/* * Copyright (c) 2018 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "utils.h" #include "memory_map.h" #include "bootup.h" #include "cpu_context.h" #include "package2.h" #include "configitem.h" #include "se.h" #include "interrupt.h" #include "masterkey.h" #include "arm.h" #include "pmc.h" #include "randomcache.h" #include "timers.h" #include "bootconfig.h" #include "sysctr0.h" #include "exocfg.h" #include "smc_api.h" extern void *__start_cold_addr; extern size_t __bin_size; static void derive_new_device_keys(unsigned int keygen_keyslot) { uint8_t work_buffer[0x10]; static const uint8_t new_device_key_sources[MASTERKEY_NUM_NEW_DEVICE_KEYS][0x10] = { {0x8B, 0x4E, 0x1C, 0x22, 0x42, 0x07, 0xC8, 0x73, 0x56, 0x94, 0x08, 0x8B, 0xCC, 0x47, 0x0F, 0x5D}, /* 4.x New Device Key Source. */ {0x6C, 0xEF, 0xC6, 0x27, 0x8B, 0xEC, 0x8A, 0x91, 0x99, 0xAB, 0x24, 0xAC, 0x4F, 0x1C, 0x8F, 0x1C} /* 5.x New Device Key Source. */ }; static const uint8_t new_device_keygen_sources[MASTERKEY_NUM_NEW_DEVICE_KEYS][0x10] = { {0x88, 0x62, 0x34, 0x6E, 0xFA, 0xF7, 0xD8, 0x3F, 0xE1, 0x30, 0x39, 0x50, 0xF0, 0xB7, 0x5D, 0x5D}, /* 4.x New Device Keygen Source. */ {0x06, 0x1E, 0x7B, 0xE9, 0x6D, 0x47, 0x8C, 0x77, 0xC5, 0xC8, 0xE7, 0x94, 0x9A, 0xA8, 0x5F, 0x2E} /* 5.x New Device Keygen Source. */ }; for (unsigned int revision = 0; revision < MASTERKEY_NUM_NEW_DEVICE_KEYS; revision++) { se_aes_ecb_decrypt_block(keygen_keyslot, work_buffer, 0x10, new_device_key_sources[revision], 0x10); decrypt_data_into_keyslot(KEYSLOT_SWITCH_TEMPKEY, mkey_get_keyslot(0), new_device_keygen_sources[revision], 0x10); if (revision < MASTERKEY_NUM_NEW_DEVICE_KEYS - 1) { se_aes_ecb_decrypt_block(KEYSLOT_SWITCH_TEMPKEY, work_buffer, 0x10, work_buffer, 0x10); set_old_devkey(revision + MASTERKEY_REVISION_400_410, work_buffer); } else { decrypt_data_into_keyslot(KEYSLOT_SWITCH_DEVICEKEY, KEYSLOT_SWITCH_TEMPKEY, work_buffer, 0x10); } } set_aes_keyslot_flags(KEYSLOT_SWITCH_DEVICEKEY, 0xFF); clear_aes_keyslot(keygen_keyslot); } /* Hardware init, sets up the RNG and SESSION keyslots, derives new DEVICE key. */ static void setup_se(void) { uint8_t work_buffer[0x10]; /* Sanity check the Security Engine. */ se_verify_flags_cleared(); /* Initialize interrupts. */ intr_initialize_gic_nonsecure(); /* Perform some sanity initialization. */ volatile security_engine_t *p_security_engine = get_security_engine(); p_security_engine->_0x0 &= 0xFFFEFFFF; /* Clear bit 16. */ (void)(SECURITY_ENGINE->FLAGS_REG); __dsb_sy(); p_security_engine->_0x4 = 0; p_security_engine->AES_KEY_READ_DISABLE_REG = 0; p_security_engine->RSA_KEY_READ_DISABLE_REG = 0; p_security_engine->_0x0 &= 0xFFFFFFFB; /* Currently unknown what each flag does. */ for (unsigned int i = 0; i < KEYSLOT_AES_MAX; i++) { set_aes_keyslot_flags(i, 0x15); } for (unsigned int i = 4; i < KEYSLOT_AES_MAX; i++) { set_aes_keyslot_flags(i, 0x40); } for (unsigned int i = 0; i < KEYSLOT_RSA_MAX; i++) { set_rsa_keyslot_flags(i, 0x41); } /* Detect Master Key revision. */ mkey_detect_revision(); /* Derive new device keys. */ switch (exosphere_get_target_firmware()) { case EXOSPHERE_TARGET_FIRMWARE_100: case EXOSPHERE_TARGET_FIRMWARE_200: case EXOSPHERE_TARGET_FIRMWARE_300: break; case EXOSPHERE_TARGET_FIRMWARE_400: derive_new_device_keys(KEYSLOT_SWITCH_4XNEWDEVICEKEYGENKEY); break; case EXOSPHERE_TARGET_FIRMWARE_500: derive_new_device_keys(KEYSLOT_SWITCH_5XNEWDEVICEKEYGENKEY); break; } se_initialize_rng(KEYSLOT_SWITCH_DEVICEKEY); /* Generate random data, transform with device key to get RNG key. */ se_generate_random(KEYSLOT_SWITCH_DEVICEKEY, work_buffer, 0x10); decrypt_data_into_keyslot(KEYSLOT_SWITCH_RNGKEY, KEYSLOT_SWITCH_DEVICEKEY, work_buffer, 0x10); set_aes_keyslot_flags(KEYSLOT_SWITCH_RNGKEY, 0xFF); /* Repeat for Session key. */ se_generate_random(KEYSLOT_SWITCH_DEVICEKEY, work_buffer, 0x10); decrypt_data_into_keyslot(KEYSLOT_SWITCH_SESSIONKEY, KEYSLOT_SWITCH_DEVICEKEY, work_buffer, 0x10); set_aes_keyslot_flags(KEYSLOT_SWITCH_SESSIONKEY, 0xFF); /* Generate test vector for our keys. */ se_generate_stored_vector(); } static void setup_boot_config(void) { /* Load boot config only if dev unit. */ if (configitem_is_retail()) { bootconfig_clear(); } else { flush_dcache_range((uint8_t *)NX_BOOTLOADER_BOOTCONFIG_POINTER, (uint8_t *)NX_BOOTLOADER_BOOTCONFIG_POINTER + sizeof(bootconfig_t)); bootconfig_load_and_verify((bootconfig_t *)NX_BOOTLOADER_BOOTCONFIG_POINTER); } } static void package2_crypt_ctr(unsigned int master_key_rev, void *dst, size_t dst_size, const void *src, size_t src_size, const void *ctr, size_t ctr_size) { /* Derive package2 key. */ const uint8_t package2_key_source[0x10] = {0xFB, 0x8B, 0x6A, 0x9C, 0x79, 0x00, 0xC8, 0x49, 0xEF, 0xD2, 0x4D, 0x85, 0x4D, 0x30, 0xA0, 0xC7}; flush_dcache_range((uint8_t *)dst, (uint8_t *)dst + dst_size); flush_dcache_range((uint8_t *)src, (uint8_t *)src + src_size); unsigned int keyslot = mkey_get_keyslot(master_key_rev); decrypt_data_into_keyslot(KEYSLOT_SWITCH_PACKAGE2KEY, keyslot, package2_key_source, 0x10); /* Perform Encryption. */ se_aes_ctr_crypt(KEYSLOT_SWITCH_PACKAGE2KEY, dst, dst_size, src, src_size, ctr, ctr_size); } static void verify_header_signature(package2_header_t *header) { const uint8_t *modulus; if (configitem_is_retail()) { static const uint8_t package2_modulus_retail[0x100] = { 0x8D, 0x13, 0xA7, 0x77, 0x6A, 0xE5, 0xDC, 0xC0, 0x3B, 0x25, 0xD0, 0x58, 0xE4, 0x20, 0x69, 0x59, 0x55, 