/* * Copyright (c) 2018-2020 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "utils.h" #include "se.h" void trigger_se_blocking_op(unsigned int op, void *dst, size_t dst_size, const void *src, size_t src_size); /* Globals for driver. */ static unsigned int g_se_modulus_sizes[KEYSLOT_RSA_MAX]; static unsigned int g_se_exp_sizes[KEYSLOT_RSA_MAX]; /* Initialize a SE linked list. */ void NOINLINE ll_init(volatile se_ll_t *ll, void *buffer, size_t size) { ll->num_entries = 0; /* 1 Entry. */ if (buffer != NULL) { ll->addr_info.address = (uint32_t) get_physical_address(buffer); ll->addr_info.size = (uint32_t) size; } else { ll->addr_info.address = 0; ll->addr_info.size = 0; } } void se_check_error_status_reg(void) { if (se_get_regs()->SE_ERR_STATUS) { generic_panic(); } } void se_check_for_error(void) { volatile tegra_se_t *se = se_get_regs(); if (se->SE_INT_STATUS & 0x10000 || se->SE_STATUS & 3 || se->SE_ERR_STATUS) { generic_panic(); } } void se_verify_flags_cleared(void) { if (se_get_regs()->SE_STATUS & 3) { generic_panic(); } } /* Set the flags for an AES keyslot. */ void set_aes_keyslot_flags(unsigned int keyslot, unsigned int flags) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } /* Misc flags. */ if (flags & ~0x80) { se->SE_CRYPTO_KEYTABLE_ACCESS[keyslot] = ~flags; } /* Disable keyslot reads. */ if (flags & 0x80) { se->SE_CRYPTO_SECURITY_PERKEY &= ~(1 << keyslot); } } /* Set the flags for an RSA keyslot. */ void set_rsa_keyslot_flags(unsigned int keyslot, unsigned int flags) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_RSA_MAX) { generic_panic(); } /* Misc flags. */ if (flags & ~0x80) { /* TODO: Why are flags assigned this way? */ se->SE_RSA_KEYTABLE_ACCESS[keyslot] = (((flags >> 4) & 4) | (flags & 3)) ^ 7; } /* Disable keyslot reads. */ if (flags & 0x80) { se->SE_RSA_SECURITY_PERKEY &= ~(1 << keyslot); } } void clear_aes_keyslot(unsigned int keyslot) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } /* Zero out the whole keyslot and IV. */ for (unsigned int i = 0; i < 0x10; i++) { se->SE_CRYPTO_KEYTABLE_ADDR = (keyslot << 4) | i; se->SE_CRYPTO_KEYTABLE_DATA = 0; } } void clear_rsa_keyslot(unsigned int keyslot) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_RSA_MAX) { generic_panic(); } /* Zero out the whole keyslot. */ for (unsigned int i = 0; i < 0x40; i++) { /* Select Keyslot Modulus[i] */ se->SE_RSA_KEYTABLE_ADDR = (keyslot << 7) | i | 0x40; se->SE_RSA_KEYTABLE_DATA = 0; } for (unsigned int i = 0; i < 0x40; i++) { /* Select Keyslot Expontent[i] */ se->SE_RSA_KEYTABLE_ADDR = (keyslot << 7) | i; se->SE_RSA_KEYTABLE_DATA = 0; } } void set_aes_keyslot(unsigned int keyslot, const void *key, size_t key_size) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX || key_size > KEYSIZE_AES_MAX) { generic_panic(); } for (size_t i = 0; i < (key_size >> 2); i++) { se->SE_CRYPTO_KEYTABLE_ADDR = (keyslot << 4) | i; se->SE_CRYPTO_KEYTABLE_DATA = read32le(key, 4 * i); } } void set_rsa_keyslot(unsigned int keyslot, const void *modulus, size_t modulus_size, const void *exponent, size_t exp_size) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_RSA_MAX || modulus_size > KEYSIZE_RSA_MAX || exp_size > KEYSIZE_RSA_MAX) { generic_panic(); } for (size_t i = 0; i < (modulus_size >> 2); i++) { se->SE_RSA_KEYTABLE_ADDR = (keyslot << 7) | 0x40 | i; se->SE_RSA_KEYTABLE_DATA = read32be(modulus, (4 * (modulus_size >> 2)) - (4 * i) - 4); } for (size_t i = 0; i < (exp_size >> 2); i++) { se->SE_RSA_KEYTABLE_ADDR = (keyslot << 7) | i; se->SE_RSA_KEYTABLE_DATA = read32be(exponent, (4 * (exp_size >> 2)) - (4 * i) - 4); } g_se_modulus_sizes[keyslot] = modulus_size; g_se_exp_sizes[keyslot] = exp_size; } void set_aes_keyslot_iv(unsigned int keyslot, const void *iv, size_t iv_size) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX || iv_size > 0x10) { generic_panic(); } for (size_t i = 0; i < (iv_size >> 2); i++) { se->SE_CRYPTO_KEYTABLE_ADDR = (keyslot << 4) | 8 | i; se->SE_CRYPTO_KEYTABLE_DATA = read32le(iv, 4 * i); } } void clear_aes_keyslot_iv(unsigned int keyslot) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } for (size_t i = 0; i < (0x10 >> 2); i++) { se->SE_CRYPTO_KEYTABLE_ADDR = (keyslot << 4) | 8 | i; se->SE_CRYPTO_KEYTABLE_DATA = 0; } } void set_se_ctr(const void *ctr) { for (unsigned int i = 0; i < 4; i++) { se_get_regs()->SE_CRYPTO_LINEAR_CTR[i] = read32le(ctr, i * 4); } } void decrypt_data_into_keyslot(unsigned int keyslot_dst, unsigned int keyslot_src, const void *wrapped_key, size_t wrapped_key_size) { volatile tegra_se_t *se = se_get_regs(); if (keyslot_dst >= KEYSLOT_AES_MAX || keyslot_src >= KEYSLOT_AES_MAX || wrapped_key_size > KEYSIZE_AES_MAX) { generic_panic(); } se->SE_CONFIG = (ALG_AES_DEC | DST_KEYTAB); se->SE_CRYPTO_CONFIG = keyslot_src << 24; se->SE_CRYPTO_LAST_BLOCK = 0; se->SE_CRYPTO_KEYTABLE_DST = keyslot_dst << 8; trigger_se_blocking_op(OP_START, NULL, 0, wrapped_key, wrapped_key_size); } void se_synchronous_exp_mod(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) { volatile tegra_se_t *se = se_get_regs(); uint8_t ALIGN(16) stack_buf[KEYSIZE_RSA_MAX]; if (keyslot >= KEYSLOT_RSA_MAX || src_size > KEYSIZE_RSA_MAX || dst_size > KEYSIZE_RSA_MAX) { generic_panic(); } /* Endian swap the input. */ for (size_t i = 0; i < src_size; i++) { stack_buf[i] = *((uint8_t *)src + src_size - i - 1); } se->SE_CONFIG = (ALG_RSA | DST_RSAREG); se->SE_RSA_CONFIG = keyslot << 24; se->SE_RSA_KEY_SIZE = (g_se_modulus_sizes[keyslot] >> 6) - 1; se->SE_RSA_EXP_SIZE = g_se_exp_sizes[keyslot] >> 2; trigger_se_blocking_op(OP_START, NULL, 0, stack_buf, src_size); se_get_exp_mod_output(dst, dst_size); } void se_get_exp_mod_output(void *buf, size_t size) { size_t num_dwords = (size >> 2); if (num_dwords < 1) { return; } uint32_t *p_out = ((uint32_t *)buf) + num_dwords - 1; uint32_t offset = 0; /* Copy endian swapped output. */ while (num_dwords) { *p_out = read32be(se_get_regs()->SE_RSA_OUTPUT, offset); offset += 4; p_out--; num_dwords--; } } bool se_rsa2048_pss_verify(const void *signature, size_t signature_size, const void *modulus, size_t modulus_size, const void *data, size_t data_size) { uint8_t message[RSA_2048_BYTES]; uint8_t h_buf[0x24]; /* Hardcode RSA with keyslot 0. */ const uint8_t public_exponent[4] = {0x00, 0x01, 0x00, 0x01}; set_rsa_keyslot(0, modulus, modulus_size, public_exponent, sizeof(public_exponent)); se_synchronous_exp_mod(0, message, sizeof(message), signature, signature_size); /* Validate