/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <vapours.hpp> #if defined(ATMOSPHERE_IS_STRATOSPHERE) #include <arm_neon.h> namespace ams::crypto::impl { namespace { alignas(Sha256Impl::BlockSize) constexpr const u32 RoundConstants[0x40] = { 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, }; } void Sha256Impl::Initialize() { /* Reset buffered bytes/bits. */ m_buffered_bytes = 0; m_bits_consumed = 0; /* Set intermediate hash. */ m_intermediate_hash[0] = 0x6A09E667; m_intermediate_hash[1] = 0xBB67AE85; m_intermediate_hash[2] = 0x3C6EF372; m_intermediate_hash[3] = 0xA54FF53A; m_intermediate_hash[4] = 0x510E527F; m_intermediate_hash[5] = 0x9B05688C; m_intermediate_hash[6] = 0x1F83D9AB; m_intermediate_hash[7] = 0x5BE0CD19; /* Set state. */ m_state = State_Initialized; } void Sha256Impl::Update(const void *data, size_t size) { /* Verify we're in a state to update. */ AMS_ASSERT(m_state == State_Initialized); /* Advance our input bit count. */ m_bits_consumed += BITSIZEOF(u8) * (((m_buffered_bytes + size) / BlockSize) * BlockSize); /* Process anything we have buffered. */ const u8 *data8 = static_cast<const u8 *>(data); size_t remaining = size; if (m_buffered_bytes > 0) { const size_t copy_size = std::min(BlockSize - m_buffered_bytes, remaining); std::memcpy(m_buffer + m_buffered_bytes, data8, copy_size); data8 += copy_size; remaining -= copy_size; m_buffered_bytes += copy_size; /* Process a block, if we filled one. */ if (m_buffered_bytes == BlockSize) { this->ProcessBlock(m_buffer); m_buffered_bytes = 0; } } /* Process blocks, if we have any. */ if (remaining >= BlockSize) { const size_t blocks = remaining / BlockSize; this->ProcessBlocks(data8, blocks); data8 += BlockSize * blocks; remaining -= BlockSize * blocks; } /* Copy any leftover data to our buffer. */ if (remaining > 0) { m_buffered_bytes = remaining; std::memcpy(m_buffer, data8, remaining); } } void Sha256Impl::GetHash(void *dst, size_t size) { /* Verify we're in a state to get hash. */ AMS_ASSERT(m_state == State_Initialized || m_state == State_Done); AMS_ASSERT(size >= HashSize); AMS_UNUSED(size); /* If we need to, process the last block. */ if (m_state == State_Initialized) { this->ProcessLastBlock(); m_state = State_Done; } /* Copy the output hash. */ if constexpr (util::IsLittleEndian()) { static_assert(HashSize % sizeof(u32) == 0); u32 *dst_32 = static_cast<u32 *>(dst); for (size_t i = 0; i < HashSize / sizeof(u32); ++i) { dst_32[i] = util::LoadBigEndian<u32>(m_intermediate_hash + i); } } else { std::memcpy(dst, m_intermediate_hash, HashSize); } } void Sha256Impl::InitializeWithContext(const Sha256Context *context) { /* Copy state in from the context. */ std::memcpy(m_intermediate_hash, context->intermediate_hash, sizeof(m_intermediate_hash)); m_bits_consumed = context->bits_consumed; /* Reset other fields. */ m_buffered_bytes = 0; m_state = State_Initialized; } size_t Sha256Impl::GetContext(Sha256Context *context) const { /* Check our state. */ AMS_ASSERT(m_state == State_Initialized); /* Copy out the context. */ std::memcpy(context->intermediate_hash, m_intermediate_hash, sizeof(context->intermediate_hash)); context->bits_consumed = m_bits_consumed; return m_buffered_bytes; } ALWAYS_INLINE void Sha256Impl::ProcessBlock(const void *data) { return this->ProcessBlocks(static_cast<const u8 *>(data), 1); } void Sha256Impl::ProcessBlocks(const u8 *data, size_t block_count) { /* Load previous hash with intermediate state, current hash with zeroes. */ uint32x4_t prev_hash0 = vld1q_u32(m_intermediate_hash + 0); uint32x4_t prev_hash1 = vld1q_u32(m_intermediate_hash + 4); uint32x4_t cur_hash0 = vdupq_n_u32(0); uint32x4_t cur_hash1 = vdupq_n_u32(0); /* Process blocks. */ do { uint32x4_t