0x4B, 0xAB, 0x70, 0x40, 0x08, 0x28, 0x07, 0xA8, 0xA7, 0xFD, 0x0F, 0x31, 0x2E, 0x11, 0xFE, 0x47, 0xA0, 0xF9, 0x9D, 0xDF, 0x80, 0xDB, 0x86, 0x5A, 0x27, 0x89, 0xCD, 0x97, 0x6C, 0x85, 0xC5, 0x6C, 0x39, 0x7F, 0x41, 0xF2, 0xFF, 0x24, 0x20, 0xC3, 0x95, 0xA6, 0xF7, 0x9D, 0x4A, 0x45, 0x74, 0x8B, 0x5D, 0x28, 0x8A, 0xC6, 0x99, 0x35, 0x68, 0x85, 0xA5, 0x64, 0x32, 0x80, 0x9F, 0xD3, 0x48, 0x39, 0xA2, 0x1D, 0x24, 0x67, 0x69, 0xDF, 0x75, 0xAC, 0x12, 0xB5, 0xBD, 0xC3, 0x29, 0x90, 0xBE, 0x37, 0xE4, 0xA0, 0x80, 0x9A, 0xBE, 0x36, 0xBF, 0x1F, 0x2C, 0xAB, 0x2B, 0xAD, 0xF5, 0x97, 0x32, 0x9A, 0x42, 0x9D, 0x09, 0x8B, 0x08, 0xF0, 0x63, 0x47, 0xA3, 0xE9, 0x1B, 0x36, 0xD8, 0x2D, 0x8A, 0xD7, 0xE1, 0x54, 0x11, 0x95, 0xE4, 0x45, 0x88, 0x69, 0x8A, 0x2B, 0x35, 0xCE, 0xD0, 0xA5, 0x0B, 0xD5, 0x5D, 0xAC, 0xDB, 0xAF, 0x11, 0x4D, 0xCA, 0xB8, 0x1E, 0xE7, 0x01, 0x9E, 0xF4, 0x46, 0xA3, 0x8A, 0x94, 0x6D, 0x76, 0xBD, 0x8A, 0xC8, 0x3B, 0xD2, 0x31, 0x58, 0x0C, 0x79, 0xA8, 0x26, 0xE9, 0xD1, 0x79, 0x9C, 0xCB, 0xD4, 0x2B, 0x6A, 0x4F, 0xC6, 0xCC, 0xCF, 0x90, 0xA7, 0xB9, 0x98, 0x47, 0xFD, 0xFA, 0x4C, 0x6C, 0x6F, 0x81, 0x87, 0x3B, 0xCA, 0xB8, 0x50, 0xF6, 0x3E, 0x39, 0x5D, 0x4D, 0x97, 0x3F, 0x0F, 0x35, 0x39, 0x53, 0xFB, 0xFA, 0xCD, 0xAB, 0xA8, 0x7A, 0x62, 0x9A, 0x3F, 0xF2, 0x09, 0x27, 0x96, 0x3F, 0x07, 0x9A, 0x91, 0xF7, 0x16, 0xBF, 0xC6, 0x3A, 0x82, 0x5A, 0x4B, 0xCF, 0x49, 0x50, 0x95, 0x8C, 0x55, 0x80, 0x7E, 0x39, 0xB1, 0x48, 0x05, 0x1E, 0x21, 0xC7, 0x24, 0x4F }; modulus = package2_modulus_retail; } else { static const uint8_t package2_modulus_dev[0x100] = { 0xB3, 0x65, 0x54, 0xFB, 0x0A, 0xB0, 0x1E, 0x85, 0xA7, 0xF6, 0xCF, 0x91, 0x8E, 0xBA, 0x96, 0x99, 0x0D, 0x8B, 0x91, 0x69, 0x2A, 0xEE, 0x01, 0x20, 0x4F, 0x34, 0x5C, 0x2C, 0x4F, 0x4E, 0x37, 0xC7, 0xF1, 0x0B, 0xD4, 0xCD, 0xA1, 0x7F, 0x93, 0xF1, 0x33, 0x59, 0xCE, 0xB1, 0xE9, 0xDD, 0x26, 0xE6, 0xF3, 0xBB, 0x77, 0x87, 0x46, 0x7A, 0xD6, 0x4E, 0x47, 0x4A, 0xD1, 0x41, 0xB7, 0x79, 0x4A, 0x38, 0x06, 0x6E, 0xCF, 0x61, 0x8F, 0xCD, 0xC1, 0x40, 0x0B, 0xFA, 0x26, 0xDC, 0xC0, 0x34, 0x51, 0x83, 0xD9, 0x3B, 0x11, 0x54, 0x3B, 0x96, 0x27, 0x32, 0x9A, 0x95, 0xBE, 0x1E, 0x68, 0x11, 0x50, 0xA0, 0x6B, 0x10, 0xA8, 0x83, 0x8B, 0xF5, 0xFC, 0xBC, 0x90, 0x84, 0x7A, 0x5A, 0x5C, 0x43, 0x52, 0xE6, 0xC8, 0x26, 0xE9, 0xFE, 0x06, 0xA0, 0x8B, 0x53, 0x0F, 0xAF, 0x1E, 0xC4, 0x1C, 0x0B, 0xCF, 0x50, 0x1A, 0xA4, 0xF3, 0x5C, 0xFB, 0xF0, 0x97, 0xE4, 0xDE, 0x32, 0x0A, 0x9F, 0xE3, 0x5A, 0xAA, 0xB7, 0x44, 0x7F, 0x5C, 0x33, 0x60, 0xB9, 0x0F, 0x22, 0x2D, 0x33, 0x2A, 0xE9, 0x69, 0x79, 0x31, 0x42, 0x8F, 0xE4, 0x3A, 0x13, 0x8B, 0xE7, 0x26, 0xBD, 0x08, 0x87, 0x6C, 0xA6, 0xF2, 0x73, 0xF6, 0x8E, 0xA7, 0xF2, 0xFE, 0xFB, 0x6C, 0x28, 0x66, 0x0D, 0xBD, 0xD7, 0xEB, 0x42, 0xA8, 0x78, 0xE6, 0xB8, 0x6B, 0xAE, 0xC7, 