sanity byte. */ if (message[RSA_2048_BYTES - 1] != 0xBC) { return false; } /* Copy Salt into MGF1 Hash Buffer. */ memset(h_buf, 0, sizeof(h_buf)); memcpy(h_buf, message + RSA_2048_BYTES - 0x20 - 0x1, 0x20); /* Decrypt maskedDB (via inline MGF1). */ uint8_t seed = 0; uint8_t mgf1_buf[0x20]; for (unsigned int ofs = 0; ofs < RSA_2048_BYTES - 0x20 - 1; ofs += 0x20) { h_buf[sizeof(h_buf) - 1] = seed++; se_calculate_sha256(mgf1_buf, h_buf, sizeof(h_buf)); for (unsigned int i = ofs; i < ofs + 0x20 && i < RSA_2048_BYTES - 0x20 - 1; i++) { message[i] ^= mgf1_buf[i - ofs]; } } /* Constant lmask for rsa-2048-pss. */ message[0] &= 0x7F; /* Validate DB is of the form 0000...0001. */ for (unsigned int i = 0; i < RSA_2048_BYTES - 0x20 - 0x20 - 1 - 1; i++) { if (message[i] != 0) { return false; } } if (message[RSA_2048_BYTES - 0x20 - 0x20 - 1 - 1] != 1) { return false; } /* Check hash correctness. */ uint8_t validate_buf[8 + 0x20 + 0x20]; uint8_t validate_hash[0x20]; memset(validate_buf, 0, sizeof(validate_buf)); se_calculate_sha256(&validate_buf[8], data, data_size); memcpy(&validate_buf[0x28], &message[RSA_2048_BYTES - 0x20 - 0x20 - 1], 0x20); se_calculate_sha256(validate_hash, validate_buf, sizeof(validate_buf)); return memcmp(h_buf, validate_hash, 0x20) == 0; } void trigger_se_blocking_op(unsigned int op, void *dst, size_t dst_size, const void *src, size_t src_size) { volatile tegra_se_t *se = se_get_regs(); se_ll_t in_ll; se_ll_t out_ll; ll_init(&in_ll, (void *)src, src_size); ll_init(&out_ll, dst, dst_size); /* Set the LLs. */ se->SE_IN_LL_ADDR = (uint32_t) get_physical_address(&in_ll); se->SE_OUT_LL_ADDR = (uint32_t) get_physical_address(&out_ll); /* Set registers for operation. */ se->SE_ERR_STATUS = se->SE_ERR_STATUS; se->SE_INT_STATUS = se->SE_INT_STATUS; se->SE_OPERATION = op; while (!(se->SE_INT_STATUS & 0x10)) { /* Wait a while */ } se_check_for_error(); } /* Secure AES Functionality. */ void se_perform_aes_block_operation(void *dst, size_t dst_size, const void *src, size_t src_size) { uint8_t block[0x10] = {0}; if (src_size > sizeof(block) || dst_size > sizeof(block)) { generic_panic(); } /* Load src data into block. */ if (src_size != 0) { memcpy(block, src, src_size); } /* Trigger AES operation. */ se_get_regs()->SE_CRYPTO_LAST_BLOCK = 0; trigger_se_blocking_op(OP_START, block, sizeof(block), block, sizeof(block)); /* Copy output data into dst. */ if (dst_size != 0) { memcpy(dst, block, dst_size); } } void se_aes_ctr_crypt(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, const void *ctr, size_t ctr_size) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX || ctr_size != 0x10) { generic_panic(); } unsigned int num_blocks = src_size >> 4; /* Unknown what this write does, but official code writes it for CTR mode. */ se->SE_SPARE = 1; se->SE_CONFIG = (ALG_AES_ENC | DST_MEMORY); se->SE_CRYPTO_CONFIG = (keyslot << 24) | 0x91E; set_se_ctr(ctr); /* Handle any aligned blocks. */ size_t aligned_size = (size_t)num_blocks << 4; if (aligned_size) { se->SE_CRYPTO_LAST_BLOCK = num_blocks - 1; trigger_se_blocking_op(OP_START, dst, dst_size, src, aligned_size); } /* Handle final, unaligned block. */ if (aligned_size < dst_size && aligned_size < src_size) { size_t last_block_size = dst_size - aligned_size; if (src_size < dst_size) { last_block_size = src_size - aligned_size; } se_perform_aes_block_operation(dst + aligned_size, last_block_size, (uint8_t *)src + aligned_size, src_size - aligned_size); } } void se_aes_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, unsigned int config_high) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX || dst_size != 0x10 || src_size != 0x10) { generic_panic(); } /* Set configuration high (256-bit vs 128-bit) based on parameter. */ se->SE_CONFIG = (ALG_AES_ENC | DST_MEMORY) | (config_high << 16); se->SE_CRYPTO_CONFIG = keyslot << 24 | 0x100; se_perform_aes_block_operation(dst, 0x10, src, 0x10); } void se_aes_128_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) { se_aes_ecb_encrypt_block(keyslot, dst, dst_size, src, src_size, 0); } void se_aes_256_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) { se_aes_ecb_encrypt_block(keyslot, dst, dst_size, src, src_size, 0x202); } void se_aes_ecb_decrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX || dst_size != 0x10 || src_size != 0x10) { generic_panic(); } se->SE_CONFIG = (ALG_AES_DEC | DST_MEMORY); se->SE_CRYPTO_CONFIG = keyslot << 24; se_perform_aes_block_operation(dst, 0x10, src, 0x10); } void shift_left_xor_rb(uint8_t *key) { uint8_t prev_high_bit = 0; for (unsigned int i = 0; i < 0x10; i++) { uint8_t cur_byte = key[0xF - i]; key[0xF - i] = (cur_byte << 1) | (prev_high_bit); prev_high_bit = cur_byte >> 7; } if (prev_high_bit) { key[0xF] ^= 0x87; } } void shift_left_xor_rb_le(uint8_t *key) { uint8_t prev_high_bit = 0; for (unsigned int i = 0; i < 0x10; i++) { uint8_t cur_byte = key[i]; key[i] = (cur_byte << 1) | (prev_high_bit); prev_high_bit = cur_byte >> 7; } if (prev_high_bit) { key[0x0] ^= 0x87; } } void aes_128_xts_nintendo_get_tweak(uint8_t *tweak, size_t sector) { for (int i = 0xF; i >= 0; i--) { /* Nintendo LE custom tweak... */ tweak[i] = (unsigned char)(sector & 0xFF); sector >>= 8; } } void aes_128_xts_nintendo_xor_with_tweak(unsigned int keyslot, size_t sector, uint8_t *dst, const uint8_t *src, size_t size, size_t crypto_sector_size) { if ((size & 0xF) || size == 0) { generic_panic(); } unsigned int sector_scale = crypto_sector_size / size; unsigned int real_sector = sector / sector_scale; uint8_t tweak[0x10]; aes_128_xts_nintendo_get_tweak(tweak, real_sector); se_aes_128_ecb_encrypt_block(keyslot, tweak, sizeof(tweak), tweak, sizeof(tweak)); unsigned int num_pre_blocks = ((sector % sector_scale) * size) / 0x10; for (unsigned int pre = 0; pre < num_pre_blocks; pre++) { shift_left_xor_rb_le(tweak); } for (unsigned int block = 0; block < (size >> 4); block++) { for (unsigned int i = 0; i < 0x10; i++) { dst[(block << 4) | i] = src[(block << 4) | i] ^ tweak[i]; } shift_left_xor_rb_le(tweak); } } void aes_128_xts_nintendo_crypt_sector(unsigned int keyslot_1, unsigned int keyslot_2, size_t sector, bool encrypt, void *dst, const void *src, size_t size, size_t crypto_sector_size) { volatile tegra_se_t *se = se_get_regs(); if ((size & 0xF) || size == 0 || crypto_sector_size < size || (crypto_sector_size % size) != 0) { generic_panic(); } /* XOR. */ aes_128_xts_nintendo_xor_with_tweak(keyslot_2, sector, dst, src, size, crypto_sector_size); /* Encrypt/Decrypt. */ if (encrypt) { se->SE_CONFIG = (ALG_AES_ENC | DST_MEMORY); se->SE_CRYPTO_CONFIG = keyslot_1 << 24 | 0x100; } else { se->SE_CONFIG = (ALG_AES_DEC | DST_MEMORY); se->SE_CRYPTO_CONFIG = keyslot_1 << 24; } se->SE_CRYPTO_LAST_BLOCK = (size >> 4) - 1; trigger_se_blocking_op(OP_START, dst, size, src, size); /* XOR. */ aes_128_xts_nintendo_xor_with_tweak(keyslot_2, sector, dst, dst, size, crypto_sector_size); } /* Encrypt with AES-XTS (Nintendo's custom tweak). */ void se_aes_128_xts_nintendo_encrypt(unsigned int keyslot_1, unsigned int keyslot_2, size_t base_sector, void *dst, const void *src, size_t size, unsigned int sector_size, unsigned int crypto_sector_size) { if ((size & 0xF) || size == 0 || crypto_sector_size < sector_size || (crypto_sector_size % sector_size) != 0) { generic_panic(); } size_t sector = base_sector; for (size_t ofs = 0; ofs < size; ofs += sector_size) { aes_128_xts_nintendo_crypt_sector(keyslot_1, keyslot_2, sector, true, dst + ofs, src + ofs, sector_size, crypto_sector_size); sector++; } } /* Decrypt with AES-XTS (Nintendo's custom tweak). */ void se_aes_128_xts_nintendo_decrypt(unsigned int keyslot_1, unsigned int keyslot_2, size_t base_sector, void *dst, const void *src, size_t size, unsigned int sector_size, unsigned int crypto_sector_size) { if ((size & 0xF) || size == 0 || crypto_sector_size < sector_size || (crypto_sector_size % sector_size) != 0) { generic_panic(); } size_t sector = base_sector; for (size_t ofs = 0; ofs < size; ofs += sector_size) { aes_128_xts_nintendo_crypt_sector(keyslot_1, keyslot_2, sector, false, dst + ofs, src + ofs, sector_size, crypto_sector_size); sector++; } } void se_compute_aes_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size, unsigned int config_high) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } /* Generate the derived key, to be XOR'd with final output block. */ uint8_t ALIGN(16) derived_key[0x10] = {0}; se_aes_ecb_encrypt_block(keyslot, derived_key, sizeof(derived_key), derived_key, sizeof(derived_key), config_high); shift_left_xor_rb(derived_key); if (data_size & 0xF) { shift_left_xor_rb(derived_key); } se->SE_CONFIG = (ALG_AES_ENC | DST_HASHREG) | (config_high << 16); se->SE_CRYPTO_CONFIG = (keyslot << 24) | (0x145); clear_aes_keyslot_iv(keyslot); unsigned int num_blocks = (data_size + 0xF) >> 4; /* Handle aligned blocks. */ if (num_blocks > 1) { se->SE_CRYPTO_LAST_BLOCK = num_blocks - 2; trigger_se_blocking_op(OP_START, NULL, 0, data, data_size); se->SE_CRYPTO_CONFIG |= 0x80; } /* Create final block. */ uint8_t ALIGN(16) last_block[0x10] = {0}; if (data_size & 0xF) { memcpy(last_block, data + (data_size & ~0xF), data_size & 0xF); last_block[data_size & 0xF] = 0x80; /* Last block = data || 100...0 */ } else if (data_size >= 0x10) { memcpy(last_block, data + data_size - 0x10, 0x10); } for (unsigned int i = 0; i < 0x10; i++) { last_block[i] ^= derived_key[i]; } /* Perform last operation. */ se->SE_CRYPTO_LAST_BLOCK = 0; trigger_se_blocking_op(OP_START, NULL, 0, last_block, sizeof(last_block)); /* Copy output CMAC. */ for (unsigned int i = 0; i < (cmac_size >> 