1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2025-01-24 10:03:56 +00:00

kern: cleanup some KMemoryManager functions

This commit is contained in:
Michael Scire 2020-08-03 12:28:14 -07:00 committed by SciresM
parent 1b63002f91
commit 8e5c0a9663
2 changed files with 69 additions and 61 deletions

View file

@ -77,9 +77,9 @@ namespace ams::kern {
void InitializeOptimizedMemory() { std::memset(GetVoidPointer(this->metadata_region), 0, CalculateOptimizedProcessOverheadSize(this->heap.GetSize())); } void InitializeOptimizedMemory() { std::memset(GetVoidPointer(this->metadata_region), 0, CalculateOptimizedProcessOverheadSize(this->heap.GetSize())); }
void TrackUnoptimizedAllocation(KVirtualAddress block, size_t num_pages); void TrackUnoptimizedAllocation(KVirtualAddress block, size_t num_pages);
size_t TrackOptimizedAllocation(KVirtualAddress block, size_t num_pages); void TrackOptimizedAllocation(KVirtualAddress block, size_t num_pages);
size_t ProcessOptimizedAllocation(bool *out_any_new, KVirtualAddress block, size_t num_pages, u8 fill_pattern); bool ProcessOptimizedAllocation(KVirtualAddress block, size_t num_pages, u8 fill_pattern);
constexpr Pool GetPool() const { return this->pool; } constexpr Pool GetPool() const { return this->pool; }
constexpr size_t GetSize() const { return this->heap.GetSize(); } constexpr size_t GetSize() const { return this->heap.GetSize(); }
@ -87,15 +87,16 @@ namespace ams::kern {
size_t GetFreeSize() const { return this->heap.GetFreeSize(); } size_t GetFreeSize() const { return this->heap.GetFreeSize(); }
constexpr size_t GetPageOffset(KVirtualAddress address) const { return this->heap.GetPageOffset(address); }
constexpr size_t GetPageOffsetToEnd(KVirtualAddress address) const { return this->heap.GetPageOffsetToEnd(address); }
constexpr void SetNext(Impl *n) { this->next = n; } constexpr void SetNext(Impl *n) { this->next = n; }
constexpr void SetPrev(Impl *n) { this->prev = n; } constexpr void SetPrev(Impl *n) { this->prev = n; }
constexpr Impl *GetNext() const { return this->next; } constexpr Impl *GetNext() const { return this->next; }
constexpr Impl *GetPrev() const { return this->prev; } constexpr Impl *GetPrev() const { return this->prev; }
void Open(KLightLock *pool_locks, KVirtualAddress address, size_t num_pages) { void Open(KVirtualAddress address, size_t num_pages) {
KScopedLightLock lk(pool_locks[this->pool]); size_t index = this->GetPageOffset(address);
size_t index = this->heap.GetPageOffset(address);
const size_t end = index + num_pages; const size_t end = index + num_pages;
while (index < end) { while (index < end) {
const RefCount ref_count = (++this->page_reference_counts[index]); const RefCount ref_count = (++this->page_reference_counts[index]);
@ -105,10 +106,8 @@ namespace ams::kern {
} }
} }
void Close(KLightLock *pool_locks, KVirtualAddress address, size_t num_pages) { void Close(KVirtualAddress address, size_t num_pages) {
KScopedLightLock lk(pool_locks[this->pool]); size_t index = this->GetPageOffset(address);
size_t index = this->heap.GetPageOffset(address);
const size_t end = index + num_pages; const size_t end = index + num_pages;
size_t free_start = 0; size_t free_start = 0;
@ -186,8 +185,13 @@ namespace ams::kern {
/* Repeatedly open references until we've done so for all pages. */ /* Repeatedly open references until we've done so for all pages. */
while (num_pages) { while (num_pages) {
auto &manager = this->GetManager(address); auto &manager = this->GetManager(address);
const size_t cur_pages = std::min(num_pages, (manager.GetEndAddress() - address) / PageSize); const size_t cur_pages = std::min(num_pages, manager.GetPageOffsetToEnd(address));
manager.Open(this->pool_locks, address, cur_pages);
{
KScopedLightLock lk(this->pool_locks[manager.GetPool()]);
manager.Open(address, cur_pages);
}
num_pages -= cur_pages; num_pages -= cur_pages;
address += cur_pages * PageSize; address += cur_pages * PageSize;
} }
@ -197,8 +201,13 @@ namespace ams::kern {
/* Repeatedly close references until we've done so for all pages. */ /* Repeatedly close references until we've done so for all pages. */
while (num_pages) { while (num_pages) {
auto &manager = this->GetManager(address); auto &manager = this->GetManager(address);
const size_t cur_pages = std::min(num_pages, (manager.GetEndAddress() - address) / PageSize); const size_t cur_pages = std::min(num_pages, manager.GetPageOffsetToEnd(address));
manager.Close(this->pool_locks, address, cur_pages);
{
KScopedLightLock lk(this->pool_locks[manager.GetPool()]);
manager.Close(address, cur_pages);
}
num_pages -= cur_pages; num_pages -= cur_pages;
address += cur_pages * PageSize; address += cur_pages * PageSize;
} }