0xA9, 0xE2, 0x40, 0x6E, 0x89, 0x20, 0x82, 0x25, 0x8E, 0x3C, 0x6A, 0x60, 0xD7, 0xF3, 0x56, 0x8E, 0xEC, 0x8D, 0x51, 0x8A, 0x63, 0x3C, 0x04, 0x78, 0x23, 0x0E, 0x90, 0x0C, 0xB4, 0xE7, 0x86, 0x3B, 0x4F, 0x8E, 0x13, 0x09, 0x47, 0x32, 0x0E, 0x04, 0xB8, 0x4D, 0x5B, 0xB0, 0x46, 0x71, 0xB0, 0x5C, 0xF4, 0xAD, 0x63, 0x4F, 0xC5, 0xE2, 0xAC, 0x1E, 0xC4, 0x33, 0x96, 0x09, 0x7B }; modulus = package2_modulus_dev; } /* This is normally only allowed on dev units, but we'll allow it anywhere. */ bool is_unsigned = EXOSPHERE_LOOSEN_PACKAGE2_RESTRICTIONS_FOR_DEBUG || bootconfig_is_package2_unsigned(); if (!is_unsigned && se_rsa2048_pss_verify(header->signature, 0x100, modulus, 0x100, header->encrypted_header, 0x100) == 0) { panic(0xF0000001); /* Invalid PK21 signature. */ } } static uint32_t get_package2_size(package2_meta_t *metadata) { return metadata->ctr_dwords[0] ^ metadata->ctr_dwords[2] ^ metadata->ctr_dwords[3]; } static bool validate_package2_metadata(package2_meta_t *metadata) { if (metadata->magic != MAGIC_PK21) { return false; } /* Package2 size, version number is stored XORed in header CTR. */ /* Nintendo, what the fuck? */ uint32_t package_size = metadata->ctr_dwords[0] ^ metadata->ctr_dwords[2] ^ metadata->ctr_dwords[3]; uint8_t header_version = (uint8_t)((metadata->ctr_dwords[1] ^ (metadata->ctr_dwords[1] >> 16) ^ (metadata->ctr_dwords[1] >> 24)) & 0xFF); /* Ensure package isn't too big or too small. */ if (package_size <= sizeof(package2_header_t) || package_size > PACKAGE2_SIZE_MAX) { return false; } /* Validate that we're working with a header we know how to handle. */ if (header_version > MASTERKEY_REVISION_MAX) { return false; } /* Require aligned entrypoint. */ if (metadata->entrypoint & 3) { return false; } /* Validate section size sanity. */ if (metadata->section_sizes[0] + metadata->section_sizes[1] + metadata->section_sizes[2] + sizeof(package2_header_t) != package_size) { return false; } bool entrypoint_found = false; /* Header has space for 4 sections, but only 3 are validated/potentially loaded on hardware. */ size_t cur_section_offset = 0; for (unsigned int section = 0; section < PACKAGE2_SECTION_MAX; section++) { /* Validate section size alignment. */ if (metadata->section_sizes[section] & 3) { return false; } /* Validate section does not overflow. */ if (check_32bit_additive_overflow(metadata->section_offsets[section], metadata->section_sizes[section])) { return false; } /* Check for entrypoint presence. */ uint32_t section_end = metadata->section_offsets[section] + metadata->section_sizes[section]; if (metadata->section_offsets[section] <= metadata->entrypoint && metadata->entrypoint < section_end) { entrypoint_found = true; } /* Ensure no overlap