round_constant0, round_constant1; uint32x4_t data0, data1, data2, data3; uint32x4_t tmp0, tmp1, tmp2, tmp3; uint32x4_t tmp_hash; /* Use optimized ASM implementation to process the block. */ __asm__ __volatile__ ( "ldp %q[data0], %q[data1], [%[data]], #0x20\n" "ldp %q[data2], %q[data3], [%[data]], #0x20\n" "add %[cur_hash0].4s, %[cur_hash0].4s, %[prev_hash0].4s\n" "ldp %q[round_constant0], %q[round_constant1], [%[round_constants], 0x00]\n" "add %[cur_hash1].4s, %[cur_hash1].4s, %[prev_hash1].4s\n" "rev32 %[data0].16b, %[data0].16b\n" "rev32 %[data1].16b, %[data1].16b\n" "rev32 %[data2].16b, %[data2].16b\n" "rev32 %[data3].16b, %[data3].16b\n" "add %[tmp0].4s, %[data0].4s, %[round_constant0].4s\n" "add %[tmp1].4s, %[data1].4s, %[round_constant1].4s\n" "ldp %q[round_constant0], %q[round_constant1], [%[round_constants], 0x20]\n" "sha256su0 %[data0].4s, %[data1].4s\n" "mov %[prev_hash0].16b, %[cur_hash0].16b\n" "sha256h %q[cur_hash0], %q[cur_hash1], %[tmp0].4s\n" "mov %[prev_hash1].16b, %[cur_hash1].16b\n" "sha256h2 %q[cur_hash1], %q[prev_hash0], %[tmp0].4s\n" "sha256su0 %[data1].4s, %[data2].4s\n" "sha256su1 %[data0].4s, %[data2].4s, %[data3].4s\n" "add %[tmp2].4s, %[data2].4s, %[round_constant0].4s\n" "mov %[tmp_hash].16b, %[cur_hash0].16b\n" "sha256h %q[cur_hash0], %q[cur_hash1], %[tmp1].4s\n" "sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp1].4s\n" "sha256su0 %[data2].4s, %[data3].4s\n" "sha256su1 %[data1].4s, %[data3].4s, %[data0].4s\n" "add %[tmp3].4s, %[data3].4s, %[round_constant1].4s\n" "mov %[tmp_hash].16b, %[cur_hash0].16b\n" "ldp %q[round_constant0], %q[round_constant1], [%[round_constants], 0x40]\n" "sha256h %q[cur_hash0], %q[cur_hash1], %[tmp2].4s\n" "sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp2].4s\n" "sha256su0 %[data3].4s, %[data0].4s\n" "sha256su1 %[data2].4s, %[data0].4s, %[data1].4s\n" "add %[tmp0].4s, %[data0].4s, %[round_constant0].4s\n" "mov %[tmp_hash].16b, %[cur_hash0].16b\n" "sha256h %q[cur_hash0], %q[cur_hash1], %[tmp3].4s\n" "sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp3].4s\n" "sha256su0 %[data0].4s, %[data1].4s\n" "sha256su1 %[data3].4s, %[data1].4s, %[data2].4s\n" "add %[tmp1].4s, %[data1].4s, %[round_constant1].4s\n" "mov %[tmp_hash].16b, %[cur_hash0].16b\n" "ldp %q[round_constant0], %q[round_constant1], [%[round_constants], 0x60]\n" "sha256h %q[cur_hash0], %q[cur_hash1], %[tmp0].4s\n" "sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp0].4s\n" "sha256su0 %[data1].4s, %[data2].4s\n" "sha256su1 %[data0].4s, %[data2].4s, %[data3].4s\n" "add %[tmp2].4s, %[data2].4s, %[round_constant0].4s\n" "mov %[tmp_hash].16b, %[cur_hash0].16b\n" "sha256h %q[cur_hash0], %q[cur_hash1], %[tmp1].4s\n" "sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp1].4s\n" "sha256su0 %[data2].4s, %[data3].4s\n" "sha256su1 %[data1].4s, %[data3].4s, %[data0].4s\n" "add %[tmp3].4s, %[data3].4s, %[round_constant1].4s\n" "mov %[tmp_hash].16b, %[cur_hash0].16b\n" "ldp %q[round_constant0], %q[round_constant1], [%[round_constants], 0x80]\n" "sha256h %q[cur_hash0], %q[cur_hash1], %[tmp2].4s\n" "sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp2].4s\n" "sha256su0 %[data3].4s, %[data0].4s\n" "sha256su1 %[data2].4s, %[data0].4s, %[data1].4s\n" "add %[tmp0].4s, %[data0].4s, %[round_constant0].4s\n" "mov %[tmp_hash].16b, %[cur_hash0].16b\n" "sha256h %q[cur_hash0], %q[cur_hash1], %[tmp3].4s\n" "sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp3].4s\n" "sha256su0 %[data0].4s, %[data1].4s\n" "sha256su1 %[data3].4s, %[data1].4s, %[data2].4s\n" "add %[tmp1].4s, %[data1].4s, %[round_constant1].4s\n" "mov %[tmp_hash].16b, %[cur_hash0].16b\n" "ldp %q[round_constant0], %q[round_constant1], [%[round_constants], 