/* * Copyright (c) 2018-2020 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "utils.h" #include "di.h" #include "se.h" #include "fuse.h" #include "pmc.h" #include "timers.h" #include "i2c.h" #include "panic.h" #include "car.h" #include "btn.h" #include "max77620.h" #include "../../../fusee/common/log.h" #include "../../../fusee/common/vsprintf.h" #include "../../../fusee/common/display/video_fb.h" #include #define u8 uint8_t #define u32 uint32_t #include "rebootstub_bin.h" #undef u8 #undef u32 static bool is_soc_mariko(void) { return fuse_get_soc_type() == 1; } __attribute__((noreturn)) static void shutdown_system(bool reboot) { /* Ensure that i2c5 is in a coherent state. */ i2c_config(I2C_5); clkrst_reboot(CARDEVICE_I2C5); i2c_init(I2C_5); /* Get value, set or clear software reset mask. */ uint8_t on_off_2_val = 0; i2c_query(I2C_5, MAX77620_PWR_I2C_ADDR, MAX77620_REG_ONOFFCNFG2, &on_off_2_val, 1); if (reboot) { on_off_2_val |= MAX77620_ONOFFCNFG2_SFT_RST_WK; } else { on_off_2_val &= ~(MAX77620_ONOFFCNFG2_SFT_RST_WK); } i2c_send(I2C_5, MAX77620_PWR_I2C_ADDR, MAX77620_REG_ONOFFCNFG2, &on_off_2_val, 1); /* Set software reset mask. */ uint8_t on_off_1_val = 0; i2c_query(I2C_5, MAX77620_PWR_I2C_ADDR, MAX77620_REG_ONOFFCNFG1, &on_off_1_val, 1); on_off_1_val |= MAX77620_ONOFFCNFG1_SFT_RST; i2c_send(I2C_5, MAX77620_PWR_I2C_ADDR, MAX77620_REG_ONOFFCNFG1, &on_off_1_val, 1); while (true) { /* Wait for reboot. */ } } extern uint8_t __reboot_start__[], __reboot_end__[]; void wait(uint32_t microseconds) { uint32_t old_time = TIMERUS_CNTR_1US_0; while (TIMERUS_CNTR_1US_0 - old_time <= microseconds) { /* Spin-lock. */ } } __attribute__((noreturn)) void watchdog_reboot(void) { volatile watchdog_timers_t *wdt = GET_WDT(4); wdt->PATTERN = WDT_REBOOT_PATTERN; wdt->COMMAND = 2; /* Disable Counter. */ GET_WDT_REBOOT_CFG_REG(4) = 0xC0000000; wdt->CONFIG = 0x8019; /* Full System Reset after Fourth Counter expires, using TIMER(9). */ wdt->COMMAND = 1; /* Enable Counter. */ while (true) { /* Wait for reboot. */ } } __attribute__((noreturn)) void pmc_reboot(uint32_t scratch0) { APBDEV_PMC_SCRATCH0_0 = scratch0; /* Reset the processor. */ APBDEV_PMC_CONTROL = BIT(4); while (true) { /* Wait for reboot. */ } } __attribute__((noreturn)) void reboot_to_self(void) { if (is_soc_mariko()) { /* If mariko, we can't reboot to self/payload, so just reboot. */ shutdown_system(true); } else { /* Patch SDRAM init to perform an SVC immediately after second write */ APBDEV_PMC_SCRATCH45_0 = 0x2E38DFFF; APBDEV_PMC_SCRATCH46_0 = 0x6001DC28; /* Set SVC handler to jump to reboot stub in IRAM. */ APBDEV_PMC_SCRATCH33_0 = 0x4003F000; APBDEV_PMC_SCRATCH40_0 = 0x6000F208; /* Copy reboot stub into IRAM high. */ for (size_t i = 0; i < rebootstub_bin_size; i += sizeof(uint32_t)) { write32le((void *)0x4003F000, i, read32le(rebootstub_bin, i)); } /* Copy our low part into safe IRAM. */ for (size_t i = 0; i < 0x8000; i += sizeof(uint32_t)) { write32le((void *)0x40030000, i, read32le((void *)0x40008000, i)); } /* Copy our start page into fatal IRAM. */ for (size_t i = 0; i < 0x1000; i += sizeof(uint32_t)) { write32le((void *)0x4003D000, i, read32le((void *)0x40010000, i)); } /* Copy our reboot handler to the rebootstub target. */ for (size_t i = 0; i < (__reboot_end__ - __reboot_start__); i += sizeof(uint32_t)) { write32le((void *)0x40010000, i, read32le(__reboot_start__, i)); } /* Trigger warm reboot. */ APBDEV_PMC_SCRATCH0_0 = (1 << 0); /* Reset the processor. */ APBDEV_PMC_CONTROL = BIT(4); while (true) { /* Wait for reboot. */ } } } __attribute__((noreturn)) void wait_for_button_and_reboot(void) { uint32_t button; while (true) { button = btn_read(); if (button & BTN_POWER) { reboot_to_self(); } } } __attribute__ ((noreturn)) void generic_panic(void) { panic(0xFF000006); } __attribute__((noreturn)) void fatal_error(const char *fmt, ...) { /* Forcefully initialize the screen if logging is disabled. */ if (log_get_log_level() == SCREEN_LOG_LEVEL_NONE) { /* Zero-fill the framebuffer and register it as printk provider. */ video_init((void *)0xC0000000); /* Initialize the display. */ display_init(); /* Set the framebuffer. */ display_init_framebuffer((void *)0xC0000000); /* Turn on the backlight after initializing the lfb */ /* to avoid flickering. */ display_backlight(true); } /* Override the global logging level. */ log_set_log_level(SCREEN_LOG_LEVEL_ERROR); /* Display fatal error. */ va_list args; print(SCREEN_LOG_LEVEL_ERROR, "Fatal error: "); va_start(args, fmt); vprint(SCREEN_LOG_LEVEL_ERROR, fmt, args); va_end(args); print(SCREEN_LOG_LEVEL_ERROR | SCREEN_LOG_LEVEL_NO_PREFIX,"\nPress POWER to reboot\n"); /* Wait for button and reboot. */ wait_for_button_and_reboot(); } __attribute__((noinline)) bool overlaps(uint64_t as, uint64_t ae, uint64_t bs, uint64_t be) { if(as <= bs && bs <= ae) return true; if(bs <= as && as <= be) return true; return false; }