with later sections. */ for (unsigned int later_section = section + 1; later_section < PACKAGE2_SECTION_MAX; later_section++) { uint32_t later_section_end = metadata->section_offsets[later_section] + metadata->section_sizes[later_section]; if (overlaps(metadata->section_offsets[section], section_end, metadata->section_offsets[later_section], later_section_end)) { return false; } } bool check_hash = EXOSPHERE_LOOSEN_PACKAGE2_RESTRICTIONS_FOR_DEBUG == 0; /* Validate section hashes. */ if (metadata->section_sizes[section]) { void *section_data = (void *)((uint8_t *)NX_BOOTLOADER_PACKAGE2_LOAD_ADDRESS + sizeof(package2_header_t) + cur_section_offset); uint8_t calculated_hash[0x20]; flush_dcache_range((uint8_t *)section_data, (uint8_t *)section_data + metadata->section_sizes[section]); se_calculate_sha256(calculated_hash, section_data, metadata->section_sizes[section]); if (check_hash && memcmp(calculated_hash, metadata->section_hashes[section], sizeof(metadata->section_hashes[section])) != 0) { return false; } cur_section_offset += metadata->section_sizes[section]; } } /* Ensure that entrypoint is present in one of our sections. */ if (!entrypoint_found) { return false; } /* Perform version checks. */ /* We will be compatible with all package2s released before current, but not newer ones. */ if (metadata->version_max >= PACKAGE2_MINVER_THEORETICAL && metadata->version_min < PACKAGE2_MAXVER_500_CURRENT) { return true; } return false; } /* Decrypts package2 header, and returns the master key revision required. */ static uint32_t decrypt_and_validate_header(package2_header_t *header) { package2_meta_t metadata; if (bootconfig_is_package2_plaintext() == 0) { uint32_t mkey_rev; /* Try to decrypt for all possible master keys. */ for (mkey_rev = 0; mkey_rev <= mkey_get_revision(); mkey_rev++) { package2_crypt_ctr(mkey_rev, &metadata, sizeof(package2_meta_t), &header->metadata, sizeof(package2_meta_t), header->metadata.ctr, sizeof(header->metadata.ctr)); /* Copy the ctr (which stores information) into the decrypted metadata. */ memcpy(metadata.ctr, header->metadata.ctr, sizeof(header->metadata.ctr)); /* See if this is the correct key. */ if (validate_package2_metadata(&metadata)) { header->metadata = metadata; return mkey_rev; } } /* Ensure we successfully decrypted the header. */ if (mkey_rev > mkey_get_revision()) { panic(0xFAF00003); } } else if (!validate_package2_metadata(&header->metadata)) { panic(0xFAF0003); } return 0; } static void load_package2_sections(package2_meta_t *metadata, uint32_t master_key_rev) { /* By default, copy data directly from where NX_BOOTLOADER puts it. */ void *load_buf = NX_BOOTLOADER_PACKAGE2_LOAD_ADDRESS; /* Check whether any of our