View file

@ -233,21 +233,24 @@ namespace ams::kern {
const auto [pool, dir] = DecodeOption(option); const auto [pool, dir] = DecodeOption(option);
/* Allocate the memory. */ /* Allocate the memory. */
bool has_optimized, is_optimized; bool optimized;
{ {
/* Lock the pool that we're allocating from. */ /* Lock the pool that we're allocating from. */
KScopedLightLock lk(this->pool_locks[pool]); KScopedLightLock lk(this->pool_locks[pool]);
/* Check if we have an optimized process. */ /* Check if we have an optimized process. */
has_optimized = this->has_optimized_process[pool]; const bool has_optimized = this->has_optimized_process[pool];
is_optimized = this->optimized_process_ids[pool] == process_id; const bool is_optimized = this->optimized_process_ids[pool] == process_id;
/* Allocate the page group. */ /* Allocate the page group. */
R_TRY(this->AllocatePageGroupImpl(out, num_pages, pool, dir, has_optimized && !is_optimized, false)); R_TRY(this->AllocatePageGroupImpl(out, num_pages, pool, dir, has_optimized && !is_optimized, false));
/* Set whether we should optimize. */
optimized = has_optimized && is_optimized;
} }
/* Perform optimized memory tracking, if we should. */ /* Perform optimized memory tracking, if we should. */
if (has_optimized && is_optimized) { if (optimized) {
/* Iterate over the allocated blocks. */ /* Iterate over the allocated blocks. */
for (const auto &block : *out) { for (const auto &block : *out) {
/* Get the block extents. */ /* Get the block extents. */
@ -263,41 +266,41 @@ namespace ams::kern {
bool any_new = false; bool any_new = false;
{ {
KVirtualAddress cur_address = block_address; KVirtualAddress cur_address = block_address;
size_t cur_pages = block_pages; size_t remaining_pages = block_pages;
while (cur_pages > 0) { while (remaining_pages > 0) {
/* Get the manager for the current address. */ /* Get the manager for the current address. */
auto &manager = this->GetManager(cur_address); auto &manager = this->GetManager(cur_address);
/* Process part or all of the block. */ /* Process part or all of the block. */
const size_t processed_pages = manager.ProcessOptimizedAllocation(std::addressof(any_new), cur_address, cur_pages, fill_pattern); const size_t cur_pages = std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
any_new = manager.ProcessOptimizedAllocation(cur_address, cur_pages, fill_pattern);
/* Advance. */ /* Advance. */
cur_address += processed_pages * PageSize; cur_address += cur_pages * PageSize;
cur_pages -= processed_pages; remaining_pages -= cur_pages;
} }
} }
/* If there are no new pages, move on to the next block. */ /* If there are new pages, update tracking for the allocation. */
if (!any_new) { if (any_new) {
continue; /* Update tracking for the allocation. */
} KVirtualAddress cur_address = block_address;
size_t remaining_pages = block_pages;
while (remaining_pages > 0) {
/* Get the manager for the current address. */
auto &manager = this->GetManager(cur_address);
/* Update tracking for the allocation. */ /* Lock the pool for the manager. */
KVirtualAddress cur_address = block_address; KScopedLightLock lk(this->pool_locks[manager.GetPool()]);
size_t cur_pages = block_pages;
while (cur_pages > 0) {
/* Get the manager for the current address. */
auto &manager = this->GetManager(cur_address);
/* Lock the pool for the manager. */ /* Track some or all of the current pages. */
KScopedLightLock lk(this->pool_locks[manager.GetPool()]); const size_t cur_pages = std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
manager.TrackOptimizedAllocation(cur_address, cur_pages);
/* Track some or all of the current pages. */ /* Advance. */
const size_t processed_pages = manager.TrackOptimizedAllocation(cur_address, cur_pages); cur_address += cur_pages * PageSize;