0xA0]\n" "sha256h %q[cur_hash0], %q[cur_hash1], %[tmp0].4s\n" "sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp0].4s\n" "sha256su0 %[data1].4s, %[data2].4s\n" "sha256su1 %[data0].4s, %[data2].4s, %[data3].4s\n" "add %[tmp2].4s, %[data2].4s, %[round_constant0].4s\n" "mov %[tmp_hash].16b, %[cur_hash0].16b\n" "sha256h %q[cur_hash0], %q[cur_hash1], %[tmp1].4s\n" "sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp1].4s\n" "sha256su0 %[data2].4s, %[data3].4s\n" "sha256su1 %[data1].4s, %[data3].4s, %[data0].4s\n" "add %[tmp3].4s, %[data3].4s, %[round_constant1].4s\n" "mov %[tmp_hash].16b, %[cur_hash0].16b\n" "ldp %q[round_constant0], %q[round_constant1], [%[round_constants], 0xC0]\n" "sha256h %q[cur_hash0], %q[cur_hash1], %[tmp2].4s\n" "sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp2].4s\n" "sha256su0 %[data3].4s, %[data0].4s\n" "sha256su1 %[data2].4s, %[data0].4s, %[data1].4s\n" "add %[tmp0].4s, %[data0].4s, %[round_constant0].4s\n" "mov %[tmp_hash].16b, %[cur_hash0].16b\n" "sha256h %q[cur_hash0], %q[cur_hash1], %[tmp3].4s\n" "sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp3].4s\n" "sha256su1 %[data3].4s, %[data1].4s, %[data2].4s\n" "add %[tmp1].4s, %[data1].4s, %[round_constant1].4s\n" "mov %[tmp_hash].16b, %[cur_hash0].16b\n" "ldp %q[round_constant0], %q[round_constant1], [%[round_constants], 0xE0]\n" "sha256h %q[cur_hash0], %q[cur_hash1], %[tmp0].4s\n" "sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp0].4s\n" "add %[tmp2].4s, %[data2].4s, %[round_constant0].4s\n" "mov %[tmp_hash].16b, %[cur_hash0].16b\n" "sha256h %q[cur_hash0], %q[cur_hash1], %[tmp1].4s\n" "sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp1].4s\n" "add %[tmp3].4s, %[data3].4s, %[round_constant1].4s\n" "mov %[tmp_hash].16b, %[cur_hash0].16b\n" "sha256h %q[cur_hash0], %q[cur_hash1], %[tmp2].4s\n" "sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp2].4s\n" "mov %[tmp_hash].16b, %[cur_hash0].16b\n" "sha256h %q[cur_hash0], %q[cur_hash1], %[tmp3].4s\n" "sha256h2 %q[cur_hash1], %q[tmp_hash], %[tmp3].4s\n" : [data0]"=w"(data0), [data1]"=w"(data1), [data2]"=w"(data2), [data3]"=w"(data3), [tmp0]"=w"(tmp0), [tmp1]"=w"(tmp1), [tmp2]"=w"(tmp2), [tmp3]"=w"(tmp3), [round_constant0]"=w"(round_constant0), [round_constant1]"=w"(round_constant1), [cur_hash0]"+w"(cur_hash0), [cur_hash1]"+w"(cur_hash1), [prev_hash0]"+w"(prev_hash0), [prev_hash1]"+w"(prev_hash1), [tmp_hash]"=w"(tmp_hash), [data]"+r"(data) : [round_constants]"r"(RoundConstants) : ); } while (--block_count != 0); /* Add hashes together, and store. */ cur_hash0 = vaddq_u32(prev_hash0, cur_hash0); cur_hash1 = vaddq_u32(prev_hash1, cur_hash1); vst1q_u32(m_intermediate_hash + 0, cur_hash0); vst1q_u32(m_intermediate_hash + 4, cur_hash1); } void Sha256Impl::ProcessLastBlock() { /* Setup the final block. */ constexpr const auto BlockSizeWithoutSizeField = BlockSize - sizeof(u64); /* Increment our bits consumed. */ m_bits_consumed += BITSIZEOF(u8) * m_buffered_bytes; /* Add 0x80 terminator. */ m_buffer[m_buffered_bytes++] = 0x80; /* If we can process the size field directly, do so, otherwise set up to process it. */ if (m_buffered_bytes <= BlockSizeWithoutSizeField) { /* Clear up to size field. */ std::memset(m_buffer + m_buffered_bytes, 0, BlockSizeWithoutSizeField - m_buffered_bytes); } else { /* Consume full block */ std::memset(m_buffer + m_buffered_bytes, 0, BlockSize - m_buffered_bytes); this->ProcessBlock(m_buffer); /* Clear up to size field. */ std::memset(m_buffer, 0, BlockSizeWithoutSizeField); } /* Store the size field. */ util::StoreBigEndian<u64>(reinterpret_cast<u64 *>(m_buffer + BlockSizeWithoutSizeField), m_bits_consumed); /* Process the final block. */ this->ProcessBlock(m_buffer); } } #endif