sections overlap this region. If they do, we must relocate and copy from elsewhere. */ bool needs_relocation = false; for (unsigned int section = 0; section < PACKAGE2_SECTION_MAX; section++) { uint64_t section_start = DRAM_BASE_PHYSICAL + (uint64_t)metadata->section_offsets[section]; uint64_t section_end = section_start + (uint64_t)metadata->section_sizes[section]; if (overlaps(section_start, section_end, (uint64_t)(NX_BOOTLOADER_PACKAGE2_LOAD_ADDRESS), (uint64_t)(NX_BOOTLOADER_PACKAGE2_LOAD_ADDRESS) + PACKAGE2_SIZE_MAX)) { needs_relocation = true; } } if (needs_relocation) { /* This code should *always* succeed in finding a carveout within seven loops, */ /* due to the section size limit, and section number limit. */ /* However, Nintendo tries panics after 8 loops if a safe section is not found. */ /* This should never be the case, mathematically. */ /* We will replicate this behavior. */ bool found_safe_carveout = false; uint64_t potential_base_start = DRAM_BASE_PHYSICAL; uint64_t potential_base_end = potential_base_start + PACKAGE2_SIZE_MAX; for (unsigned int i = 0; i < 8; i++) { int is_safe = 1; for (unsigned int section = 0; section < PACKAGE2_SECTION_MAX; section++) { uint64_t section_start = DRAM_BASE_PHYSICAL + (uint64_t)metadata->section_offsets[section]; uint64_t section_end = section_start + (uint64_t)metadata->section_sizes[section]; if (overlaps(section_start, section_end, potential_base_start, potential_base_end)) { is_safe = 0; } } found_safe_carveout |= is_safe; if (found_safe_carveout) { break; } potential_base_start += PACKAGE2_SIZE_MAX; potential_base_end += PACKAGE2_SIZE_MAX; } if (!found_safe_carveout) { generic_panic(); } /* Relocate to new carveout. */ memcpy((void *)potential_base_start, load_buf, PACKAGE2_SIZE_MAX); memset(load_buf, 0, PACKAGE2_SIZE_MAX); load_buf = (void *)potential_base_start; } size_t cur_section_offset = 0; /* Copy each section to its appropriate location, decrypting if necessary. */ for (unsigned int section = 0; section < PACKAGE2_SECTION_MAX; section++) { if (metadata->section_sizes[section] == 0) { continue; } void *dst_start = (void *)(DRAM_BASE_PHYSICAL + (uint64_t)metadata->section_offsets[section]); void *src_start = load_buf + sizeof(package2_header_t) + cur_section_offset; size_t size = (size_t)metadata->section_sizes[section]; if (bootconfig_is_package2_plaintext() && size != 0) { memcpy(dst_start, src_start, size); } else if (size != 0) { package2_crypt_ctr(master_key_rev, dst_start, size, src_start, size, metadata->section_ctrs[section], 0x10); } cur_section_offset += size; } /* Clear the encrypted package2 from memory. */ memset(load_buf, 0, PACKAGE2_SIZE_MAX); } static void copy_warmboot_bin_to_dram() { uint8_t *warmboot_src = (uint8_t *)0x4003B000; uint8_t *warmboot_dst = (uint8_t *)0x8000D000; const size_t warmboot_size = 0x2000; /* Flush cache, to ensure warmboot is where we need it to be. */ flush_dcache_range(warmboot_src, warmboot_src + warmboot_size); __dsb_sy(); /* Copy warmboot. */ for (size_t i = 0; i < warmboot_size; i += sizeof(uint32_t)) { write32le(warmboot_dst, i, read32le(warmboot_src, i)); } /* Flush cache, to ensure warmboot is where we need it to be. */ flush_dcache_range(warmboot_dst, warmboot_dst + warmboot_size); __dsb_sy(); } static void sync_with_nx_bootloader(int state) { while (MAILBOX_NX_BOOTLOADER_SETUP_STATE < state) { wait(100); } } static void identity_unmap_dram(void) { uintptr_t *mmu_l1_tbl = (uintptr_t *)(TZRAM_GET_SEGMENT_ADDRESS(TZRAM_SEGEMENT_ID_SECMON_EVT) + 0x800 - 64); mmu_unmap_range(1, mmu_l1_tbl, IDENTITY_GET_MAPPING_ADDRESS(IDENTITY_MAPPING_DRAM), IDENTITY_GET_MAPPING_SIZE(IDENTITY_MAPPING_DRAM)); tlb_invalidate_all_inner_shareable(); } uintptr_t get_pk2ldr_stack_address(void) { return TZRAM_GET_SEGMENT_ADDRESS(TZRAM_SEGMENT_ID_PK2LDR) + 0x2000; } /* This function is called during coldboot init, and validates a package2. */ /* This package2 is read into memory by a concurrent BPMP bootloader. */ void load_package2(coldboot_crt0_reloc_list_t *reloc_list) { /* Load Exosphere-specific config. */ exosphere_load_config(); /* Setup the Security Engine. */ setup_se(); /* Perform initial PMC register writes, if relevant. */ if (exosphere_get_target_firmware() >= EXOSPHERE_TARGET_FIRMWARE_400) { MAKE_REG32(PMC_BASE + 0x054) = 0x8000D000; MAKE_REG32(PMC_BASE + 0x0A0) &= 0xFFF3FFFF; MAKE_REG32(PMC_BASE + 0x818) &= 0xFFFFFFFE; MAKE_REG32(PMC_BASE + 0x334) |= 0x10; MAKE_REG32(PMC_BASE + 0x360) = 6; } wait(1000); bootup_misc_mmio(); setup_current_core_state(); /* Save boot reason to global. */ bootconfig_load_boot_reason((volatile boot_reason_t *)(MAILBOX_NX_BOOTLOADER_BOOT_REASON)); /* Initialize cache'd random bytes for kernel. */ randomcache_init(); /* memclear the initial copy of Exosphere running in IRAM (relocated to TZRAM by earlier code). */ memset((void *)reloc_list->reloc_base, 0, reloc_list->loaded_bin_size); /* Let NX Bootloader know that we're running. */ MAILBOX_NX_BOOTLOADER_IS_SECMON_AWAKE = 1; /* Wait for 1 second, to allow time for NX_BOOTLOADER to draw to the screen. This is useful for debugging. */ /* wait(1000000); */ /* Synchronize with NX BOOTLOADER. */ sync_with_nx_bootloader(NX_BOOTLOADER_STATE_MOVED_BOOTCONFIG); /* Load Boot Config into global. */ setup_boot_config(); /* Set sysctr0 registers based on bootconfig. */ if (exosphere_get_target_firmware() >= EXOSPHERE_TARGET_FIRMWARE_400) { uint64_t