2); i++) { ((uint32_t *)cmac)[i] = read32le(se->SE_HASH_RESULT, i << 2); } } void se_compute_aes_128_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size) { se_compute_aes_cmac(keyslot, cmac, cmac_size, data, data_size, 0); } void se_compute_aes_256_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size) { se_compute_aes_cmac(keyslot, cmac, cmac_size, data, data_size, 0x202); } void se_aes_256_cbc_encrypt(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, const void *iv) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX || src_size < 0x10) { generic_panic(); } se->SE_CONFIG = (ALG_AES_ENC | DST_MEMORY) | (0x202 << 16); se->SE_CRYPTO_CONFIG = (keyslot << 24) | 0x144; set_aes_keyslot_iv(keyslot, iv, 0x10); se->SE_CRYPTO_LAST_BLOCK = (src_size >> 4) - 1; trigger_se_blocking_op(OP_START, dst, dst_size, src, src_size); } void se_aes_128_cbc_decrypt(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, const void *iv) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX || src_size < 0x10) { generic_panic(); } se->SE_CONFIG = (ALG_AES_DEC | DST_MEMORY) | (0x000 << 16); se->SE_CRYPTO_CONFIG = (keyslot << 24) | 0x66; set_aes_keyslot_iv(keyslot, iv, 0x10); se->SE_CRYPTO_LAST_BLOCK = (src_size >> 4) - 1; trigger_se_blocking_op(OP_START, dst, dst_size, src, src_size); } /* SHA256 Implementation. */ void se_calculate_sha256(void *dst, const void *src, size_t src_size) { volatile tegra_se_t *se = se_get_regs(); /* Setup config for SHA256, size = BITS(src_size) */ se->SE_CONFIG = (ENCMODE_SHA256 | ALG_SHA | DST_HASHREG); se->SE_SHA_CONFIG = 1; se->SE_SHA_MSG_LENGTH[0] = (uint32_t)(src_size << 3); se->SE_SHA_MSG_LENGTH[1] = 0; se->SE_SHA_MSG_LENGTH[2] = 0; se->SE_SHA_MSG_LENGTH[3] = 0; se->SE_SHA_MSG_LEFT[0] = (uint32_t)(src_size << 3); se->SE_SHA_MSG_LEFT[1] = 0; se->SE_SHA_MSG_LEFT[2] = 0; se->SE_SHA_MSG_LEFT[3] = 0; /* Trigger the operation. */ trigger_se_blocking_op(OP_START, NULL, 0, src, src_size); /* Copy output hash. */ for (unsigned int i = 0; i < (0x20 >> 2); i++) { ((uint32_t *)dst)[i] = read32be(se->SE_HASH_RESULT, i << 2); } } /* RNG API */ void se_initialize_rng(unsigned int keyslot) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } /* To initialize the RNG, we'll perform an RNG operation into an output buffer. */ /* This will be discarded, when done. */ uint8_t ALIGN(16) output_buf[0x10]; se->SE_RNG_SRC_CONFIG = 3; /* Entropy enable + Entropy lock enable */ se->SE_RNG_RESEED_INTERVAL = 70001; se->SE_CONFIG = (ALG_RNG | DST_MEMORY); se->SE_CRYPTO_CONFIG = (keyslot << 24) | 0x108; se->SE_RNG_CONFIG = 5; se->SE_CRYPTO_LAST_BLOCK = 0; trigger_se_blocking_op(OP_START, output_buf, 0x10, NULL, 0); } void se_generate_random(unsigned int keyslot, void *dst, size_t size) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } uint32_t num_blocks = size >> 4; size_t aligned_size = num_blocks << 4; se->SE_CONFIG = (ALG_RNG | DST_MEMORY); se->SE_CRYPTO_CONFIG = (keyslot << 24) | 0x108; se->SE_RNG_CONFIG = 4; if (num_blocks >= 1) { se->SE_CRYPTO_LAST_BLOCK = num_blocks - 1; trigger_se_blocking_op(OP_START, dst, aligned_size, NULL, 0); } if (size > aligned_size) { se_perform_aes_block_operation(dst + aligned_size, size - aligned_size, NULL, 0); } }