/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <mesosphere.hpp> namespace ams::kern { namespace { ALWAYS_INLINE bool ReadFromUser(s32 *out, KProcessAddress address) { return UserspaceAccess::CopyMemoryFromUserSize32Bit(out, GetVoidPointer(address)); } ALWAYS_INLINE bool DecrementIfLessThan(s32 *out, KProcessAddress address, s32 value) { /* NOTE: If scheduler lock is not held here, interrupt disable is required. */ /* KScopedInterruptDisable di; */ MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread()); if (!cpu::CanAccessAtomic(address)) { return false; } return UserspaceAccess::DecrementIfLessThanAtomic(out, GetPointer<s32>(address), value); } ALWAYS_INLINE bool UpdateIfEqual(s32 *out, KProcessAddress address, s32 value, s32 new_value) { /* NOTE: If scheduler lock is not held here, interrupt disable is required. */ /* KScopedInterruptDisable di; */ MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread()); if (!cpu::CanAccessAtomic(address)) { return false; } return UserspaceAccess::UpdateIfEqualAtomic(out, GetPointer<s32>(address), value, new_value); } class ThreadQueueImplForKAddressArbiter final : public KThreadQueue { private: KAddressArbiter::ThreadTree *m_tree; public: constexpr ThreadQueueImplForKAddressArbiter(KAddressArbiter::ThreadTree *t) : KThreadQueue(), m_tree(t) { /* ... */ } virtual void CancelWait(KThread *waiting_thread, Result wait_result, bool cancel_timer_task) override { /* If the thread is waiting on an address arbiter, remove it from the tree. */ if (waiting_thread->IsWaitingForAddressArbiter()) { m_tree->erase(m_tree->iterator_to(*waiting_thread)); waiting_thread->ClearAddressArbiter(); } /* Invoke the base cancel wait handler. */ KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task); } }; } Result KAddressArbiter::Signal(uintptr_t addr, s32 count) { /* Perform signaling. */ s32 num_waiters = 0; { KScopedSchedulerLock sl; auto it = m_tree.nfind_key({ addr, -1 }); while ((it != m_tree.end()) && (count <= 0 || num_waiters < count) && (it->GetAddressArbiterKey() == addr)) { /* End the thread's wait. */ KThread *target_thread = std::addressof(*it); target_thread->EndWait(ResultSuccess()); MESOSPHERE_ASSERT(target_thread->IsWaitingForAddressArbiter()); target_thread->ClearAddressArbiter(); it = m_tree.erase(it); ++num_waiters; } } R_SUCCEED(); } Result KAddressArbiter::SignalAndIncrementIfEqual(uintptr_t addr, s32 value, s32 count) { /* Perform signaling. */ s32 num_waiters = 0; { KScopedSchedulerLock sl; /* Check the userspace value. */ s32 user_value; R_UNLESS(UpdateIfEqual(std::addressof(user_value), addr, value, value + 1), svc::ResultInvalidCurrentMemory()); R_UNLESS(user_value == value, svc::ResultInvalidState()); auto it = m_tree.nfind_key({ addr, -1 }); while ((it != m_tree.end()) && (count <= 0 || num_waiters < count) && (it->GetAddressArbiterKey() == addr)) { /* End the thread's wait. */ KThread *target_thread = std::addressof(*it); target_thread->EndWait(ResultSuccess()); MESOSPHERE_ASSERT(target_thread->IsWaitingForAddressArbiter()); target_thread->ClearAddressArbiter(); it = m_tree.erase(it); ++num_waiters; } } R_SUCCEED(); } Result KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(uintptr_t addr, s32 value, s32 count) { /* Perform signaling. */ s32 num_waiters = 0; { KScopedSchedulerLock sl; auto it = m_tree.nfind_key({ addr, -1 }); /* Determine the updated value. */ s32 new_value; if (count <= 0) { if ((it != m_tree.end()) && (it->GetAddressArbiterKey() == addr)) { new_value = value - 1; } else { new_value = value + 1; } } else { if ((it != m_tree.end()) && (it->GetAddressArbiterKey() == addr)) { auto