sysctr0_val = bootconfig_get_value_for_sysctr0(); MAKE_SYSCTR0_REG(0x8) = (uint32_t)((sysctr0_val >> 0) & 0xFFFFFFFFULL); MAKE_SYSCTR0_REG(0xC) = (uint32_t)((sysctr0_val >> 32) & 0xFFFFFFFFULL); MAKE_SYSCTR0_REG(0x0) = 3; } /* Synchronize with NX BOOTLOADER. */ if (exosphere_get_target_firmware() >= EXOSPHERE_TARGET_FIRMWARE_400) { sync_with_nx_bootloader(NX_BOOTLOADER_STATE_DRAM_INITIALIZED_4X); copy_warmboot_bin_to_dram(); sync_with_nx_bootloader(NX_BOOTLOADER_STATE_LOADED_PACKAGE2_4X); } else { sync_with_nx_bootloader(NX_BOOTLOADER_STATE_LOADED_PACKAGE2); } /* Make PMC (2.x+), MC (4.x+) registers secure-only */ secure_additional_devices(); /* Remove the identity mapping for iRAM-C+D & TZRAM */ /* For our crt0 to work, this doesn't actually unmap TZRAM */ identity_unmap_iram_cd_tzram(); /* Load header from NX_BOOTLOADER-initialized DRAM. */ package2_header_t header; flush_dcache_range((uint8_t *)NX_BOOTLOADER_PACKAGE2_LOAD_ADDRESS, (uint8_t *)NX_BOOTLOADER_PACKAGE2_LOAD_ADDRESS + sizeof(header)); memcpy(&header, NX_BOOTLOADER_PACKAGE2_LOAD_ADDRESS, sizeof(header)); flush_dcache_range((uint8_t *)&header, (uint8_t *)&header + sizeof(header)); /* Perform signature checks. */ /* Special exosphere patching enable: All-zeroes signature + decrypted header implies unsigned and decrypted package2. */ if (header.signature[0] == 0 && memcmp(header.signature, header.signature + 1, sizeof(header.signature) - 1) == 0 && header.metadata.magic == MAGIC_PK21) { bootconfig_set_package2_plaintext_and_unsigned(); } verify_header_signature(&header); /* Decrypt header, get key revision required. */ uint32_t package2_mkey_rev = decrypt_and_validate_header(&header); /* Copy hash, if necessary. */ if (bootconfig_is_recovery_boot()) { bootconfig_set_package2_hash_for_recovery(NX_BOOTLOADER_PACKAGE2_LOAD_ADDRESS, get_package2_size(&header.metadata)); } /* Load Package2 Sections. */ load_package2_sections(&header.metadata, package2_mkey_rev); /* Clean up cache. */ flush_dcache_all(); invalidate_icache_all(); /* non-broadcasting */ /* Set CORE0 entrypoint for Package2. */ set_core_entrypoint_and_argument(0, DRAM_BASE_PHYSICAL + header.metadata.entrypoint, 0); /* Remove the DRAM identity mapping. */ if (0) { identity_unmap_dram(); } /* Synchronize with NX BOOTLOADER. */ if (exosphere_get_target_firmware() >= EXOSPHERE_TARGET_FIRMWARE_400) { sync_with_nx_bootloader(NX_BOOTLOADER_STATE_FINISHED_4X); setup_4x_mmio(); } else { sync_with_nx_bootloader(NX_BOOTLOADER_STATE_FINISHED); } /* Prepare the SMC API with version-dependent SMCs. */ set_version_specific_smcs(); /* Update SCR_EL3 depending on value in Bootconfig. */ set_extabt_serror_taken_to_el3(bootconfig_take_extabt_serror_to_el3()); }