_intermediate_hash[4] = 0x510E527F;
|
||||
m_intermediate_hash[5] = 0x9B05688C;
|
||||
m_intermediate_hash[6] = 0x1F83D9AB;
|
||||
m_intermediate_hash[7] = 0x5BE0CD19;
|
||||
|
||||
/* Set state. */
|
||||
m_state = State_Initialized;
|
||||
}
|
||||
|
||||
template<typename T, typename = typename std::enable_if<std::same_as<T, u8> || std::same_as<T, s8> || std::same_as<T, char> || std::same_as<T, unsigned char>>::type>
|
||||
constexpr void Update(const T *data, size_t size) {
|
||||
static_assert(sizeof(T) == 1);
|
||||
|
||||
/* Verify we're in a state to update. */
|
||||
AMS_ASSERT(m_state == State_Initialized);
|
||||
|
||||
/* Advance our input bit count. */
|
||||
m_bits_consumed += BITSIZEOF(u8) * (((m_buffered_bytes + size) / BlockSize) * BlockSize);
|
||||
|
||||
/* Process anything we have buffered. */
|
||||
size_t remaining = size;
|
||||
|
||||
if (m_buffered_bytes > 0) {
|
||||
const size_t copy_size = std::min(BlockSize - m_buffered_bytes, remaining);
|
||||
for (size_t i = 0; i < copy_size; ++i) {
|
||||
m_buffer[m_buffered_bytes + i] = static_cast<u8>(data[i]);
|
||||
}
|
||||
|
||||
data += copy_size;
|
||||
remaining -= copy_size;
|
||||
m_buffered_bytes += copy_size;
|
||||
|
||||
/* Process a block, if we filled one. */
|
||||
if (m_buffered_bytes == BlockSize) {
|
||||
this->ProcessBlock(m_buffer);
|
||||
m_buffered_bytes = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Process blocks, if we have any. */
|
||||
while (remaining >= BlockSize) {
|
||||
u8 block[BlockSize] = {};
|
||||
for (size_t i = 0; i < BlockSize; ++i) {
|
||||
block[i] = static_cast<u8>(data[i]);
|
||||
}
|
||||
this->ProcessBlock(block);
|
||||
|
||||
data += BlockSize;
|
||||
remaining -= BlockSize;
|
||||
}
|
||||
|
||||
/* Copy any leftover data to our buffer. */
|
||||
if (remaining > 0) {
|
||||
m_buffered_bytes = remaining;
|
||||
for (size_t i = 0; i < remaining; ++i) {
|
||||
m_buffer[i] = static_cast<u8>(data[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
constexpr void GetHash(u8 *dst, size_t size) {
|
||||
/* Verify we're in a state to get hash. */
|
||||
AMS_ASSERT(m_state == State_Initialized || m_state == State_Done);
|
||||
AMS_ASSERT(size >= HashSize);
|
||||
AMS_UNUSED(size);
|
||||
|
||||
/* If we need to, process the last block. */
|
||||
if (m_state == State_Initialized) {
|
||||
this->ProcessLastBlock();
|
||||
m_state = State_Done;
|
||||
}
|
||||
|
||||
/* Copy the output hash. */
|
||||
for (size_t i = 0; i < HashSize / sizeof(u32); ++i) {
|
||||
const u32 v = m_intermediate_hash[i];
|
||||
|
||||
dst[sizeof(u32) * i + 3] = static_cast<u8>(v >> (BITSIZEOF(u8) * 0));
|
||||
dst[sizeof(u32) * i + 2] = static_cast<u8>(v >> (BITSIZEOF(u8) * 1));
|
||||
dst[sizeof(u32) * i + 1] = static_cast<u8>(v >> (BITSIZEOF(u8) * 2));
|
||||
dst[sizeof(u32) * i + 0] = static_cast<u8>(v >> (BITSIZEOF(u8) * 3));
|
||||
}
|
||||
}
|
||||
|
||||
constexpr size_t GetBufferedDataSize() const { return m_buffered_bytes; }
|
||||
|
||||
constexpr void GetBufferedData(u8 *dst, size_t dst_size) const {
|
||||
AMS_ASSERT(dst_size >= this->GetBufferedDataSize());
|
||||
AMS_UNUSED(dst_size);
|
||||
|
||||
for (size_t i = 0; i < m_buffered_bytes; ++i) {
|
||||
dst[i] = m_buffer[i];
|
||||
}
|
||||
}
|
||||
private:
|
||||
static constexpr ALWAYS_INLINE u32 Choose(u32 x, u32 y, u32 z) {
|
||||
return (x & y) ^ ((~x) & z);
|
||||
}
|
||||
|
||||
static constexpr ALWAYS_INLINE u32 Majority(u32 x, u32 y, u32 z) {
|
||||
return (x & y) ^ (x & z) ^ (y & z);
|
||||
}
|
||||
|
||||
static constexpr ALWAYS_INLINE u32 LargeSigma0(u32 x) {
|
||||
return util::RotateRight<u32>(x, 2) ^ util::RotateRight<u32>(x, 13) ^ util::RotateRight<u32>(x, 22);
|
||||
}
|
||||
|
||||
static constexpr ALWAYS_INLINE u32 LargeSigma1(u32 x) {
|
||||
return util::RotateRight<u32>(x, 6) ^ util::RotateRight<u32>(x, 11) ^ util::RotateRight<u32>(x, 25);
|
||||
}
|
||||
|
||||
static constexpr ALWAYS_INLINE u32 SmallSigma0(u32 x) {
|
||||
return util::RotateRight<u32>(x, 7) ^ util::RotateRight<u32>(x, 18) ^ (x >> 3);
|
||||
}
|
||||
|
||||
static constexpr ALWAYS_INLINE u32 SmallSigma1(u32 x) {
|
||||