tmp_it = it; s32 tmp_num_waiters = 0; while ((++tmp_it != m_tree.end()) && (tmp_it->GetAddressArbiterKey() == addr)) { if ((++tmp_num_waiters) >= count) { break; } } if (tmp_num_waiters < count) { new_value = value - 1; } else { new_value = value; } } else { new_value = value + 1; } } /* Check the userspace value. */ s32 user_value; bool succeeded; if (value != new_value) { succeeded = UpdateIfEqual(std::addressof(user_value), addr, value, new_value); } else { succeeded = ReadFromUser(std::addressof(user_value), addr); } R_UNLESS(succeeded, svc::ResultInvalidCurrentMemory()); R_UNLESS(user_value == value, svc::ResultInvalidState()); while ((it != m_tree.end()) && (count <= 0 || num_waiters < count) && (it->GetAddressArbiterKey() == addr)) { /* End the thread's wait. */ KThread *target_thread = std::addressof(*it); target_thread->EndWait(ResultSuccess()); MESOSPHERE_ASSERT(target_thread->IsWaitingForAddressArbiter()); target_thread->ClearAddressArbiter(); it = m_tree.erase(it); ++num_waiters; } } R_SUCCEED(); } Result KAddressArbiter::WaitIfLessThan(uintptr_t addr, s32 value, bool decrement, s64 timeout) { /* Prepare to wait. */ KThread *cur_thread = GetCurrentThreadPointer(); KHardwareTimer *timer; ThreadQueueImplForKAddressArbiter wait_queue(std::addressof(m_tree)); { KScopedSchedulerLockAndSleep slp(std::addressof(timer), cur_thread, timeout); /* Check that the thread isn't terminating. */ if (cur_thread->IsTerminationRequested()) { slp.CancelSleep(); R_THROW(svc::ResultTerminationRequested()); } /* Read the value from userspace. */ s32 user_value; bool succeeded; if (decrement) { succeeded = DecrementIfLessThan(std::addressof(user_value), addr, value); } else { succeeded = ReadFromUser(std::addressof(user_value), addr); } if (!succeeded) { slp.CancelSleep(); R_THROW(svc::ResultInvalidCurrentMemory()); } /* Check that the value is less than the specified one. */ if (user_value >= value) { slp.CancelSleep(); R_THROW(svc::ResultInvalidState()); } /* Check that the timeout is non-zero. */ if (timeout == 0) { slp.CancelSleep(); R_THROW(svc::ResultTimedOut()); } /* Set the arbiter. */ cur_thread->SetAddressArbiter(std::addressof(m_tree), addr); m_tree.insert(*cur_thread); /* Wait for the thread to finish. */ wait_queue.SetHardwareTimer(timer); cur_thread->BeginWait(std::addressof(wait_queue)); } /* Get the wait result. */ R_RETURN(cur_thread->GetWaitResult()); } Result KAddressArbiter::WaitIfEqual(uintptr_t addr, s32 value, s64 timeout) { /* Prepare to wait. */ KThread *cur_thread = GetCurrentThreadPointer(); KHardwareTimer *timer; ThreadQueueImplForKAddressArbiter wait_queue(std::addressof(m_tree)); { KScopedSchedulerLockAndSleep slp(std::addressof(timer), cur_thread, timeout); /* Check that the thread isn't terminating. */ if (cur_thread->IsTerminationRequested()) { slp.CancelSleep(); R_THROW(svc::ResultTerminationRequested()); } /* Read the value from userspace. */ s32 user_value; if (!ReadFromUser(std::addressof(user_value), addr)) { slp.CancelSleep(); R_THROW(svc::ResultInvalidCurrentMemory()); } /* Check that the value is equal. */ if (value != user_value) { slp.CancelSleep(); R_THROW(svc::ResultInvalidState()); } /* Check that the timeout is non-zero. */ if (timeout == 0) { slp.CancelSleep(); R_THROW(svc::ResultTimedOut()); } /* Set the arbiter. */ cur_thread->SetAddressArbiter(std::addressof(m_tree), addr); m_tree.insert(*cur_thread); /* Wait for the thread to finish. */ wait_queue.SetHardwareTimer(timer); cur_thread->BeginWait(std::addressof(wait_queue)); } /* Get the wait result. */ R_RETURN(cur_thread->GetWaitResult()); } }