remaining_pages -= cur_pages;
/* Advance. */ }
cur_address += processed_pages * PageSize;
cur_pages -= processed_pages;
} }
} }
} else { } else {
@ -340,22 +343,24 @@ namespace ams::kern {
} }
void KMemoryManager::Impl::TrackUnoptimizedAllocation(KVirtualAddress block, size_t num_pages) { void KMemoryManager::Impl::TrackUnoptimizedAllocation(KVirtualAddress block, size_t num_pages) {
size_t offset = this->heap.GetPageOffset(block); /* Get the range we're tracking. */
size_t offset = this->GetPageOffset(block);
const size_t last = offset + num_pages - 1; const size_t last = offset + num_pages - 1;
/* Track. */
u64 *optimize_map = GetPointer<u64>(this->metadata_region); u64 *optimize_map = GetPointer<u64>(this->metadata_region);
while (offset <= last) { while (offset <= last) {
/* Mark the page as not being optimized-allocated. */
optimize_map[offset / BITSIZEOF(u64)] &= ~(u64(1) << (offset % BITSIZEOF(u64))); optimize_map[offset / BITSIZEOF(u64)] &= ~(u64(1) << (offset % BITSIZEOF(u64)));
offset++; offset++;
} }
} }
size_t KMemoryManager::Impl::TrackOptimizedAllocation(KVirtualAddress block, size_t num_pages) { void KMemoryManager::Impl::TrackOptimizedAllocation(KVirtualAddress block, size_t num_pages) {
/* Get the number of tracking pages. */
const size_t cur_pages = std::min(num_pages, this->heap.GetPageOffsetToEnd(block));
/* Get the range we're tracking. */ /* Get the range we're tracking. */
size_t offset = this->heap.GetPageOffset(block); size_t offset = this->GetPageOffset(block);
const size_t last = offset + cur_pages - 1; const size_t last = offset + num_pages - 1;
/* Track. */ /* Track. */
u64 *optimize_map = GetPointer<u64>(this->metadata_region); u64 *optimize_map = GetPointer<u64>(this->metadata_region);
@ -365,21 +370,15 @@ namespace ams::kern {
offset++; offset++;
} }
/* Return the number of pages we tracked. */
return cur_pages;
} }
size_t KMemoryManager::Impl::ProcessOptimizedAllocation(bool *out_any_new, KVirtualAddress block, size_t num_pages, u8 fill_pattern) { bool KMemoryManager::Impl::ProcessOptimizedAllocation(KVirtualAddress block, size_t num_pages, u8 fill_pattern) {
/* Get the number of processable pages. */ /* We want to return whether any pages were newly allocated. */
const size_t cur_pages = std::min(num_pages, this->heap.GetPageOffsetToEnd(block)); bool any_new = false;
/* Clear any new. */
*out_any_new = false;
/* Get the range we're processing. */ /* Get the range we're processing. */
size_t offset = this->heap.GetPageOffset(block); size_t offset = this->GetPageOffset(block);
const size_t last = offset + cur_pages - 1; const size_t last = offset + num_pages - 1;
/* Process. */ /* Process. */
u64 *optimize_map = GetPointer<u64>(this->metadata_region); u64 *optimize_map = GetPointer<u64>(this->metadata_region);
@ -387,7 +386,7 @@ namespace ams::kern {
/* Check if the page has been optimized-allocated before. */ /* Check if the page has been optimized-allocated before. */
if ((optimize_map[offset / BITSIZEOF(u64)] & (u64(1) << (offset % BITSIZEOF(u64)))) == 0) { if ((optimize_map[offset / BITSIZEOF(u64)] & (u64(1) << (offset % BITSIZEOF(u64)))) == 0) {
/* If not, it's new. */ /* If not, it's new. */
*out_any_new = true; any_new = true;
/* Fill the page. */ /* Fill the page. */
std::memset(GetVoidPointer(this->heap.GetAddress() + offset * PageSize), fill_pattern, PageSize); std::memset(GetVoidPointer(this->heap.GetAddress() + offset * PageSize), fill_pattern, PageSize);
@ -397,7 +396,7 @@ namespace ams::kern {
} }
/* Return the number of pages we processed. */ /* Return the number of pages we processed. */
return cur_pages; return any_new;
} }
size_t KMemoryManager::Impl::CalculateMetadataOverheadSize(size_t region_size) { size_t KMemoryManager::Impl::CalculateMetadataOverheadSize(size_t region_size) {