return util::RotateRight<u32>(x, 17) ^ util::RotateRight<u32>(x, 19) ^ (x >> 10);
|
||||
}
|
||||
|
||||
constexpr void ProcessBlock(const u8 *data) {
|
||||
/* Load work variables. */
|
||||
u32 a = m_intermediate_hash[0];
|
||||
u32 b = m_intermediate_hash[1];
|
||||
u32 c = m_intermediate_hash[2];
|
||||
u32 d = m_intermediate_hash[3];
|
||||
u32 e = m_intermediate_hash[4];
|
||||
u32 f = m_intermediate_hash[5];
|
||||
u32 g = m_intermediate_hash[6];
|
||||
u32 h = m_intermediate_hash[7];
|
||||
u32 tmp[2]{};
|
||||
size_t i = 0;
|
||||
|
||||
/* Copy the input. */
|
||||
u32 w[64]{};
|
||||
for (size_t i = 0; i < BlockSize / sizeof(u32); ++i) {
|
||||
u32 v = 0;
|
||||
v |= static_cast<u32>(data[sizeof(u32) * i + 0]) << (BITSIZEOF(u8) * 3);
|
||||
v |= static_cast<u32>(data[sizeof(u32) * i + 1]) << (BITSIZEOF(u8) * 2);
|
||||
v |= static_cast<u32>(data[sizeof(u32) * i + 2]) << (BITSIZEOF(u8) * 1);
|
||||
v |= static_cast<u32>(data[sizeof(u32) * i + 3]) << (BITSIZEOF(u8) * 0);
|
||||
|
||||
w[i] = v;
|
||||
}
|
||||
|
||||
/* Initialize the rest of w. */
|
||||
for (i = BlockSize / sizeof(u32); i < util::size(w); ++i) {
|
||||
const u32 *prev = w + (i - BlockSize / sizeof(u32));
|
||||
w[i] = prev[0] + SmallSigma0(prev[1]) + prev[9] + SmallSigma1(prev[14]);
|
||||
}
|
||||
|
||||
/* Perform rounds. */
|
||||
{
|
||||
const u32 RoundConstants[0x40] = {
|
||||
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
|
||||
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
|
||||
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
|
||||
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
|
||||
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
|
||||
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
|
||||
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
|
||||
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
|
||||
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
|
||||
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
|
||||
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
|
||||
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
|
||||
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
|
||||
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
|
||||
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
|
||||
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
|
||||
};
|
||||
|
||||
for (i = 0; i < 64; ++i) {
|
||||
tmp[0] = h + LargeSigma1(e) + Choose(e, f, g) + RoundConstants[i] + w[i];
|
||||
tmp[1] = LargeSigma0(a) + Majority(a, b, c);
|
||||
|
||||
h = g;
|
||||
g = f;
|
||||
f = e;
|
||||
e = d + tmp[0];
|
||||
d = c;
|
||||
c = b;
|
||||
b = a;
|
||||
a = tmp[0] + tmp[1];
|
||||
}
|
||||
}
|
||||
|
||||
/* Update intermediate hash. */
|
||||
m_intermediate_hash[0] += a;
|
||||
m_intermediate_hash[1] += b;
|
||||
m_intermediate_hash[2] += c;
|
||||
m_intermediate_hash[3] += d;
|
||||
m_intermediate_hash[4] += e;
|
||||
m_intermediate_hash[5] += f;
|
||||
m_intermediate_hash[6] += g;
|
||||
m_intermediate_hash[7] += h;
|
||||
}
|
||||
|
||||
constexpr void ProcessLastBlock() {
|
||||
/* Setup the final block. */
|
||||
constexpr const auto BlockSizeWithoutSizeField = BlockSize - sizeof(u64);
|
||||
|
||||
/* Increment our bits consumed. */
|
||||
m_bits_consumed += BITSIZEOF(u8) * m_buffered_bytes;
|
||||
|
||||
/* Add 0x80 terminator. */
|
||||
m_buffer[m_buffered_bytes++] = 0x80;
|
||||
|
||||
/* If we can process the size field directly, do so, otherwise set up to process it. */
|
||||
if (m_buffered_bytes <= BlockSizeWithoutSizeField) {
|
||||
/* Clear up to size field. */
|
||||
for (size_t i = 0; i < BlockSizeWithoutSizeField - m_buffered_bytes; ++i) {
|
||||
m_buffer[m_buffered_bytes + i] = 0;
|
||||
}
|
||||
} else {
|
||||
/* Consume full block */
|
||||
for (size_t i = 0; i < BlockSize - m_buffered_bytes; ++i) {
|
||||
m_buffer[m_buffered_bytes + i] = 0;
|
||||
}
|
||||
|
||||
this->ProcessBlock(m_buffer);
|
||||
|
||||
/* Clear up to size field. */
|
||||
for (size_t i = 0; i < BlockSizeWithoutSizeField; ++i) {
|
||||
m_buffer[i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
}
|
Loading…
Reference in a new issue